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Abstract—During continuous user interaction, it is hard to provide rich visual feedback at interactive rates for datasets containing
millions of entries. The contribution of this paper is a generic architecture that ensures responsiveness of the application even when
dealing with large data and that is applicable to most types of information visualizations. Our architecture builds on the separation
of the main application thread and the visualization thread, which can be cancelled early due to user interaction. In combination
with a layer mechanism, our architecture facilitates generating previews incrementally to provide rich visual feedback quickly. To help
avoiding common pitfalls of multi-threading, we discuss synchronization and communication in detail. We explicitly denote design
choices to control trade-offs. A quantitative evaluation based on the system VISPLORE shows fast visual feedback during continuous
interaction even for millions of entries. We describe instantiations of our architecture in additional tools.

Index Terms—Information visualization architecture, continuous interaction, multi-threading, layer, preview.

1 INTRODUCTION

Exploration of unknown data is an important task in the context of in-
formation visualization. Explorative tasks are different from presenta-
tion tasks in that they require frequent changes of the view on the data.
This includes both, navigation between different data subsets and ad-
justment of parameters that control the visual mapping. Multiple coor-
dinated views [2], dynamic queries [29], and direct manipulation [28]
are key concepts to support visual exploration.

For smooth and efficient exploration, the ensemble of analytical, vi-
sual, and interaction methods has to generate results in a timely man-
ner (within 50 – 100 ms [29, 30]). However, even moderately sized
data can pose computational challenges. Computing a graph layout
of a few hundered nodes or rendering a data set with a few thousand
data records as a parallel coordinates plot may take a few seconds on
a desktop computer. For discrete interaction (e.g., a single click on a
button) delays or temporary loss of responsiveness might be accept-
able, because interaction occurs at low frequency.

However, research in human-computer-interaction has long been
emphasizing the significance of continuous interaction as a require-
ment of interactive systems to support native human behavior [12].
This is in particular true for information visualization, because exam-
ining multiple ‘what if’ scenarios is a key aspect of exploratory data
analysis [30]. A scenario could, for example, refer to setting a model
parameter to a certain value. For discrete interaction, the user has to
explicitly specify scenarios of interest in a successive manner. This
approach provides no information about properties between two sce-
narios and it requires much time to explore parameter ranges. Con-
tinuous interaction, on the other hand, allows the user to explore any
range in any speed and reduces the risk of losing interesting scenar-
ios. During continuous interaction, two important requirements are to
keep the application responsive and to provide a sufficient amount of
visual feedback. What ‘sufficient visual feedback’ refers to depends
on the visualization and the purpose, but definitely involves showing a
representation of the data.

Many approaches provide a fixed amount of feedback during a con-
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tinuous user interaction. However, as the available computation time
per update can hardly be predicted generically and may vary due to
caching and scheduling effects, such approaches suffer from one of
two drawbacks: 1) time is left unused and less visual feedback is pro-
vided than possible or 2) single updates take longer than the time be-
tween consecutive user events. In the second case, the application
responsiveness may degrade severely if visualization generation hap-
pens in the same thread that is responsible for receiving events.

Therefore, some systems (e.g., IMPROVISE [37]) parallelize these
tasks using multi-threading. Although multi-threading makes use of
commonplace multi-core technology and is thus desirable, implement-
ing multi-threaded programs is difficult [21, 23] and involves many
potential pitfalls which have not sufficiently been addressed in the con-
text of interactive visualization so far. Moreover, multi-threading by
itself neither guarantees responsiveness due to potential blocks caused
by thread synchronization, nor does it ensure rich visual feedback at
interactive rates.

As contribution of this paper, we propose a generic multi-threaded
visualization architecture that should help to avoid pitfalls related to
multi-threading. It has been designed to meet the following goals:

• Guarantee responsiveness to the user at all times, i.e., avoid per-
ceivable delays of the GUI

• Provide visual feedback as quickly as possible, i.e., keep the la-
tency between interaction and visual feedback below 100 ms [29]

• Provide as much visual feedback as possible
• Scale to data sets with several millions of data items
• Scale with regard to multiple views
• Support most common types of visualizations
• Be applicable regardless of environment or language

Where goals are conflicting, we explicitly outline and discuss particu-
lar design choices. This architecture has been shaped based on experi-
ences in implementing several visualization systems and tools, includ-
ing SIMVIS (C++) [9], VISPLORE (C++) [26], CGV (Java) [34], and
VISAXES (C#) [33].

In the next section, we take a look at related work. Section 3 de-
scribes our architecture, including details related to multi-threading.
We present a quantitative evaluation based on the system VISPLORE
in Section 4. We close with a discussion about design choices, further
instantiations of our architecture, and ideas for future work in Sec-
tion 5, and a conclusion in the last section.

2 RELATED WORK

We structure the discussion of related work into non-parallel tech-
niques for achieving rapid visual response, concurrency and parallel
programming in general, and multi-threading in interactive visualiza-
tion in particular.



2.1 Non-Parallel Techniques for Rapid Visual Response
Without parallelizing event handling and the generation of visual re-
sults, constantly updating the entire visualization during interaction
does not scale for large data as both the update frequency and the appli-
cation responsiveness degrade significantly. Therefore, many systems
provide only a fixed (usually minimalistic) amount of feedback dur-
ing continuous interaction to ensure responsiveness. For example, the
commercial system TABLEAU shows only an elastic rectangle during
dynamic query operations, whereas the query evaluation is triggered
only after releasing the mouse button.

Tanin et al. [31] describe optimizations to dynamic queries. They
pre-compute the set of affected items for each pixel position of a slider.
During slider movement, newly selected data items are displayed on
top of the visualization, whereas removed items are drawn with the
background color. Several visualization systems implement this ap-
proach (including SPOTFIRE and TREEMAP4). However, as noted by
Fekete [13], the restriction to pixel precision is often not tolerable.
Fekete also points out that query optimizations alone can not guaran-
tee responsiveness, because the limiting factor is usually the rendering.

One way to speed up rendering is to use abstraction methods, which
can operate in data space to reduce data size (e.g., sampling [11]) or
in view space to accelerate the rendering (e.g., binning [25]). How-
ever, performing costly computations (e.g., clustering) for large data
may cause a temporary loss of application responsiveness. Moreover,
while abstraction methods can emphasize important information bet-
ter as compared to indiscriminately showing all items, they necessarily
imply a loss of details, which is not always acceptable.

2.2 Concurrency and Parallel Programming
Many real-time graphics applications (e.g., games) exploit the par-
allelism of modern graphics hardware to achieve interactivity when
transforming geometric or volumetric data into images. In information
visualization, Fekete and Plaisant [14] investigated methods based on
hardware acceleration to interactively visualize a million data items
in scatter plots and treemap visualizations. Besides rendering per-
formance, non-standard visual attribute mappings support perception,
and appropriate interaction methods are integrated. However, while
definitely useful for particular visualization and interaction techniques,
transferring all steps of the visualization pipeline to the GPU is not al-
ways possible.

Chan et al. [6] developed a client-server system for exploring mas-
sive time series. Interactivity is maintained by delegating data queries
to eight multi-processor database servers and by applying caching
and pre-fetching mechanisms. To guarantee smooth interaction, con-
straints are derived from the capabilities of the employed hardware
and software, and limit the distance that a user is allowed to travel
per exploration step. It remains unclear how far such large-scale ar-
chitectures downscale to desktop PCs. Moreover, concurrency is not
mentioned with regard to mapping and rendering steps. Chan et al.
argue that the time required to map and render the data is negligible
compared to query computation time, which contradicts the aforemen-
tioned claim by Fekete [13]. Obviously, the position of the bottleneck
depends on the platform, the data size, and the type of both visualiza-
tion and user interaction. Approaches that assume any of these factors
as given can not solve the problem of guaranteeing responsiveness and
maximizing feedback in general.

Parallelism and concurrency in a general sense are key topics of
computer science and subject to ongoing research. There are nu-
merous highly non-trivial related issues involving synchronization,
communication, scheduling, consistency, deadlock prevention, data
and task parallelism, performance, and scalability. In case of multi-
threading, the advantages like utilizing commonplace multi-core ar-
chitectures come at the expense of increased system complexity and
higher implementation costs [21]. Automatic support (e.g., OpenMP
or Intel Threading Building Blocks) provides help for exploiting par-
allelism for particular computations, but does not scale to parallelizing
application-wide tasks like separating user input from generating visu-
alizations. This problem has recently been termed as the Multicore’s
Programmability Gap [23].

Defining design patterns for particular problems has proven a good
approach to cope with this complexity. Schmidt et al. [27] describe 17
patterns for concurrent and networked objects, covering event hand-
ling, synchronization, and concurrency. Similarly, Mattson et al. [22]
define a pattern language for parallel programming, which is struc-
tured as dealing with finding concurrency, algorithm structure, sup-
porting structures, and implementation mechanisms. More recently,
Herlihy and Shavit [18] summarize the theory when programming for
multiple processors and describe practical implementations for con-
current data structures. Many of the patterns and topics described in
these books are applicable to systems for visual data analysis. Some
patterns are partly related to the architecture as proposed in this paper
(e.g., the Active Object design pattern [27]). However, the scope of
most patterns is very general and none of these books addresses the
requirements regarding responses to user interaction nor visualization
aspects.

2.3 Multi-Threading in Interactive Visualization

Parallel algorithms and systems play an important role in scientific
visualization. Besides approaches tailored towards dedicated graph-
ics hardware or supercomputing environments, multi-threading is fre-
quently used. However, many techniques focus on exploiting data
parallelism by parallelizing the processing of data blocks [20]. On
a task level, computations in SCIRUN [19] are multi-threaded and do
not block the GUI, but are typically not designed for early cancellation
due to new input. The system PARAVIEW [5] separates the VTK-based
processing engine from the user interface by running both in different
processes, and it relies on Tcl scripts for inter-process communication.
Due to the design of PARAVIEW to scale to client/server environments
and batch processing, it supports only two static levels-of-detail – one
during interaction and one for still images –, and does not address early
termination due to frequent user interaction. While there are also nu-
merous approaches for progressive visualization, most of them focus
on a dedicated visualization technique like volume rendering [4]. For
this purpose, most approaches specifically tune the internal represen-
tation of the data to maximize performance.

In contrast, information visualization tools typically can not make
as many assumptions about the data while offering the user many op-
tions to control the visualization pipeline. Unfortunately, little atten-
tion has been paid to multi-threading in information visualization lit-
erature so far. Heer et al. [16] note that an important issue in im-
plementing the Scheduler pattern is to handle concurrency, but no in-
formation concerning communication and synchronization is given.
Their framework PREFUSE [17] offers a scheduler mechanism to ex-
ecute costly computations in a separate thread, e.g., to drive anima-
tions. The XMDVTOOL uses multi-threading only for asynchronous
data pre-fetching [10]. Our review of open source visualization soft-
ware showed that THE INFOVIS TOOLKIT [13], PROCESSING [15],
and MONDRIAN [32] do not employ multi-threading at all.

The visualization system IMPROVISE [35, 37] focuses on a generic
approach for coordinating multiple views. It uses shared objects (Live
Properties), a visual abstraction language (Coordinated Queries), and
other coordination patterns including containment patterns that are
related to semantic layers which will be discussed in Section 3.2.
IMPROVISE implements asynchronous displays based on retarding
worker threads to allocate as much resources as necessary to the user
interface thread (called throttling [36]). The authors also propose
caching of visualization tiles and other enhancements to improve per-
formance and interactivity during exploration. However, most aspects
related to multi-threading are specific to Java. No details are provided
on thread synchronization, early termination of updates, or on exploit-
ing multi-threading for maximizing visual feedback. Moreover, the
scalability to millions of data records remains unclear as ”Interactive
Performance” has been listed as future work [37].

To the best of our knowledge, there exists no generic architecture
for inherently multi-threaded information visualization of large data,
as many details about multi-threading have been left unpublished for
information visualization systems. However, we believe that such an
architecture could significantly facilitate the development of highly in-
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Fig. 1. Overview of our architecture. It shows involved threads and data,
how threads access this data, and how the application thread controls
the visualization threads.

teractive information visualization tools, which combine responsive-
ness and rich visual feedback even during continuous user interac-
tions. The importance and the current need for reusable architectures
for visual data exploration are also documented by the fact that Visual
Analytics Infrastructures has been established as a dedicated working
package in the ongoing European project VisMaster [1].

3 MULTI-THREADING VISUALIZATION ARCHITECTURE

We first provide an overview of our architecture before discussing its
details in Sections 3.1 and 3.2. The architecture builds on the sep-
aration of the main application thread and visualization threads (see
Fig. 1). The application thread is responsible for managing user re-
quests in the event loop using event handlers. To keep this loop
alive, event handlers are restricted to perform inexpensive tasks only,
i.e., changing visualization parameters and triggering updates. Costly
computations are delegated to visualization threads. In a multiple view
environment, each view has its own visualization thread.

Especially during continuous interaction, updates in progress will
frequently become irrelevant due to the arrival of new events. There-
fore, the visualization thread checks repeatedly if it may proceed or
should terminate early. For this purpose, we use a thread state ob-
ject that serves as central point of communication. Depending on the
semantics of the event, the execution of event handlers may be con-
current to the execution of the visualization thread (asynchronous), or
mutually exclusive (synchronous).

The visualization is subdivided in image space into layers, and the
visualization pipeline is processed separately for each layer. We will
see later on that the term “layer” is used in a broader sense. Layers
serve as partial visual results and can – in addition to partial results in
data space – be reused across multiple executions of the visualization
thread. Upon (early) thread termination, layers that have been vali-
dated so far can be displayed to provide as much visual feedback as
possible and as early as possible.

3.1 Early Thread Termination
Our approach to support continuous interaction is to provide dynamic
visual feedback by adapting the amount of detail to the available com-
putation time. In general, this time is known only a posteriori, i.e.,
when it has elapsed due to receiving new input. Receiving this input,
however, must be possible and not hindered by generating the feed-
back itself, which implies performing both tasks in parallel. It thus
requires a multi-threaded architecture of each visualization.

According to the Active Object design pattern [27], invocation on
an object should occur in the client’s thread of control, whereas exe-
cution should occur in a separate thread. In our context, the ’object’
is an interactive visualization, ’invocation’ refers to event handlers for
processing change notifications which are typically triggered by user
input, and ’execution’ means processing the visualization pipeline as
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Fig. 2. Comparison of synchronous and asynchronous event handling.
Threads communicate by changing the thread state S.

widely accepted reference model [7] to generate visual results. Con-
sequently, our visualization architecture maintains a single dedicated
visualization thread T per view (maintaining multiple threads per view
is discussed in section 5). Changes of parameters along the pipeline
affect the final image and thus need to trigger a new execution of
the pipeline. In this case, T must abort its current execution (if run-
ning) and eventually start processing the pipeline anew. We call this
paradigm Early Thread Termination (ETT), as an execution may be
aborted before T has finished the final image. During execution, T
must repeatedly check for the permission to proceed. Besides neces-
sary clean ups like freeing resources, it must abort once this permission
is no longer granted.

The time between requested and actual thread termination incurs a
certain latency L. Minimizing L is a central aspect of ETT and requires
checking for abort at a high frequency. It is therefore an important re-
quirement that checking is inexpensive, which is generally possible
as explained below. When accessing data sequentially, performing a
check after every few thousand entries is usually sufficient. In general,
T should check at least 10 to 20 times per second to achieve interactive
response rates [29, 30], but preferably even much more often. How-
ever, it can become impossible to guarantee a high frequency when
calling to foreign APIs, which is admittedly a potential limitation of
ETT. In order to lessen the practical impact of this problem in partic-
ular and to make the responsiveness of the application less dependent
on L in general, an important observation is that changes (i.e., events)
are critical with a different degree. Some changes require an ordered
communication between the handler and T while others do not. We
distinguish synchronous and asynchronous handling.

Synchronous event handling (see Fig. 2) enforces a mutually exclu-
sive execution of the handler and T . This implies that handlers need
to stop T , and must wait for this stop to occur before proceeding and
eventually re-starting T . Synchronous event handling ensures that any
subsequent execution of T is aware of the change.

Asynchronous event handling (see Fig. 2) also tells T to stop execu-
tion, but does not wait for this to occur. After committing the change,
which potentially involves modifying parameters, the handler states
that T needs to be restarted as soon as possible and returns. A current
execution of T may notice the effects some time afterwards.

Basically, all changes could be handled synchronously. However,
the performance of a synchronous handler – and thus the responsive-
ness of the application – depends directly on L, whereas asynchronous
handlers are independent of L and typically do not block the event-
handler thread. With regard to responsiveness, asynchronous handlers
are therefore preferable and should be used for uncritical changes like
modified parameter values. On the other hand, some events require
synchronous handling, for example, when objects or data must no
longer be accessed (e.g., due to deletion). In practice, visualizations
will need both synchronous and asynchronous event handling.

It is a potential problem of ETT, that if an execution is constantly



aborted before completing any result, no result will be delivered at
all. In general, redundant computation across multiple executions of
T should be avoided. It is therefore an important issue to:

1. identify partial results along the visualization pipeline, which
can be cached and potentially reused across multiple executions,

2. maintain a state of validity V [1..n], one for each partial result,
3. minimize the impact of changes by invalidating only those el-

ements of V , where the respective result directly or indirectly
depends on changed parameters.

Section 3.2 discusses this concept in detail in the context of interactive
visualizations. For now, it is important that V is part of the communi-
cation between event handlers and T . Moreover, the communication
involves the requested state of T , referred to as S. Fig. 2 illustrates,
how S is accessed and modified by involved threads over time for both
synchronous and asynchronous changes. As a fundamental idea of
ETT, T repeatedly checks the state of S. STOP tells T to terminate ex-
ecution. RESTART also tells T to terminate its current execution, but
to immediately restart a new one. Fig. 2 also shows, how L directly
affects the duration of synchronous handlers, which are blocked un-
til T has reached the state STOPPED. In order to prevent deadlocks
and livelocks, it is generally not recommendable for T to directly or
indirectly trigger events itself.

As for all parallel systems, synchronization is important for ETT in
order to avoid race conditions. The following points of synchroniza-
tion can be identified:

• Between event handlers and T , as discussed above.
• Between different event handlers. If changes may occur in more

than one client thread, event handlers themselves must be mutu-
ally exclusive in order to provide a predictable communication
between each handler and T .

• Access to S between all handlers and T . As an important excep-
tion, if access to S is atomic (i.e., S is always accessed in one
piece as is typically the case for basic data types), checking S
for abort – i.e., read access – does not need synchronization, un-
less S is subsequently written in dependence of the result. This
explains why checks for thread termination are usually cheap,
meeting a requirement of ETT.

• Access to V between asynchronous handlers and T . For syn-
chronous handlers, V is implicitly synchronized and thus does
not require explicit synchronization.

• Access to local (i.e., view-specific) parameters along the visual-
ization pipeline which are written by asynchronous handlers and
read by T . However, synchronization of access is not sufficient
to guarantee that the same state of parameters is used through-
out one execution of T . To ensure this, T must maintain a local
copy of those parameters which are potentially modified by asyn-
chronous handlers. This is a major disadvantage of asynchronous
handlers. Local parameters modified only by synchronous han-
dlers are implicitly synchronized by the mutually exclusive ex-
ecution. T does therefore not need to maintain a local copy of
them. For this reason, modifications of memory-intensive local
parameters (e.g., local derived data or a local selection state) typ-
ically require synchronous handling.

• Access to global (i.e., application-wide) parameters. Such pa-
rameters may change outside the execution of handlers of the
particular visualization. In a multi-view environment, global pa-
rameters refer to the very information linking the views and thus
include the data to be visualized itself. However, concurrent read
access to global parameters by multiple views is necessary, be-
cause a synchronization of read-access to data would otherwise
prevent concurrent processing of multiple visualizations, block-
ing all but one. It would thus eliminate responsiveness. Main-
taining a local copy for each view is not practicable for large
data. As a solution, changes to global parameters require two
notifications: One synchronous notification preceding any modi-
fication, which forbids access, and one asynchronous notification
permitting access when the modification is finished.

Finally, it is worth mentioning that although ETT is discussed in the
context of visualizations in this paper, it is not limited to them. ETT
can be applied to the design of any kind of objects that need to combine
expensive computations with potentially frequent state changes due to
interaction (e.g., ad-hoc queries or derived data columns).

3.2 Layered Visualization

As explained in Section 3.1, identifying and reusing partial results dur-
ing the execution of the visualization thread is necessary to avoid re-
dundant computation. This section discusses potential approaches to
identify such partial results in the context of interactive visualizations,
and how partial results help to display a dynamic amount of detail dur-
ing continuous interaction.

A key idea is to subdivide the final image into separate passes
through the visualization pipeline (referred to as “layer”), and to pro-
cess one layer after the other. Each layer provides additional informa-
tion and thus increases the amount of detail. It is important that the
processing order may be chosen independently of the display order to
prioritize important information for previews, as discussed below. In
contrast to decomposing work in data space, which is often not possi-
ble in information visualization (e.g., computing graph layouts), layer-
ing is thus a concept for decomposing results in view space. For most
visualizations, it is possible to identify one or more types of layers:

• Semantic layers are semantically different parts of the visualiza-
tion. Typical examples include the background (e.g., an image, a
map, a grid, etc.), all visible data items, those items selected by
an ad-hoc query, and overlays providing detail-on-demand like
labels or precise values [37]. It is reasonable to process seman-
tic layers by decreasing relevance or increasing effort. For ex-
ample, processing the layer of selected items (“focus”) first will
typically be less effort than considering all items (“context”) and
may already provide the most important information.

• Incremental layers can be identified in item-based visualizations
(like scatter plots or parallel coordinates) by subdividing the data
into disjunctive subsets and treating each subset as layer. Each
incremental layer contains a sampled version of the data and the
accumulation of all layers represents the entire dataset. A desir-
able feature is to ensure a sampling distribution that conserves
important properties of the final image as soon as possible, i.e.,
in the layers being processed early. Desirable properties could
be a size or a relative distribution similar to the final image. This
aspect boils down to determining an index that specifies the order
in which data entries are to be dealt with.

• Level-of-detail (LoD) layers provide visual representations of the
same data with different complexity and rendering cost. In con-
trast to incremental layers, more detailed LoD layers may replace
coarser layers, which are consequently not part of the final im-
age. For example, a tree-map showing a hierarchy depth of four
might be used instead of one showing only two hierarchy lev-
els [3]. The design space for level-of-detail layers is large and
includes abstraction in both view and data space. A view space-
based approach could be to reduce the rendering quality for early
layers, possibly in addition to displaying a sampled version of the
data. Examples include disabling anti-aliasing and reducing ge-
ometric resolution. As example of a data space-based approach,
lower levels of details might display features of the data like ma-
jor trends, clusters, and outliers, or may use aggregation (e.g., bin
maps) to reduce the rendering effort [25]. As a special case of
LoD layers, iterative layers refer to visualizing intermediate re-
sults of an iterative algorithm, as for example the computation of
a graph layout. In this case, each new layer (i.e., each iteration)
typically replaces any previous iteration.

Once the final image could be completed, it is shown to the user. Ac-
cording to the ETT paradigm, the work is aborted whenever relevant
parameters have changed. However, it is an important design choice,
how visual feedback can be provided even in cases when the visual-
ization thread could not complete.
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Design choice 1: immediate feedback vs. feedback on ter-
mination. Immediate feedback updates the display whenever a layer
could be completed. As advantage, feedback is given early and is
guaranteed to be up-to-date. As disadvantage, the composition of
each image is exposed to the user and produces potentially disturb-
ing flicker, which could be misinterpreted as data artifacts in extreme
cases. In contrast, feedback on termination updates the display just be-
fore thread termination to show all valid layers, i.e., the highest amount
of detail that could be dealt with in between two consecutive user in-
teractions. The advantage is that only one image is generated per ex-
ecution of the visualization thread, which reduces flicker significantly.
As disadvantage, it might take longer until feedback is provided – in
particular, if the execution is not aborted. The number and the type of
layers and the effort for generating the final image are critical factors
in the decision for one approach.

Design choice 2: type, number, and ordering of layers. In
general, the number of visual layers increases with the complexity
of a visualization. A single layer is most likely sufficient for basic
bar charts, whereas a subdivision of parallel coordinates discriminat-
ing multiple selections and providing overlays could involve several
semantic layers, which could in turn consist of LoD layers. Layers
can thus be organized hierarchically. In this case, it is a design deci-
sion whether to prioritize level-of-details over semantic layers or vice
versa. Apart from semantic dependencies, a processing order of lay-
ers may also be implied by internal dependencies between layers. For
example, layers showing data items may depend on the layer showing
the grid to determine the ranges of all displayed data dimensions.

An important decision for item-based visualizations is whether to
provide fine-grained incremental visualization (i.e., a large number of
incremental layers), or a fixed – typically small – number of LoD lay-
ers. The first case maximizes the average amount of provided detail
(e.g., the number of shown items), yet it also increases the variation in
the amount of details over time. This might create the impression of
flicker even if a single image is shown per execution of the visualiza-
tion thread. The second case is more stable with respect to the visual
feedback, yet also reduces the possibility to adapt the amount of detail
to the available computation time. This shows a trade-off between the
amount of detail and stability.

Design choice 3: caching concepts. In order to avoid redun-
dant computations, layers also represent reusable partial results. Ac-
cording to the model as proposed by Chi [7], different parameter ad-
justments affect different stages of the visualization pipeline. For ex-
ample, changing a color could just require a redraw of already filtered,
projected and possibly aggregated data. Performing just the rendering
may thus be magnitudes faster than processing the entire visualiza-
tion pipeline. We refer to this type of reuse as caching results in data
space, which is related to lazy evaluation and demand-driven pipelines
in visualization literature [20]. It is particularly useful for types of vi-
sualizations where computing internal representations of the data is

relatively expensive as compared to the rendering itself, and where
these representations consume a limited amount of memory. Exam-
ples include pivoted values of categorical data, aggregated representa-
tions as generated by binning continuous data, and the state of iterative
algorithms (e.g., for graph-layout and clustering).

On the other hand, some changes affect the entire visualization
pipeline, but only for a particular (semantic) layer. For example, ad-
hoc queries may require a frequent re-processing of the selected data
(“focus”), but may have no impact on the visualization of the entire
data (“context”) or other visual elements like the grid. In this case, it
is advantageous to cache results in view space for each layer indepen-
dently. Fig. 3 illustrates caching and reuse of layers from the point of
view of the user, the involved threads, and the layers as well as their
validity. In this example, events are handled synchronously, feedback
is provided on abort, and the validity is assumed on a per-layer basis,
i.e., not taking partial results along the pipeline into account.

The additional complexity for implementing item-based visualiza-
tions using layers as compared to naive implementations can be sum-
marized as:

• Invalidate affected layers instead of redrawing everything.
• Support multiple iterations through arbitrary subsets of the data

instead of processing all items in one pass. In the case of multiple
selections, for example, iterate through the data once for each se-
lection (and once for all entries), instead of mapping the selection
state of each entry to visual attributes like color or size within a
single pass. As data records may appear in multiple layers, more
significant layers must be shown on top of less significant ones.
In particular, it is often desirable – though not required – that the
visual representation of a selected item occludes its representa-
tion as non-selected item.

• Render layers to off-screen buffers and blend them together in-
stead of drawing directly to screen. In practice, this is more easy
to implement for 2D visualizations. In 3D, a composition in view
space is generally harder to realize due to the additional depth-
information necessary for correct occlusion handling.

• Check for thread termination regularly.
In our experience, these issues apply to all types of item-based visu-
alization (scatter plots, parallel coordinates, time-series views, etc.).
Sorting the items by their selection state or grouping them by iden-
tical rendering parameters is usually even necessary without explicit
layering. The additional complexity imposed by semantic layers is
thus usually (much) less than 20% in terms of lines of code. For in-
cremental layers, the main effort lies in identifying an index for fair
sampling (i.e., shuffling rows appropriately). Implementations of in-
cremental layers typically require a single off-screen buffer where new
visual output is added. For LoD-layers, the additional complexity may
range from negligible (e.g., just disabling anti-aliasing) to consider-
able for cases that require the computation of features of the data like
clusters.



4 EVALUATION

This section evaluates the proposed architecture. The goal is to demon-
strate its applicability and its possibilities to support visual exploration
of large data. All tests have been conducted on consumer hardware:
Intel Core 2 Quad CPU with four cores at 2.4 GHz, 4 GB of main
memory, and an NVidia Geforce 8800 GTS graphics card. Windows
XP Professional x64 Edition was used as operating system.

As test dataset, we used a multivariate CFD-simulation of a two-
stroke engine. The data table consists of 14.589.282 rows and 50
columns (approx. 5.3 GB), which are mostly physical properties like
temperature or pressure. One row in the data table represents one cell
of the model geometry at one particular discrete time-step of the sim-
ulation. Previous analyses of the dataset have been conducted using
the SIMVIS system [8], which also implements the proposed architec-
ture (see Section 5). The focus of this evaluation is on performance
issues with respect to maximizing visual feedback during continuous
interaction for data of such non-trivial size.

We performed all tests in a system for visual exploration, termed
VISPLORE. It provides more than 10 different visualizations, which
are partly standard (e.g., 2D and 3D scatter plots, parallel coordinates,
histograms, etc.) and partly specific to certain application tasks [26].
All views implement the proposed architecture to support continuous
interaction and early visual feedback. Multiple views are linked by
ad-hoc selections and derived data columns, whose evaluation also uti-
lizes the ETT paradigm. VISPLORE is written in C++, it uses GTK+ as
GUI library and OpenGL for rendering. The system has successfully
been applied to analyze data of numerous application domains and is
going to be released as part of the software suite of our company part-
ner AVL List GmbH in 2009. However, the focus of this evaluation
is to demonstrate the possibilities of our architecture, not to compare
VISPLORE as such against any other system.

We discuss two examples of continuous interaction, which cover
important cases: (1) The interaction concerns a single view, yet en-
tails performing the mapping and the rendering stage of the visualiza-
tion pipeline for the entire data. (2) The interaction concerns multiple
views, but affects a single semantic layer. The implementations of the
involved views also cover different options for the design choices 1
and 2, as explained below.

For the first example, we drag a slider to restrict the value range
displayed on the X-axis of a 2D scatter plot. For the evaluation, we
stored the interaction sequence as a macro (which takes 12 seconds)
and replayed it with four different implementations to highlight trade-
offs in the design space.

• Case 1.1 A single-threaded implementation as example of a
naive approach, i.e., each change entails a redraw of the entire
visualization in the same thread as used for handling events.

• Case 1.2 An ETT-based implementation providing immediate vi-
sual feedback for two static LoD-layers as example of a common
case in many visualization systems. The first layer consists of a
sampled subset of 32.768 data items without point smoothing
and without transparency, the second layer is the entire dataset
using point smoothing and transparency for visualizing density.

• Case 1.3 An ETT-based implementation providing early visual
feedback of fine-grained incremental layers as example of max-
imizing visual detail. The visualization pipeline is processed
separately in blocks of 4096 rows and the visualization thread
checks for abort after each block. The view provides feedback
on termination, displaying all data handled so far, and on com-
pletion of the entire data set.

• Case 1.4 An ETT-based implementation without preview visual-
ization, i.e., visual results are only shown if the thread completed
the entire visualization. This case has been chosen as example of
evaluating the effect of multi-threading without layering.

We use several indicators. Responsiveness is quantified by the average
number of user events that could be handled per second during the
interaction. The frequency of visual feedback is given by the average
and the minimal rate at which the visualization is updated per second.
The amount of feedback and its variation – indicating flicker – is given

Table 1. Results for example 1: restricting a slider

Case 1.1 Case 1.2 Case 1.3 Case 1.4
avg. # events handled / s 4.1 36.3 35.9 35.6
avg. # visual updates / s 4.1 13.2 35.9 0
min. # visual updates / s 3 9 18 0
min. items shown / update 100% 0.2% 0% 0%
q25 of items shown / update 100% 0.2% 3.5% 0%
avg. items shown / update 100% 0.2% 8.8% 0%
q75 of items shown / update 100% 0.2% 10.8% 0%
max. items shown / update 100% 0.2% 97.1% 0%

by the minimal, average, and maximal percentage of shown data per
update as well as the percentage of data that could at most be shown
for 25% and for 75% of the frames (i.e., quantiles). Table 1 shows the
results for the time between the start and the end of the interaction.

In case 1.1, feedback is given at a very slow rate. Even worse, the
application is hardly responsive during the interaction. All other cases
show that multi-threading ensures responsiveness of the application.
Comparing case 1.2 to case 1.3 highlights the trade-off between min-
imizing flicker and maximizing visual feedback. In case 1.2, flicker
does not occur at all because the visualization is updated only if the
first LoD-layer could finish while the entire visualization (i.e., the sec-
ond LoD-layer) could never complete. However, both the frequency
and the average amount of visual feedback are significantly lower than
in case 1.3, where even the minimal update rate of 18 is clearly faster
than the desirable frequency of 10 (= 100 ms per update), and where
a considerable percentage of the data (8.8%, i.e., 1.2 million items) is
displayed on average – the best values are close to showing the entire
dataset. On the other hand, the feedback sometimes drops to display-
ing the grid without data and flicker is generally high in case 1.3. Case
1.4 does not provide any feedback on the data, because at no point
during the 12 seconds of interaction, the visualization thread is able to
process the entire data in between two consecutive user events. This
highlights the importance of early visual feedback. However, even
case 1.4 is arguably superior to case 1.1, as it ensures responsiveness
(i.e., the slider is updated continuously) and pausing the slider move-
ment without releasing the mouse button would give the visualization
thread the time to generate visual feedback. In practice, VISPLORE
uses case 1.3.

For the second example, we drag an ad-hoc selection in a 2D scatter
plot and highlight the selected data items in a linked parallel coordi-
nates view showing 5 axes (see Fig. 4). Besides other types of queries,
VISPLORE offers an instant ad-hoc query (referred to as Focus) that
always selects all data items under the mouse cursor. The Focus is pre-
computed for all possible mouse-positions of a view, which reduces its
evaluation to a look-up operation. However, each view needs to update
frequently (i.e., on every mouse move) to reflect Focus changes. For
the evaluation, we again stored an interaction sequence as a macro, this
time a continuous mouse movement of 23 seconds, which causes fre-
quent Focus updates. The macro has been tested against the following
four implementations of parallel coordinates.

• Case 2.1 A single-threaded implementation without caching any
partial results as example of a naive approach where each change
necessitates processing the entire visualization pipeline in the ap-
plication thread

• Case 2.2 An ETT-based implementation without caching any
partial results. However, the Focus is processed first and is im-
mediately displayed to provide visual feedback.

• Case 2.3 An ETT-based implementation caching the image of the
Context layer, i.e., the semantic layer displaying all data items,
and reusing this images as long as the layer stays valid. The
comparison of case 2.2 to case 2.3 is intended to emphasize the
effect of caching.

• Case 2.4 Same as case 2.3, but single-threaded to evaluate the
effect of caching separately

The average number of events that could be handled per second during
the interaction quantifies the responsiveness of the application. The
minimum, maximum, and average response time indicate the latency



Table 2. Results for example 2: linked ad-hoc selection

Case 2.1 Case 2.2 Case 2.3 Case 2.4
avg. events handled / sec. 0.2 20.1 13.5 8.8
min. response time (sec.) 6.7 0.03 0.03 0.03
avg. response time (sec.) 12.1 0.07 0.09 0.09
max. response time (sec.) 13.4 0.23 0.25 0.14
average data shown 100% 0.05% 100% 100%

No Caching of Layers Reusing Layers

Fig. 4. Example 2: comparison of an ad-hoc selection of entries beneath
the mouse cursor in a multiple view setup for two implementations of
parallel coordinates. The response time is equally low in both cases, but
the amount of detail is much higher when caching and reusing layers.

between changing the Focus and providing visual feedback. The av-
erage amount of shown data refers to the number of visualized items.
In contrast to example 1 where continuous movement triggers updates
constantly, the frequency of visual feedback is not a reasonable indi-
cator in example 2, as moving the mouse cursor through empty space
does not trigger updates. Table 2 shows the results.

For case 2.1, interaction is practically impossible as the system
blocks for several seconds at each mouse move. For the cases 2.2
and 2.3, the system stays responsive and visual feedback is provided
quickly. However, case 2.2 only displays the Focus most of the time,
as illustrated by the left image in Fig. 4 while the entire visualization is
only shown when the Focus is not updated for some time. Case 2.3 on
the other hand always displays the entire visualization due to reusing
the cached image of the Context as shown by the right image in Fig. 4.
The results of case 2.4 are similar to those of case 2.3. This is not
surprising considering that by re-using the image of the Context, not
much work is left to be done. However, interactions invalidating the
Context degrade the responsiveness as badly as shown for case 2.1.

Concluding, this evaluation demonstrates that the proposed archi-
tecture successfully preserves responsiveness of the application while
providing visual feedback during continuous user interactions even for
a dataset of 14.5 million items. It also shows that ETT, previews, and
caching must work together to achieve this goal. Although not shown
in this evaluation, our architecture also scales with respect to a large
number of views. For informal evidence we refer to publications re-
lated to the systems implementing the architecture (for example [9]).

5 DISCUSSION AND FUTURE WORK

Three important yet contradicting objectives of our architecture are:
• to minimize the latency between interaction and visual feedback,

which is equivalent to maximizing the frequency of updates
• to maximize the amount of detail shown upon ETT
• to minimize the variation of the amount of shown detail in order

to provide a stable image.
The design choices 1 and 2 have been explicitly denoted, because they
allow for trading off these objectives against each other: (1) Provid-
ing immediate feedback for each completed layer minimizes latency
while it maximizes flicker – especially in the case of fine-grained lay-
ering. (2) Utilizing many layers allows for minimizing latency and
maximizing detail, but the flicker is usually significant.

Another option for trading off latency against preview details con-
cerns the handling of asynchronous events. As requests by asyn-
chronous handlers are less critical than those issued by synchronous

handlers, they can be ignored for some time. For example, it seems
reasonable to finish and to display costly visual results which are al-
most complete when receiving a request for thread termination.

Design choice 3 is essential for adapting the architecture to a wide
range of visualizations. Caching of results in view space is impor-
tant where rendering is expensive, as for item-based visualizations.
Caching results in data space is suitable in case of expensive computa-
tions yet potentially cheap rendering. For example, visualizing a large
data warehouse may require aggregating billions of data rows for gen-
erating little output like a bar chart. Although less obvious than for
costly rendering, early visual feedback is also possible in this case:
the final results could repeatedly be estimated and displayed during
the computation based on already considered data.

The most important limitation of our architecture is the need to
frequently check for termination. As already mentioned, this may
become impossible when passing control over to foreign APIs for a
long time. This is particularly critical for synchronous changes as it
compromises responsiveness much like a single-threaded architecture.
Asynchronous changes preserve responsiveness, but the latency of vi-
sual feedback may still be disturbing.

It may seem reasonable to spawn a new visualization thread for each
asynchronous event (synchronous changes must wait for thread termi-
nation anyway). However, we decided against this option, because our
practice has shown that gains are small compared to a significant in-
crease in complexity. While synchronization is complex for a single
visualization thread, it becomes worse for multiple threads. Redun-
dancy increases too, as each thread requires a copy of all local view pa-
rameters. Furthermore, it is not reasonably possible for graphics APIs
that do not support concurrent access to the same rendering context
(e.g., OpenGL). In such cases, maintaining a single thread per view
avoids the significant overhead caused by context switches, which is
incurred when using a common thread pool for multiple views.

The proposed architecture has been implemented in several systems
besides VISPLORE (see Section 4). The SIMVIS visualization frame-
work [9] is mainly used in the context of 3D or 4D simulation data.
Multiple linked views are provided to the user, allowing for interac-
tively selecting and viewing data in different attribute spaces. Mul-
tiple of these views implement ETT to maintain responsiveness even
when visualizing hundreds of millions of data entries. Attribute views
such as scatter plots or time series visualizations [24] all support asyn-
chronous as well as synchronous thread termination and use cached
background layers to provide feedback to the user during continuous
interaction. The 3D visualization capabilities of SIMVIS also rely on
concepts presented in this work to perform progressive rendering as
well as level of detail rendering during continuous interaction using a
multi-resolution approach. When dealing with very large data, a com-
mon approach is to access data in blocks [20] which are guaranteed
to be in memory while the rest may be swapped to disk (known as
out-of-core visualization). Both VISPLORE and SIMVIS perform ac-
tive memory management, which shows that out-of-core visualization
is compatible with our architecture. Switching blocks even provides a
dedicated point to check for thread termination.

CGV is a system for interactive exploration of graphs [34]. It uses
multiple linked views to show different aspects of clustered graphs.
Early thread termination is used for instance in the graph splatting
view. Because the performance of graph splatting depends not only
on the number of data items, but also on pixel resolution, the view
uses a level-of-detail layering and renders the splat progressively at
increasing resolutions. Continuous interactions as for instance drag-
ging a noise level slider or a threshold slider are guaranteed to stay
responsive and feedback is provided quickly.

Axes-based visualizations map data values to positions relative to
well-arranged visual axes. The TIME WHEEL [33], for example, al-
lows among other interactions for continuous rotation of data axes
around a central time axis. Interactive visual feedback is crucial in
this case to help users maintain the mental map. Therefore, ETT and
layering are applied for the TIME WHEEL. It is subdivided into seman-
tic layers: axes layer, labels layer, preview layer, and data layer, which
are drawn in this order. As a result, the basic shape of the visualization



(i.e., the axes), labels, and a sampled version of the data are visualized
early, while the entire data set is processed in the background.

We see multiple directions for future work. First, the design space
potentially involves more than three design choices as discussed in this
paper, and a systematic coverage would be very helpful. Second, the
aspect of flickering needs more thorough research, including a user-
evaluation about how much flickering is considered acceptable. New
approaches could strive for minimizing flickering while still provid-
ing much visual feedback, e.g., by ignoring asynchronous changes for
some time or by fading the images of consecutive updates. Third, it
still remains a challenge to achieve rich visual feedback during con-
tinuous interaction in a distributed environment.
6 CONCLUSION

Continuous user interaction is important in information visualization
to support smooth data exploration. A key concern is to preserve re-
sponsiveness and to provide rich visual feedback at the same time. Re-
alizing this in practice is difficult, however, as it requires parallelism
of application tasks which involves many non-trivial details.

We proposed a generic multi-threaded architecture to support con-
tinuous interaction and to help avoiding pitfalls. As illustrated by
the evaluation, our architecture scales with respect to data size and
the number of views. It is applicable to many types of visualizations
regardless of a particular platform, programming language or graph-
ics API, as instantiations in several visual analysis systems and tools
show. GPU-based rendering is supported, but not required.

We identified and discussed three major design choices to allow
others to adapt the architecture to particular visualization needs and to
trade off latency against the amount of detail and the stability of visual
feedback during continuous interaction. We also discussed in detail
communication and synchronization aspects of our architecture as key
issues of any multi-threaded program. We believe that our architecture
will facilitate the development of highly interactive information visu-
alization tools, and that it will help to promote rich visual feedback
during continuous user interactions.
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