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Abstract

Dynamic levels of detail allow fine grained selection of ac-
tually rendered geometry suitable for the current viewing
parameters. Therefore, the visual quality of interactive 3D
applications is usually higher than the quality achieved by
traditional static level of detail approaches. On the other
hand, this fine grained representation requires more CPU
time for runtime refinement of the displayed mesh. We re-
port on an event-driven refinement method that decreases
the selection time significantly. Our approach exploits co-
herence between successive frames explicitly to reduce the
number of tests necessary for node refinements. For large
virtual environments we observed, that our method per-
forms best when the actually displayed mesh is very com-
plex. In these cases our approach is several times faster
than the primal methods for dynamic level of detail refine-
ment.

Keywords: Dynamic Levels of Detail, View-Dependent
Multiresolution Meshes, View-Dependent Rendering, In-
teractive Visualization

1 Introduction

Dynamic levels of detail (often referred as view-dependent
multiresolution meshes) comprise a general tool to allow
smooth interactive animation of complex mesh geome-
try. The displayed mesh is highly adjusted for the current
viewing parameters and usually only few changes are ap-
plied to the mesh between successive frames. Therefore
sudden changes in the visible geometry (often called pop-
ping artefacts) do not appear and even small changes in
geometry can be smoothened using runtime geomorphs.

This highly adaptive mesh visualization approach has
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some disadvantages: The selection (or refinement) of the
mesh to display is rather computationally intensive, since
a large number of decisions is required for every rendered
frame. Further, dynamic levels of detail do not easily ex-
ploit efficient rendering primitives like triangle strips. In
this work we address the first shortcoming to reduce the
time for mesh selection. This goal is achieved by mini-
mizing the required number of decisions for every frame
using an event-driven approach to mesh refinement. Our
method exploits coherence between frames directly, since
successive frames with close viewing parameters require
only few decisions to be performed to adjust the displayed
mesh.

Since our approach requires more complex calculations
for every decision, in the worst case our method can be
slower than traditional refinement schemes. Nevertheless
we observed considerable speedup on average, when the
user navigates through complex meshes in some reason-
able manner.

2 Related Work

The key prerequisite for view–dependent mesh visualiza-
tion is the generation of a multiresolution data structure
containing a set of smooth levels of detail of the original
model. The most popular multiresolution concept is the
progressive mesh [5], which is essentially a sequence of
meshes with successively lower geometric accuracy and
complexity. Starting with the original mesh the next se-
quence element is obtained by applying one edge collapse
operation (Figure 1) to remove one edge and several trian-
gles from the previous mesh. The sequence of edge col-
lapses is chosen such that the overall shape of the model
is preserved. Edge collapses are performed until the mesh
distortion (according to some quality metric) is larger than
a user specified threshold. A very successfull metric to
guide the simplification procedure is the quadric error met-
ric proposed by Garland and Heckbert [4].
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Figure 1: Edge collapse operation. The vertices a and b
are collapsed into vertex c, therefore removing one edge
and 2 triangles. The inverse operation, vertex unfolding
(or vertex split), is applied at runtime for mesh refinement.

Several authors noticed that the linear sequence of edge
collapses can be generalized to a partial ordering repre-
sented by the vertex tree [13], [6], [3], [12]. Selective
refinement at runtime determines the currently displayed
mesh. Our framework is based on VDSlib [9], which
is described by Luebke and Erikson [11]. Figure 2 gives
an overview of the most important data structure, the ver-
tex tree. At runtime the nodes in the vertex tree fall into
three categories: active nodes, which contain the currently
rendered triangles (called subtris), boundary nodes, which
correspond to vertices in the displayed mesh, and inactive
nodes (which do not contribute to the rendered mesh). For
each frame to render, the vertex tree is traversed in top
down order and active nodes are determined according to
some screen error metric. Figure 3 illustrates the proce-
dure for the top-down adjustment of the vertex tree.

The selection of the displayed mesh is most easily de-
scribed as a top-down traversal of the vertex tree [11].
Faster mesh selection can be achieved if the refinement
starts with the boundary nodes of the previous frame.
We observed that the gain of such an approach is rather
marginal.

To decrease the time spent for mesh refinement
Hoppe [6] proposed a scheme to amortize refinement time
over several frames. Before a frame is rendered only a
fraction of the boundary nodes are tested for necessary re-
finement or coarsening. Other authors (e.g. Luebke [11])
proposed separate threads for mesh refinement and render-
ing to achieve amortized mesh selection. In all amortizing
approaches the displayed mesh is not optimally adjusted
for the current viewing parameters, which is especially
noticeable when the user changes his viewing parameters
very quickly.

It is very interesting to recall the ratios of the refine-
ment time to the rendering time given in the early papers
on view-dependent multiresolution meshes: Hoppe [6] re-
ports that only 14% of the frame time is spent for mesh re-
finement. Similar numbers are given by El-Sana et al. [1].
Our own experience with current PC hardware shows, that
the performance of graphics hardware has increased faster

subtri
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Figure 2: (a) The vertex tree as found in VDSlib [11].
Every node stores geometric data (point coordinate, color,
a bounding sphere etc.), its children and a list of associated
triangles, the so called subtris. The triangle (abc) is a sub-
tri of v, because it exists only if v is unfolded at runtime.
The nodes emphasized with a circle are possible corners
of (abc) chosen for rendering. (b) The bounding sphere of
node v contains all subtris of v and its ancestors.

than the performance of the CPU, mainly because of inter-
nal parallelization of vertex and fragment processing. We
observed that the original vdslib spents about as much
time for mesh refinement as in the rendering pass on cur-
rent hardware configurations.

Recently, Levenberg [8] mentioned a simple, event-
driven refinement procedure for a terrain rendering frame-
work, but he considered only potential unfold events to
refine the mesh. He did not report on the effectiveness of
such a scheme.

Dynamic level of detail approaches do not directly
support efficient rendering primitives like triangle strips.
Hoppe [6], [7] utilizes a greedy algorithm to generate tri-
angle strips dynamically at runtime. El-Sana et al. [1] pro-
posed a method to maintain triangle strips in the context
of view-dependent multiresolution meshes.

El-Sana et al. [2] presented several techniques to ac-
celerate rendering of view-dependent meshes. Their main
contribution consists in a modified mesh selection proce-
dure, that is based on a coarse spatial hierarchy and an
estimate of the likelihood a set of nodes needs to be re-
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adjustTreeTopDown(node, unfoldTest)
if (node->status == ACTIVE)

// Node was active in the previous frame
if (!unfoldTest(node))

// Now it does not meet the screen
// size criterion.
// Fold node and all its ancestors
// (make them inactive)
node->foldSubtree()
return

else
// Node was inactive in the previous frame
if (unfoldTest(node))

// Node meets the screen size criterion:
// Unfold this node and make it active.
node->unfold()

else
// Node remains inactive (as well as
// its children)
return

// Refine all children
for (int i = 0; i < node->nChildren; ++i)

Node * child = node->children[i]
// Note: we need not to test child nodes
// that are leaves, since these node cannot
// become active.
if (child->nChildren > 0)

adjustTreeTopDown(child, unfoldTest)

Figure 3: Pseudo code for top-down refinement. The func-
tion unfoldTest returns true if the node should be un-
folded according to the current viewing parameters. Our
unfoldTest criterion is explained in Section 3.

fined. When selecting the mesh suitable for display the
coarse hierarchy is traversed at first and nodes not needing
a refinement are quickly determined.

3 Our New Approach

We use the following simple observation as the basis of
our faster refinement approach: if the user moves slowly
through the virtual environment, only few nodes will be re-
fined or coarsened at the beginning of every frame. If some
maximum translational and angular velocities are known
in advance, we can further estimate the earliest point in
time when a node needs to be tested again. We identify
points in time with (discrete) frame numbers and use these
terms interchangeably.

In the following discussion we restrict to the case of a
pure screen space error metric to guide the mesh refine-
ment. This means that the screen space deviation of the
vertices of the displayed mesh from the original vertices is
less than some user specified threshold. Nevertheless, our
method is applicable to more general error metrics e.g. in-
corporating silhouette information ([11], [6]) as well.

If a node is currently folded, we estimate the earliest
time for a change in the node status as the maximum time
of two events:

1. A node has to change its status because the user
moves directly towards this node.

2. The user changes his viewing direction and conse-
quently this node becomes visible.

If a node is already unfolded, then the earliest time for
folding this node is given by the minimum time of the fol-
lowing events:

1. A node requires folding because the user moves di-
rectly away from this node and the size of the pro-
jected bounding sphere becomes smaller than the user
specified threshold.

2. The user rotates his viewing direction, hence this
node becomes potentially invisible.

We describe the calculations in more detail for boundary
nodes that can be possibly unfolded in the future. Assume
that the user is restricted to move at most ρ units and can
change his viewing direction by ω degrees per frame at
maximum. We denote the current viewing position with
eyePos and the current viewing direction with eyeDir.
For a given boundary node in the vertex tree, let c and r
be the center resp. the radius of the associated bounding
sphere.

Foldtest Criterion We derive the event times from the
basic test whether a node should be folded or unfolded. In
our implementation a node is unfolded if and only if the
following expression is true:

unfold = insideTest ∨
(visibilityTest ∧ thresholdTest),

where insideTest is a boolean predicate indicating if
the eye point is within the bounding sphere. We added
the insideTest predicate to allow simple (and fast) im-
plementations of the visibilityTest and thresholdTest
predicates. The predicate visibilityTest checks whether
some part of the sphere is inside the viewing frustum and
finally thresholdTest is true, if the projected size of the
bounding sphere is larger than some user specfied thresh-
old θ.

The procedure shown in Figure 4 is very similar to the
code found in the VDSlib.

Let ti be the potential time of entering the bounding
sphere of some node, and tr resp. tm are the closest frame
numbers of entering the viewing frustum and attaining the
requested screen size threshold. Therefore, if some node
is currently folded (has status boundary or inactive), then
the earliest time of becoming active for this node is

t = min(ti, max(tr, tm)).

The time ti can be easily calculated as

‖eyePos − c‖ − r

ρ
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unfoldTest(node)
// D .. distance vector between viewer
// and node
Vector D = node->center - eyePos
float distance = ||D||
// inside test: is viewer within
// bounding sphere?
if (distance < node->radius) return true
float phi = asin(node->radius / distance)
float alpha = acos(<eyeDir, D> / distance)
// visibility test: is bounding sphere
// (partially) inside the viewing cone?
if (alpha - phi > sqrt(2) * fov/2)

return false
// threshold test: is estimated projected
// screen size large enough?
return (node->radius / tan(fov) / distance)

>= theta

Figure 4: The fold/unfold test criterion.

(recall, that c and r are the center resp. radius of the bound-
ing sphere and ρ denotes the maximum translational move-
ment per frame). Analogeously the time for a potential
fold of an active node can be calculated using the dual for-
mulation.

Translational Movement If we assume that the node
is within the viewing frustum, but the projected size of the
bounding sphere is currently smaller than the threshold θ,
then the following holds:

r

tan(fov/2) ‖c − eyePos‖ < θ.

The projected size of the bounding sphere grows fastest if
the user moves directly towards the center of the sphere
(see Figure 5). The distance d the user has to move, such
that the threshold is attained, can be determined from

r

tan(fov/2) (‖c − eyePos‖ − d)
= θ.

Since for every frame the user can move ρ units at most,
the earliest time for unfolding this boundary node because
of translational movement can be calculated as

tm = �d/ρ� =
⌈‖c − eyePos‖ − r/(tan(fov/2) θ)

ρ

⌉

Change of the Viewing Direction If the currently
inspected node is outside the viewing frustum and there-
fore folded, the earliest frame number the bounding sphere
of this node is at least partially visible is

tr =

⌈
α + φ −√

2fov/2
ω

⌉
,

where α = � (eyeDir, c − eyePos) is the angle be-
tween the viewing direction and the relative position of the

fov/2

φ

r

Figure 5: Derivation of potential fold/unfold events due to
translational movement.

sphere and φ = arcsin(r/‖c − eyePos‖) is the spherical
size of the bounding sphere. Remember, that ω denotes
the maximum rotation angle of the viewing direction per
frame. This situation is illustrated in Figure 6.

fov/2

α φ

Figure 6: Derivation of potential fold/unfold events due to
rotation of the viewing direction.

If a node is already unfolded (active) we can compute
the times of potential fold events in a similar manner.

Queue Management The event times determined
from the previous paragraphs are relative to the current
frame number. A queue containing nodes sorted by ab-
solute event times is maintained during runtime. At the
beginning of every frame the events in the queue up to the
current frame number are handled. The pseudo code of the
main event handling loop is given in Figure 7.

Some parts of the code needs further explanation.
We store boundary nodes associated with their po-
tential unfold time and collapsable active nodes in
the event queue. An active node can be col-
lapsed if all child nodes are classified as boundary
nodes. The functions potentialFoldTime and
potentialUnfoldTime calculate this earliest frame
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queueMgr.advanceTime() // Start new frame
while (n = queueMgr.popNext())
if (n->status == ACTIVE)
if (!unfoldTest(n))

// Make a previously active node inactive
n->fold()
long t = potentialUnfoldTime(n)
n->queuePos = queueMgr.insertEntry(t, n)
for (int i = 0; i < n->nChildren; ++i)
RuntimeNode * child = ne->children[i]
// Skip leaves.
if (child->nChildren > 0)
queueMgr.eraseEntry(child->queuePos)

// Register parent node if all its
// children are inactive.
parent = n->parent
if (parent != 0 &&
allChildrenAreBoundary(parent))
long t = potentialFoldTime(parent)
parent->queuePos =

queueMgr.insertEntry(t, parent)
else

// No change, reinsert this node for
// future test
long t = max(1, potentialFoldTime(n))
n->queuePos = queueMgr.insertEntry(t, n)

else
if (unfoldTest(n))

// Make a previously inactive node active
n->unfold()
long t = potentialFoldTime(n)
n->queuePos = queueMgr.insertEntry(t, n)
// Erase the parent of n from the event
// queue, since one if its children became
// active
parent = n->parent
if (parent != 0 && parent->queuPos != 0)
queueMgr.eraseEntry(parent->queuePos)

// Insert all non-trivial children of n
// into the queue for potential unfolding.
for (int i = 0; i < n->nChildren; ++i)
child = n->children[i]
// Skip leaves.
if (child->nChildren == 0) continue
long t = potentialUnfoldTime(child)
child->queuePos =

queueMgr.insertEntry(t, child)
else

// No change, reinsert this node for
// future test
long t = max(1, potentialUnfoldTime(n))
n->queuePos = queueMgr.insertEntry(t, n)

Figure 7: The main loop to handle potential fold and un-
fold events for the next frame.

number of possible collapse and unfold events as de-
scribed in the previous paragraphs.

Essentially the code tests initially for every node, which
needs to be handled, whether its old status has to change
according to the current viewing parameters. If this is not
the case, the node is inserted again into the event queue
at some appropriate future frame number. Otherwise the
node needs to be folded resp. unfolded. If a previously
active node is folded, all children are removed from the
queue and its parent is registered for a potential fold event,

if all siblings of the current node are already folded. Addi-
tionally the node itself is registered for an potentially up-
coming unfold event.

If a former boundary node is unfolded, its parent is
eventually erased from the queue, the node itself is in-
serted and all non-trivial children are registered. In order
to remove invalidated nodes efficiently from the queue, ev-
ery node stores a pointer (iterator) to its current position in
the queue (queuePos). This iterator allows fast removal
of the node from the event queue.

The structure QueueMgr has the following interface:

struct QueueMgr
type iterator

void advanceTime();
Node * popNext() // returns 0 if no more events
iterator insertEntry(int time, Node * node)
void eraseEntry(iterator pos)

The semantics of these functions are straightforward.
The subroutine eraseEntry removes an event and in-
validates the queue position stored in the deleted node.

The simplest implementation of queueMgr is based
on multimaps1. A faster method uses arrays of
lists, which comprise a circular buffer. For bet-
ter performance we cache some values calculated in-
side unfoldTest (like the distance of the bound-
ing sphere to the eye position) and use them in spe-
cial implementations of potentialFoldTime and
potentialUnfoldTime. Since folding or unfolding
of nodes may cause subsequent collapsing of parents resp.
unfolding of subnodes, the runtime queue must be able to
handle insertions with t equal to zero, which means that a
node needs a test within the current frame.

Rapid Movements Even if the user moves faster than
the specified velocities ρ resp. ω, our incremental method
can still be applied. In case the user navigates faster
the current frame number is incremented by the appropri-
ate amount. Therefore more outstanding events are han-
dled and the overall selection time increases. If the user
changes his viewing parameters very fast, due to more ex-
pensive computations our incremental refinement scheme
can be slower than e.g. the direct top-down refinement ap-
proach. We observed that this is the case only for very
abrupt changes, which cause problems for other amortized
schemes as well.

4 Results

We compared our mesh refinement procedure with the top-
down selection method found in the VDSlib [9]. Since
our project is aimed on interactive visualization of urban
datasets, we selected three complex scenes related to our
project. The Graz dataset (Figure 8(a)) consists of a coarse
block model of the historic center of the town of Graz.

1A multimap is an associative container, in which there may be more
than one element with the same key.
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The second dataset comprise a digital elevation model of
the terrain in north-west Styria (Austria, Figure 8(b)). The
third dataset is a digital elevation model of an urban area
obtained by an airborne laser scanner (Figure 8(c) and (d)).
Some important numbers of these datasets are summarized
in Table 1. We set ω to 0.02rad for all datasets.

Dataset name triangle count extent ρ

Graz 162146 2970 1
NW Styria 524288 73704 50
DEM 720000 1032 1

Table 1: Characteristic numbers for the tested datasets.
The given extent corresponds with the diameter of the
dataset. Since the North-West Styria dataset has a much
larger extent than the other scenes, ρ is set accordingly.

For each dataset we recorded a path, which resembles a
typical movement through the virtual scene, and we com-
pared our mesh selection method with the top-down mesh
adjustment procedure. Graphs showing the obtained se-
lection times are given in Figure 9–11. These figures
demonstrate that our approach can effectively reduce the
time spent for mesh selection in those cases where the
top-down adjustment requires many refinement tests. For
those viewing parameters, where only few tests are re-
quired, our procedure is comparably fast as the top-down
refinement. In these cases the absolute time spent for mesh
selection is small, anyway.

5 Conclusion and Future Work

We presented a fast dynamic level of detail refinement
method based on screen space error metrics. Our approach
can be extended to more complicated refinement criteria
incorporating silhouette or lighting information. In these
cases the foldtest criterion is more complicated and there-
fore the closest time of a potential node change is the ap-
propriate combination of several estimated event times.
E.g. if silhouette information is incorporated as described
in [11], the time of a change in the node’s silhouette state
has to be estimated additionally.

The speedup of our method is significant; we observe
that only about one third of the time of the original se-
lection time is required if the displayed mesh is very com-
plex. Therefore our method usually reduces effectively the
overall rendering time, whenever a lot of time is spent for
pure rendering. By optimizing math expressions the mesh
selection procedure can be accelerated significantly [10]
without changing the basic approach. This speed-up ap-
plies to traditional refinement methods and to our event-
based approach as well.

Since our approach is based on local events, it is of lim-
ited use in a time-critical setting, where e.g. a fixed num-
ber of rendered triangles must not be exceeded. Neverthe-
less our method could be beneficial, if the allowed screen-

space error is adjusted between frames, such that it is low-
ered if the budget is exceed and raised if the budget is not
exploited completely.

Future work will address the acceleration of refine-
ment strategies in the time-critical setting. Another impor-
tant topic is the utilization of accelerated rendering primi-
tives like vertex array ranges and triangle strips for view-
dependent rendering.
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Figure 9: Selection times for the Graz dataset.
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Figure 10: Selection times for the DEM dataset.
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Figure 11: Selection times for the North-West Styria dataset.
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