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Abstract
During the development of car engines, regression models that are based on machine learning techniques are
increasingly important for tasks which require a prediction of results in real-time. While the validation of a model
is a key part of its identification process, existing computation- or visualization-based techniques do not adequately
support all aspects of model validation. The main contribution of this paper is an interactive approach called
HyperMoVal that is designed to support multiple tasks related to model validation: 1) comparing known and
predicted results, 2) analyzing regions with a bad fit, 3) assessing the physical plausibility of models also outside
regions covered by validation data, and 4) comparing multiple models. The key idea is to visually relate one or
more n-dimensional scalar functions to known validation data within a combined visualization. HyperMoVal lays
out multiple 2D and 3D sub-projections of the n-dimensional function space around a focal point. We describe how
linking HyperMoVal to other views further extends the possibilities for model validation. Based on this integration,
we discuss steps towards supporting the entire workflow of identifying regression models. An evaluation illustrates
a typical workflow in the application context of car-engine design and reports general feedback of domain experts
and users of our approach. These results indicate that our approach significantly accelerates the identification of
regression models and increases the confidence in the overall engineering process.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Strict emission rules and steadily increasing demands on per-
formance force car manufacturers to constantly improve the
design of powertrain systems [BDHK05]. Different types of
numerical simulations have thus become a key technology
to analyze complex systems like engines. Especially in early
stages of the design process, 1D Computational Fluid Dy-
namics (CFD) simulations are widely used. Compared to
very time consuming 3D CFD simulations, 1D CFD sim-
ulations are magnitudes faster and produce much less data.
This enables to study the design space by running thousands
of simulation runs for different locations of the parameter
space. Matkovic et al. [MJJK05] describe, how interactive
visualization can support the analysis of such data.

Some tasks, however, require mathematical models that
can make predictions in real-time. When testing strategies
for Engine Control Units (ECUs), for example, their behav-

ior is analyzed during a simulated drive, which requires sim-
ulating the physical behavior. As even 1D CFD simulations
are far too slow for such real-time tasks, manufacturers use
surrogate models instead which are based on statistical re-
gression rather than on physical equations [Hei09].

The identification of surrogate models requires known re-
sults at sampled positions of an input parameter space for
training and validation. These results come from measure-
ments or from 1D CFD simulations. A particular model is
trained to predict one result (e.g., torque) given values for
particular attributes (e.g., speed and load). While the process
of training a model requires no interaction, most types of re-
gression models have numerous parameters (e.g., kernel type
and tolerance values for support vector regression [HTF09])
that must be set before. The complex interplay between these
parameters makes finding good training parameters a chal-
lenging task. Different models may also perform best for
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different subsets of input attributes. Sometimes, implausible
data must be filtered before the training.

Before making critical decisions based on the predictions
of a surrogate model, it is therefore very important to val-
idate its quality and to possibly improve it in further itera-
tions. This validation involves comparing known results to
predictions by the model [Sar94]. Besides looking at criteria
that can be derived automatically (e.g., the maximal resid-
ual), it is essential for application experts to get a feeling for
the model itself and to be able to analyze its behavior also
for regions not covered by training data. For these reasons, a
fully automatic workflow for model validation is insufficient.
Instead, it must be complemented by an interactive visual
approach to increase the confidence in the overall process
based on the domain knowledge of the engineers.

1.1. Design goals

Based on interviews with application experts and observa-
tions of their workflow, we derived the subsequent set of
design goals for an interactive visual approach for the val-
idation of surrogate models:

• Relate known results to predictions of models.
• Support a quick identification of deviating regions.
• Convey a feeling of the behavior of a model around any

point in space.
• Allow a comparison of multiple models.
• Scale to models with a large number of input parameters.
• Be highly interactive without perceivable delays.
• Be tightly integrated into the workflow of model identi-

fication by restricting the analysis to an arbitrary subset
of validation data and to update the visualization immedi-
ately at modifications of the model.

While the application background of this paper is the de-
velopment of powertrain systems, the identification and the
validation of regression models is of general importance in
many application domains [Sne77]. The problem can be for-
mulated as assessing the suitability of a multidimensional
scalar function y = f (X) to approximate known values of
y at a set of different points for X , where y is a scalar
value (called the dependent variable) and X is a point in n-
dimensional space (referred to as independent variables).

1.2. Contributions

The contributions of this paper are as follows:

• A design study of HyperMoVal, an interactive visualiza-
tion technique for validating regression models based on
a combined visualization of n-dimensional functions and
known validation data.

• A tight integration of HyperMoVal within an interactive
workflow for iterative identification and validation of re-
gression models involving multiple linked views.

• An evaluation of the proposed techniques within the ap-
plication context of engine design based on a case study of
an exemplary workflow and the report of user feedback.

2. Related Work

Numerous visualization techniques address the important is-
sue how to visualize multivariate data [GTC01]. Most of
these techniques operate on generic n-tuples, for example
parallel coordinates [Ins85] and scatterplot matrices [Cle93].

Besides such general purpose techniques, various ap-
proaches have been proposed to visualize multidimensional
scalar functions y = f (x1,x2, ...,xn). A direct visualization
is trivial for n = 1 using line graphs and n = 2 using sur-
face plots. The case n = 3 is typically addressed using vol-
ume rendering and isosurfacing. However, larger values of n
are challenging. Most visualization approaches thus reduce
the number of parameters to 1, 2, or 3 per plot by assum-
ing specific values for the rest. These values can typically be
changed by animation or by interaction.

Worlds within Worlds [FB90], for example, uses a hierar-
chy of nested coordinate systems. At each level of the hierar-
chy, the origin of the coordinate system specifies up to three
parameters for all further levels until the number of indepen-
dent variables is reduced to support a direct visualization of
the function. A related approach by Mihalisin et al. [MTS91]
nests axes hierarchically to plot function values against all
combinations of a sampled subset of the parameter space.
Jayaraman and North propose a focus+context visualization
of multi-dimensional functions [JN02] based on a radial lay-
out of slices. Each slice shows the behavior of the function
as sampled along rays emanating from a focal point into a
certain direction for one independent variable.

HyperSlice by van Wijk and van Liere [vWvL93] shows
all 2D orthogonal slices of a function around an n-
dimensional focal point. Each slice represents the function
by varying two parameters while assuming the values of the
focal point for the rest. This is done for all pairs of variables
and the resulting plots are arranged using a matrix layout.
Dos Santos and Brodlie extended the idea of HyperSlice to
three dimensions to what they call HyperCell [dSB02]. In-
stead of using a fixed matrix layout, they provide a graph in-
terface that supports the creation of 1-, 2-, or 3-dimensional
plots (called cells) and they support multiple focal points.
Recently, Nouanesengsy et al. [NSSV09] proposed an ap-
proach to analyze multidimensional scalar functions based
on projecting line segments into 2D plots. The key idea is
to plot the distance of each line segment from user-defined
points against the respective function values.

All of these techniques are useful for understanding cer-
tain aspects of multidimensional scalar functions, and par-
ticularly HyperSlice served as an important and widely ac-
cepted starting point for our work. However, the goal of
these approaches is to visualize a function as such, not to
validate it as an approximation model by means of known
data. As motivated in Sec. 1, a validation requires a direct
comparison of the approximation model to results from mea-
surements or physically-based simulations [Sar94].
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Figure 1: The layout of HyperMoVal for a real model predicting torque given four parameters. The focal point F is set to a
validation data point with a significant deviation. The matrix contains all paraxial 2D slices at F in the 5D model space.

Moreover, the identification of regression models based
on techniques from machine learning is typically an it-
erative process [BL04]. Each iteration involves parameter
definition, training, and validation. Supporting this entire
workflow is an important topic which goes far beyond the
mere visualization of functions. Recent work shows sig-
nificant progress towards supporting the process of model
building using interactive visualization, but this work is re-
stricted to particular models like clusters [NHM∗07] or lin-
ear trends [GWR09]. There is no approach to support the
identification and validation of general regression models
according to the design goals listed in Sec. 1.1.

3. Interactive Model Validation

This section introduces HyperMoVal as our approach to an
interactive visual validation of surrogate models. We first de-
scribe the combined visual encoding of model and validation
data before discussing the supported interaction techniques.

3.1. Visual Encoding

The key idea of our approach is to provide a combined vi-
sualization of a regression model and known validation data
in order to assess the match between both. The model is an
analytically given scalar function with n independent vari-
ables and the validation data is given as an arbitrary number
of n+1-tuples, i.e., a value for each parameter of the func-
tion and one for the result. In order to visualize such poten-
tially high-dimensional data, we layout multiple projections

to low-dimensional space as paraxial slices in a similar way
as HyperSlice [vWvL93]. This approach treats all dimen-
sions equally and supports the creation of plots which are
familiar to engineers. An implication is to maintain a focal
point F as n+1-tuple, which defines values Fi, i ∈ {1..n+1}
for all dimensions not shown by a particular plot. F may
take any position inside an n+1-dimensional hyperrectangle
S representing the space considered for visualization. S is de-
fined as the Cartesian product of intervals defined for each
of the n+1 dimensions. S is initially set to contain all values
of the validation data, but its extents can be modified by the
user (see Sec. 3.2).

Each pair of dimensions defines one plot (see Fig. 1).
The result dimension of the function specifies the y-axis of
the bottom row of the matrix. These plots (called parame-
ter plots) thus display the explicit function graph for all in-
dependent parameters. All other plots (called surface plots)
show pairs of independent variables, where the function is
represented as contour at the iso-value specified by F . Only
the lower triangle of the matrix is displayed for performance
reasons and to gain free space for other purposes.

In addition to the function graphs of the model, each plot
also displays projections of the validation data as points. In
order to support a quick identification of badly approximated
regions, the size of each point reflects its absolute residual
to the prediction by the model at the particular position in
parameter space. Large points indicate regions with a signif-
icant deviation whereas small points suggest a good match.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



H. Piringer et al. / HyperMoVal: Interactive Visual Validation of Regression Models

t

t

t tSlice at focal point

Figure 2: The region around two slices in which points are
considered relevant for the respective plot. The color inten-
sity depends on the distance to the slice.
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Figure 3: Altering F in one dimension changes the func-
tion graph and the relevance of data points for all plots not
displayed in that dimension. Continuous modifications make
the points fade in and out smoothly around the graph.

Although the precision conveyed by size is lower than for
other visual attributes, it is sufficient for the purpose of as-
sessing the prediction quality.

3.1.1. Task-Specific Point Relevance
As each plot is a slice through the visualization space S at
F , it is important to consider which points should be dis-
played by a plot. A precise assessment of the fit by a model
is only possible for validation points on that slice. One ap-
proach could thus hide all other points. In this case, at most
one point will typically be visible. An important exception,
though, is validation data which is structured as – possi-
bly unequally spaced – n-dimensional grid. This is a com-
mon case in the design of experiments (e.g., full-factorial
designs). Provided that F is set to a point of the grid, pa-
rameter plots then show all points in the same line in the
respective dimension. 2D surface plots, however, require a
precise match in the result dimension and typically display
F only (this is different for 3D plots as discussed below).

In general, it is often reasonable to additionally display
points close to (but not on) the slice of a plot, e.g., to provide
context information for navigation. It may even be necessary
to show all points in order to assess the coverage of the pa-
rameter space by validation data like in a normal scatterplot
matrix. For this reason, HyperMoVal supports a task-specific
definition of what is considered a relevant range around each
slice (see Fig. 2). Formally, let P denote a point inside the
n+1-dimensional hyperrectangle S and let V be a 2D visual-

t = 0.9 t = 0.6 t = 0.0

Figure 4: Altering the relevance threshold t changes the
shown subset of data points around the visualized slice.

ization of the dimensions x j and xk, then the relevance r of
P with respect to V is defined as

rV (P) = 1−Maxi∈{1..n\x j ,xk}
( |Pi−Fi|

|Si|
)

where Si denotes the length of S in the i-th dimension. Af-
ter computing rV (P), a linear mapping determines the sat-
uration with which P is drawn. This mapping is controlled
by a threshold t with 0 ≤ t < 1 so that rV (P) ≤ t means
white (i.e., the background color) and 1 means maximal sat-
uration. The transition conveys the distance to the slice and
generates a smooth fading effect when changing F , as il-
lustrated by Fig. 3. Modifying t enables to define relevance
depending on the task (see Fig. 4): values close to (or at) 1
show only a narrow range around the slice to precisely sup-
port a visual assessment of the fit. For values close to 0, our
approach resembles a normal scatterplot matrix.

3.1.2. Sensitivity Analysis
Another important task is to analyze the sensitivity of the
surrogate model with respect to changes in single dimen-
sions. To support this task, one dimension can be set active
at a time, which has two effects: 1) each plot displays a fam-
ily of function graphs (called variation graphs) for a user-
defined number of equally sized steps along the displayed
range of the active dimension; 2) the active dimension deter-
mines the hue of validation data points and variation graphs
via a transfer function. By default, we use a transition from
blue to red. This ensures a good luminance contrast to the
white background and it is perceptually distinct from the
modulation of saturation by point relevance. Users may also
choose other transfer functions.

Coupling variation and coloring has proven beneficial
with respect to usability. The main reason is that grid lines
of plots showing the active dimension define meaningful
steps for variation graphs and may also be used as legend
for the color coding. The most frequent – and default – case
is to set the result dimension active, which generates mul-
tiple iso-contours of the same surface in each surface plot
(as in Fig. 1). Setting a function parameter as active dimen-
sion generates multiple explicit graphs in all other parameter
plots. It also shows contours at the same iso-value for multi-
ple surfaces in each surface plot that does not display the ac-
tive dimension (Fig. 5). Mapping the active dimension to hue
emphasizes relations between points and graphs with respect
to this dimension. It also reveals deviations when points are
afar from graphs despite having the same hue.
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Figure 5: Varying the parameter "Engine Speed" generates
a family of iso-contours and explicit function graphs.

3.1.3. 3D Visualization
While all plots are described as 2D so far, surface plots
optionally provide a 3D visualization as well. In this case,
the result dimension of the model is mapped to height (see
Fig. 6). The validation data is shown as a 3D scatterplot of
points which are scaled and colored as described for the 2D
case. The computation of relevance excludes the result di-
mension in order to display points around the entire surface.
Being less restrictive, more data points are thus shown in
3D than in 2D. The function of the surrogate model is rep-
resented in multiple ways: iso-contours are generated for F
and all variation graphs of the active dimension as line strips
similar to the 2D case, except that each contour is located at
the height of the respective iso-value.

In addition, the surface of the surrogate model for F is ei-
ther shown as wireframe or as shaded, opaque surface. While
the wireframe representation avoids problems caused by oc-
clusion and thus keeps all validation points visible, opaque
surfaces convey a better 3D impression at the cost of occlud-
ing points either above or beneath the surface – depending on
the viewing position. When switching between 2D and 3D, a
smooth transition of the view point avoids change blindness
in a similar way as described by Elmqvist et al. [EDF08].
The main reason for integrating a 3D visualization is the
great popularity of this representation with engineers in our
target domain. Initial observations have shown that 3D plots
are particularly used for assessing models with few parame-
ters and for checking physical relationships between param-
eters. 2D surface plots are rather used for studying abstract
relationships for high-dimensional models.

3.1.4. Parity Plot
Differences between predicted and known results are also
shown in a separate scatterplot (see Fig. 1). This plot maps
known results to the X-axis and predicted results to the Y-
axis for each point of the validation data. Such plots are
called parity plots and are common in many fields of science
and engineering. A straight line at the main diagonal indi-
cates a good match whereas deviations to either side convey

Figure 6: 2D and 3D visualizations of the same surface
plots. Due to the additional visual dimension, the set of rel-
evant points is typically larger in 3D.

the amount and the sign of residuals. The thickness of the
covered area around the main diagonal provides an overview
of the overall fit and outliers remain visible. Both types of
information could also be conveyed differently (as shown in
later sections). The reasons for integrating parity plots are
the equal scaling of both axes and the popularity of this plot
with experts in our target field of application.

3.1.5. Comparison of Multiple Models
Another design goal concerns the comparison of multiple re-
gression models predicting the same result dimension. The
independent variables may be different, in which case our
approach represents the union of the independent variables
of all visualized models. Each plot (except the parity plot)
shows function graphs or iso-contours for each model that
covers the dimensions of both axes. Different line stippling
is used to discriminate the graphs of multiple models (see
Fig. 7). Deviations, however, will in general be different for
multiple models. In order to avoid overloading the visualiza-
tion, the point size thus refers to the residuals with respect to
one active model while disregarding all others. Analogously,
the parity plot is only shown for the active model and 3D sur-
face plots show the – wireframe or opaque – surface of the
active model only. For these reasons, other models are rather
context information when assessing the match between the
active model and the validation data. However, visualizing
multiple models is particularly useful when comparing their
behavior outside the space covered by validation data (e.g.,
when assessing the plausibility of extrapolations).

3.2. Interaction

Interaction is an important aspect of HyperMoVal to support
different tasks. Modifying the focal point F enables to nav-
igate the visualization space S. We discriminate local and
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Model 1 (solid graphs)

Model 2 (dashed graphs)

Figure 7: Comparison of two models predicting torque. The
models are discriminated by the line style (dashed and solid)
and show a very different prediction quality at F. "Intake-
Pressure" is a parameter of Model 2 only.

global modifications: local modifications affect a subset of
the dimensions at a time. They involve altering the value of
a single dimension by dragging handles at the border of the
matrix or altering two dimensions by moving a crosshair rep-
resenting F in any 2D plot. Global modifications define val-
ues for all dimensions at once by setting F according to a
particular point. This is done by clicking on a visible valida-
tion point in any 2D plot including the parity plot. It supports
a quick navigation to points with a significant residual.

As another type of interaction, the extents of S can be
modified individually for each dimension. Similar to the Pro-
section matrix [TSDS96] and dynamic filtering [AS94], nar-
rowing the range of one dimension removes all validation
points outside this range in all plots. Changing the range also
allows the user to analyze every part of the function in as
much detail as necessary or to scroll across function graphs.
Extending ranges to contain space outside the region cov-
ered by validation data is crucial in our context to assess the
plausibility of extrapolations by a model.

Further interactions which are not discussed in detail in-
volve changes of the viewpoint in 3D plots, altering the
threshold t as discussed in Sec. 3.1, and setting functions
and dimensions to be active. When validating models with
many parameters, it is helpful to temporarily hide certain in-
dependent parameters and thus gain more space for the rest.

4. Integrated Workflow for Model Identification

HyperMoVal as described in Sec. 3 can be regarded a de-
sign study that is conceptually independent of properties of
a surrounding software system. A stand-alone implementa-
tion of HyperMoVal already fulfils all design goals except
the last of Sec. 1.1. On the other hand, it is not always prac-
tical for a single view to cover all potentially relevant tasks
during a complex workflow like model building. Fortunately,
linking multiple views is agreed to be a solution to this prob-
lem. This section therefore describes the integration of Hy-
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Figure 8: Linked views of derived model attributes: (a) com-
paring the deviations of different models by brushing large
residuals; (b) mapping absolute deviations of one model to
color in a 2D representation of the parameter space; (c)
plotting residuals (Y-axis) against known results (X-axis).

perMoVal within a system of multiple linked views. We also
discuss how to use different views to support the entire work-
flow of model identification. It should be emphasized, how-
ever, that the focus of this paper is on model validation while
many aspects related to model identification are up to future
work (see Sec. 7).

Our integration is based on two concepts: 1) defining ar-
bitrary subsets of validation data in any view and 2) repre-
senting predicted results and residuals of a particular model
as derived data attributes. Besides HyperMoVal, the types of
involved views may include most standard visualizations for
multivariate data, for example scatterplots and parallel coor-
dinates. Their purpose is to visualize the validation data and
to support the definition of arbitrary subsets thereof based on
view-specific brushing techniques like rubberband- or lasso-
selections. HyperMoVal supports restricting the set of val-
idation data points to any subset defined by brushing other
views. This enables to filter validation data that is implau-
sible (e.g., incorrect measurements) or undesirable due to
design constraints. Unlike the filtering offered by Hyper-
MoVal, such selections may include dimensions which are
not covered by any model and they may be based on com-
posite queries of arbitrary complexity [Wea09].

As second concept, predicted results and residuals of a
particular model are added as additional data dimensions for
each point of the validation data. Such derived data columns
are available for view parameterization like any attribute of
the validation data itself. This offers a variety of possibili-
ties: for example, residuals of multiple models may be com-
pared using parallel coordinates (Fig. 8a). They may indi-
cate the amount of deviation in a scatterplot relating model
parameters (Fig. 8b). Other views may provide statistics as
quantitative results, e.g., the maximal and the average pre-
diction error of a model for a certain subset of the validation
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data [PBH08]. Derived columns may also be used as crite-
rion for selections as discussed above.

Validation is only a part of the overall workflow of model
identification [Sar94]. In our application context, the first
step is the definition of all information that is necessary for
training the model. This involves selecting dimensions as in-
put parameters, specifying model and training parameters,
and choosing the training data itself. After the (automatic)
training, the model needs to be validated and potentially
compared to other models as supported by our approach.
The goal of this validation is to determine whether a par-
ticular model is appropriate, or whether further refinements
are necessary. In the latter case, an additional iteration starts
by changing the set of input dimensions, modifying training
parameters, and performing another training [BL04].

Our approach to support this highly iterative process is
based on integrating parameter specification, training, and
validation within a single tool. This has two benefits: 1)
brushing various views as discussed above can also be used
to define the set of training data interactively, e.g., to filter
wrong results based on domain knowledge of the user. 2)
Changing a certain model by executing a new training im-
mediately updates the information related to this model in
all views. This includes function graphs in HyperMoVal, de-
rived attributes like residuals in all views, and it triggers a
re-evaluation of selections which are based on derived at-
tributes of the model. The advantage of this tight integration
is the speed at which different settings of training parameters
can be tried and compared to each other, which may reduce
the necessary time of the overall workflow significantly.

5. Implementation

HyperMoVal and the workflow described in Sec. 4 have been
implemented in visplore, a system for visual exploration,
which offers different visualizations (e.g., 2D and 3D scat-
ter plots, parallel coordinates, histograms, etc.) that can be
linked by ad-hoc selections and derived data columns. All
parts are written in C++ and use OpenGL for rendering.

HyperMoVal supports immediate visual feedback during
continuous user interactions like changing the focal point F .
For this purpose, it implements the multi-threading architec-
ture as described in previous work [PTMB09]. When draw-
ing function graphs, a dedicated visualization thread sam-
ples the model progressively. This provides an immediate
preview while generating the final image including variation
graphs in each plot may take a few seconds on standard PCs
for models of more than two parameters. Each plot also lay-
ers the visualization in order to prioritize the visualization of
F and to cache and reuse visual results in image space.

Internally, models are objects which implement an in-
terface that allows the integration of any type of regres-
sion model. Currently, our implementations supports sup-
port vector regression (SVR), and it uses the library LIB-

SVM [CL] both for model evaluation and training. The user
interface for defining training parameters is a simple dialog.

6. Evaluation

To evaluate our approach on multiple levels [Mun09], this
section first describes an application scenario to illustrate a
typical workflow in car engine design. We then report gen-
eral feedback collected by interviewing application experts
of the target domain. This evaluation has been done in col-
laboration with three experts in the field of engine design,
whose educational background is in mechanical engineer-
ing and industrial mathematics. As employees of AVL List
GmbH, a company providing hardware and software for the
development of powertrain systems, their responsibility is
partly customer support and training, and partly the devel-
opment of the simulation core. All of them are experienced
users of our approach who have been testing, using, and
training it for months.

6.1. Application Scenario

The goal of the scenario is to identify a surrogate model pre-
dicting torque based on the results of 400 simulation runs of
a real-world car engine. This example uses the same data for
training and validation. Knowing that torque is primarily a
function of engine speed and load signal, the first step is to
check whether a 2D model on these attributes already pro-
vides sufficient accuracy. Statistical summaries (first row of
Fig. 9e), however, indicate a large mean deviation and a sub-
stantial maximal error. An analysis in HyperMoVal (Fig. 9a)
reveals an outlier in the data. The engineer explains this point
as non-converged simulation run and decides to exclude it
from further steps. Besides the outlier, large points in regions
near steep changes in torque generally reveal the model as
insufficiently accurate.

In the next iteration, the engineer decides to increase the
complexity of the model by adding the pressure at the in-
take manifold (p0IM) as third parameter which is known to
impact torque. While this new model turns out to be much
better, statistics still show a considerable maximal deviation
(second row of Fig. 9e). Brushing absolute residuals larger
than 5 Newton meters (Nm) in a histogram (Fig. 9b) reveals
that the main problem is a jump in torque at low values
for both speed and load. As this insight still does not ex-
plain, why the match is bad in this region, the engineer uses
HyperMoVal to analyze the local model behavior in detail
(Fig. 9c). This shows that the gradient of the model is not
sufficient to approximate the sudden jump in torque. A po-
tential explanation is that p0IM does not contribute informa-
tion for this region since the values for p0IM are very similar
as shown by the bottom right plot of Fig. 9c.

The engineer decides to add one more dimension as model
parameter. Since there are multiple physically meaningful
candidates, ranking them by the amount of correlation to
torque facilitates the selection (Fig. 9d). For this purpose,
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Figure 9: An exemplary workflow for model building. (a) Assessing a 2D model also reveals implausible validation data; (b +
c) a 3D model still does not sufficiently cover a jump in torque for low values of speed; (d) ranking potential input parameters
by means of correlation to the result; (e) quantifying multiple models with respect to their residuals (in Nm); (f) comparing
residuals for two model candiates; (g) comparing the candidates with respect to the plausibility of extrapolations.

the engineer brushes the validation points in the mismatch-
ing region; he then opens a scatterplot matrix that is ranked
and colored by the correlation of the selected points to
torque [PBH08]. Having correlation coefficients close to 1,
the temperature at the intake manifold (THIM) and fuel mass
flow (EnFuelFlow) turn out to be equally suitable candidates.

In order to try both variants, the engineer creates two fur-
ther models: The model "Torque4a" has THIM as fourth
parameter while "Torque4b" depends on EnFuelFlow. The
statistical quantification shows that both models are better
than the previous ones in particular with respect to the max-
imal error which can now be considered sufficiently small
(Fig. 9e). Brushing residuals greater than 3 Nm for both
models in a scatterplot shows an error distribution that is
slightly more clustered for model "Torque4b" (green points)
in a linked view plotting speed against load signal (Fig. 9f).

As final step, the engineer uses HyperMoVal to compare
the plausibility of both models (Fig. 9g) outside the range
covered by training data. He extends the displayed interval
for speed to 0 to 6000 rotations per minute. He also sets the
focal point to the non-converged simulation run to ensure

that the models compensate for this error. Setting load sig-
nal as active dimension generates variation graphs in steps
of 10 percent. Despite their comparable error statistics, the
shapes of the function graphs differ significantly. Unlike
"Torque4a" (solid graphs), the model "Torque4b" (dashed
graphs) turns out to be highly sensitive to changes in load
signal at high speeds, which is considered undesirable. Even
worse, "Torque4b" predicts significant decreases in torque
for increasing load signal at low speeds, which is implausi-
ble regardless of the values of other model parameters (like
pOIM). As a result, "Torque4a" is the better choice.

6.2. User Feedback

Based on their own experiences and on the feedback gained
from customer training, the overall feedback of our intervie-
wees was very positive. Their former workflow for model
identification involved an in-house tool and standard soft-
ware in engineering like Matlab [Mat]. Compared to these
software packages, our interviewees appreciated that Hyper-
MoVal supports analyzing particular questions and changing
scenarios instantaneously, e.g., skimming through the model
behavior for different validation points. In their experience,
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standard software like Matlab requires a setup-time of sev-
eral minutes for writing and modifying some lines of code
for each step of an analysis, and they provide limited in-
teractivity for their visualizations. As a result, HyperMoVal
and its integration with other views allows engineers to vali-
date models in detail on average one magnitude faster. As an
application expert stated, "the design [of HyperMoVal] and
the high interactivity encourage the analysis of reasons for
mismatches. It also facilitates comparisons between models
which would otherwise have been omitted in many cases due
to the involved effort. Being able to validate a model in de-
tail before usage significantly increases the quality and the
confidence in the entire process."

An objection was that most engineers are still not used to
the concept of interaction. While the improvements in speed
(e.g., when rotating a 3D surface) have been noticed imme-
diately, most users tend to map their old workflow to the
new tool. This particularly applies to the concept of link-
ing different views as discussed in Sec. 4, which may re-
quire several days for familiarization. On the other hand, fea-
tures which are common in other engineering applications
are also expected in new approaches and thus required to
gain acceptance. For HyperMoVal, this includes the support
for 3D plots, parity plots, and the ability to change the trans-
fer function to a rainbow color map, which are still popular
with engineers despite their known flaws [BT07]. Perhaps
the most challenging aspect of the design process was thus
to find a good balance between preserving familiar methods
and introducing techniques that are powerful yet unfamiliar
to engineers (e.g., linked views). Nevertheless, our intervie-
wees confirmed that all features of HyperMoVal are useful
for specific tasks as discussed in former sections.

Our approach is distributed as part of the software suite
of the company AVL List GmbH. As such, it is potentially
available to several thousand users. On the other hand, the
application of surrogate models is at the beginning and reli-
able evidence about adoption rates is not yet available. First
estimates assume an application by 5 to 10 companies.

7. Discussion and Future Work

The validation of regression models comprises three levels of
detail as reflected in the application scenario of Sec. 6.1: (1)
Statistical summaries of the entire validation data provide
a coarse yet compact information about the global predic-
tion quality. (2) Derived attributes like residuals describe the
quality as one value per data point. They enable the iden-
tification of local characteristics like badly fitted regions,
but are often insufficient to explain such characteristics. (3)
A combined visualization of validation data and function
graphs of the model provides most information for a certain
point of the parameter space. The shape and the gradient of
the function offer detailed reasons yet with very local scope.

HyperMoVal is designed to support domain experts at this
latter level, while the integrated workflow described in Sec. 4

serves the first two levels. Stand-alone implementations of
HyperMoVal may decide to additionally cover the levels 1
and 2 by integrating quantitative model characteristics like
the statistics of Fig. 9e or additional options for coloring,
e.g., mapping residuals to color as in Fig. 8b. While respec-
tive extensions would be straightforward, our implementa-
tion employs linked views for these tasks.

Concerning scalability, HyperMoVal has been tested with
several thousand validation data points. Multi-threading and
the use of graphics hardware ensure immediate visual feed-
back. Interaction concepts like narrowing the relevant re-
gion support the perceptual scalability. HyperMoVal has also
been tested for models with more than ten parameters, al-
though such surrogate models are rare in practice. In this
case, hiding some dimensions is usually tolerable and pro-
vides more space for the rest. An upper limit with respect to
the number of compared models is four due to the difficult
distinction of function graphs and a significant cluttering.

We believe that HyperMoVal is a good example for com-
bining computation and interactive visualization to support
a complex task, which is a main issue of Visual Analytics.
The optional integration to multiple linked views fosters a
tight loop of computation-based training and visualization-
based validation of regression models. Splitting the data into
training and validation data is an important aspect in prac-
tice [Sne77] and is supported using selections.

However, further steps towards model identification are
a key aspect of future work. In particular the identification
of good training parameters is an optimization problem on
its own. Currently, users with little background in machine
learning (as are most designers of car engines) need to manu-
ally try many combinations of parameters like the cost value
or the gamma value of the SVR. This is neither efficient nor
does it ultimately guarantee an optimal set of training pa-
rameters. Semi-automatic approaches could integrate opti-
mization techniques to quickly identify promising training
parameters. Other plans for future work include a long-term
field study of the adoption by different groups of engineers,
as well as further navigation concepts for the focal point.
Finally, we intend to evaluate our approach within other ap-
plication areas to assess its general applicability.

8. Conclusion

This paper introduced HyperMoVal as interactive visual-
ization to support various tasks during the validation of
regression models. The combined visualization of the n-
dimensional model and the validation data provides a direct
comparison of known and predicted results and it enables
to analyze regions with a bad fit in detail. The simultane-
ous analysis of families of graphs for multiple models helps
to assess and compare the physical plausibility of the func-
tion behavior. The matrix-based layout of 2D and 3D slices
scales to high-dimensional functions, which can easily be
navigated using different interaction techniques. Providing
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model-related attributes like residuals as derived dimensions
optionally complements the analysis in other multivariate
views. Linking these views via ad-hoc queries may not only
be used to filter implausible validation data; it also supports a
user-defined selection of training data as a first step towards
a workflow for model building that tightly integrates domain
knowledge. User feedback suggests that our approach sig-
nificantly accelerates the identification of high-quality sur-
rogate models for simulating engine physics in real-time.
Application experts consider it an important technique for
increasing the confidence in the entire process of car engine
design. Motivated by these results, we believe that Hyper-
MoVal may also be beneficial to numerous other application
areas in science and engineering.

9. Acknowledgements

This work has been supported by the Austrian Funding
Agency (FFG) within the scope of the project AVISOM (No.
818060). Thanks go to Johann Wurzenberger and Ivo Prah
for supporting the evaluation and providing important feed-
back, and to M. Eduard Gröller and Krešimir Matković for
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