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ABSTRACT

Optimization problems are typically addressed by purely automatic
approaches. For multi-objective problems, however, a single best
solution often does not exist. In this case, it is necessary to ana-
lyze trade-offs between many conflicting goals within a given ap-
plication context. This poster describes an approach that tightly in-
tegrates automatic algorithms for multi-objective optimization and
interactive multivariate visualizations. Ad-hoc selections support a
flexible definition of input data for subsequent algorithms. These al-
gorithms in turn represent their result as derived data attributes that
can be assigned to visualizations or be used as a basis for further
selections (e.g., to constrain the result set). This enables a guided
search that still involves the knowledge of domain experts. We de-
scribe our approach in the context of multi-run simulation data from
the application domain of car engine design.

Index Terms: H.1.2 [Models and Principles]: User/Machine
Systems—Human factors; H.5.2 [Information Interfaces and Pre-
sentation]: User Interfaces—Interaction Styles

1 INTRODUCTION

Optimization is a key task in many application domains (e.g., eco-
nomics and engineering). It is also a field of research in its own
right known as operations research [6] that focuses on mathemati-
cal approaches to obtain a (near) optimal solution for complex prob-
lems. However, very few approaches involve the user in the opti-
mization process. This is surprising especially for problems com-
prising multiple potentially contradicting objectives. In this case,
a unique and clearly optimal solution often does not exist but it is
necessary to analyze trade-offs between objectives in the context of
the application background. Tarkannen et al. [7] argue that interac-
tive visualization has the potential to support the analysis of such
trade-offs and interdependencies between objectives. Most existing
interactive approaches focus on very specific applications like im-
proving algorithms for evaluating microarray data [4] or optimizing
p-median problems [3]. Miettinen and Mékeld introduced a more
general interactive method called NIMBUS [1], that asks the user to
repeatedly examine the values of objective functions calculated at
a current solution. However, NIMBUS requires an analytical rep-
resentation of the objective functions that is not always available,
e.g., for measured data like when comparing similar products with
different strengths and weaknesses.

2 INTEGRATED VISUAL MULTIOBJECTIVE OPTIMIZATION
The contribution of this poster is an approach that tightly integrates
the definition, algorithmic evaluation, and visual analysis of multi-
objective optimizations within a single system.

Unlike most previous approaches, our method does not require
an explicit representation of the analytical model of the objective
functions. Instead, it operates on a set of known results as obtained
from discrete measured data or by sampling the - typically con-
strained - parameter space of continuous objective functions. This
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facilitates the use for new application domains and optimization
tasks. In this poster, we demonstrate our approach by means of the
discrete results of a multi-run simulation from car engine design
where the parameters “engine speed” and “load signal” have been
varied to mimic different driving cycles.

Definition The system supports the definition of optimization
problems as sets of an arbitrary number of objectives. Each objec-
tive refers to a particular data dimension of the loaded dataset and
can be set to be minimized, maximized, or to opt for a certain tar-
get value. For example, the goal of the demonstration dataset was
to identify operating points of the simulated engine, that maximize
and minimize emission of CO and CO; (see Fig. 1 (b)).

Algorithmic Evaluation Based on the problem definition, the
optimization algorithm searches the available set of samples for
pareto optimal entries. A particular solution is considered pareto
optimal, if it is not possible to improve on one objective without be-
ing worse with respect to at least one of the others [5]. In our case
of discrete data samples, the result of the algorithm is a non-empty
subset of the dataset, also known as pareto frontier. For optimiza-
tion problems involving more than one objective, the pareto frontier
in general consists of multiple pareto optimal points, where each of
them represents a certain trade-off. The 2D scatterplot in Fig. 1 (d)
highlights the pareto frontier of the aforementioned optimization
problem. Each point in this frontier represents a pareto optimal
trade-off between torque and the emissions of CO and CO,. Data
samples outside this frontier are not optimal as for each of them at
least one other data sample exists that is better with respect to one
or more objectives without being worse with respect to the other
objectives. While also pareto optimal points are not necessarily ap-
propriate solutions for a certain application context, they represent
a reduction of the potential solution space that may significantly
accelerate a subsequent search.

Although having a single pareto frontier that contains the best
available trade-offs is the most important information in most cases,
some tasks require a more fine-grained ranking from best to worst.
Some second- or even third-best results contained in the respective
second or third frontiers may also be acceptable and could be su-
perior with respect to other application specific properties. Another
possible reason for considering more than one frontier is the loss
of precision in case of a discretization of a continuous parameter
space. Therefore, our implementation calculates multiple frontiers
of decreasing optimality by performing a repeated search on entries
that have not yet been assigned to any frontier, i.e., it incrementally
peels the dataset like an onion.

Integrated Visual Analysis Besides the definition of multiob-
jective optimization problems and their evaluation in the context of
sampled data, our system provides various multivariate views (e.g.,
scatter plots and parallel coordinates) that are linked by ad-hoc se-
lections on the data. These interactive visualizations are the key
technique to involve the user at multiple stages of the optimization.
Before the algorithmic evaluation, the user may brush visualiza-
tions to restrict the optimization to feasible parts of the data (e.g.,
parts not violating known constraints), or to local features (e.g., cer-
tain load states of the simulated engine) instead of computing pareto
frontiers for the entire dataset. This step could also involve the ex-
clusion of data samples that are implausible to application experts,
e.g., non-converged simulation runs (see Fig. 1 (a)).
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Figure 1: The integrated optimization process. Selections may be used to restrict the input data for the optimization as shown in (a). Based on
the problem definition (b), multiple frontiers of pareto optimal points are calculated and written to a dynamic dimension, which can be assigned to
visualizations like the bar-chart displayed in (c). In this view, the first pareto frontier has been brushed and is highlighted in linked views ((d), (e)).
Subsequent refinement brushes in the parallel coordinates restrict the result set and allow for interactive exploration of additional constraints.

After the computation of pareto frontiers, the key element of our
integrated approach is a derived dimension that holds the index of
the assigned pareto frontier for each considered entry. This derived
dimension provides the link from performing the optimization back
to visual analysis: it can be assigned to visualizations and it can be
brushed by the user just as any other dimension of the dataset. Thus
the analysis of the optimization results does not require the intro-
duction and adoption of new interaction techniques and can easily
be integrated into an existing visual analysis process. For example,
in Fig. 1 (c¢) the derived dimension has been assigned to a bar-chart
which displays the number of entries for each pareto frontier. The
analyst is able to investigate different frontiers by simply brushing
them in the bar-chart, which highlights the corresponding data sam-
ples in all linked views (see Fig. 1 (d) and (e)). In this example, the
parallel coordinates contain axes for “engine speed” and “load sig-
nal” to identify the inputs which correspond to the pareto optimal
points. This knowledge could serve as a starting point for further
investigations. For example, the analyst can add refinement brushes
to interactively explore the impact of additional constraints on the
result set from within the visualization (see Fig. 1 (e)). Here the
engine speed has been restricted to a minimum of 1000 rpm, while
entries with a load signal higher than 80 % are excluded. These
constraints describe the average operating range of the engine.

3 DiscussioN

The computation of pareto frontiers transforms an n-dimensional
problem definition to a single result dimension. This provides good
scalability with respect to the number of data dimensions. Con-
cerning the number of data samples, our implementation takes one
second on a 2.4 GHz Quad-Core (4 GB RAM) machine to com-
pute all pareto frontiers for 10000 data samples and a problem in-
volving 5 objectives. We employ a straightforward implementation
with O(nz) complexity for computing the pareto frontiers. This is
sufficient in many cases but could easily be replaced by more so-
phisticated algorithms; however, our implementation utilizes multi-
threading to ensure the responsiveness of the application and it up-
dates all visualizations and ad-hoc selections each time a frontier
has been computed to provide feedback early [2].

As the main benefit of our approach, domain experts get guid-
ance in their search for an optimal solution while retaining the flex-
ibility to explore trade-offs and to analyze the effect of constraints
instantaneously. The tight integration supports the analysis of many
scenarios within a short time; for example, users can temporarily
deactivate certain objectives or adjust thresholds of constraints and
get feedback immediately. The fact that our approach operates on
sampled data has the advantage of being applicable also to cases
where analytical representations of the objective functions are not
available (or do not exist at all). We also consider it a conceptual ad-
vantage of our approach that it relies on standard multivariate visu-
alization and interaction techniques. This facilitates an integration
in other systems, where users may also be interested in formally
specifying their intention and goals as optimization problem.
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