Fast and Memory Efficient Feature Detection using
Multiresolution Probabilistic Boosting Trees

Florian Schulze David Major Katja Blhler
VRVis Center for Virtual VRVis Center for Virtual VRVis Center for Virtual
Reality and Visualization Reality and Visualization Reality and Visualization

Research Research Research

fschulze@vrvis.at

dmajor@vrvis.at

buehler@vrvis.at

Abstract

This paper presents a highly optimized algorithm for fast feature detection in 3D volumes. Rapid detection of structures and
landmarks in medical 3D image data is a key component for many medical applications. To obtain a fast and memory efficient
classifier, we introduce probabilistic boosting trees (PBT) with partial cascading and classifier sorting. The extended PBT
is integrated into a multiresolution scheme, in order to improve performance and works on block cache data structure which
optimizes the memory footprint. We tested our framework on real world clinical datasets and showed that classical PBT can be
significantly speeded up even in an environment with limited memory resources using the proposed optimizations.

Keywords:
1 INTRODUCTION

In the past years various methods for automatic pro-
cessing and understanding of medical 3D image data
have been developed. One important building block is
the automatic detection of anatomical landmarks. De-
tection of these features stands often at the beginning
of the processing pipeline: it transforms the dense vol-
ume representation into a sparse set of possible land-
mark locations, allowing a significant acceleration of
subsequent high level segmentation methods.

However, making the transition from pure research
algorithms which focus often solely on detection per-
formance to real world radiology applications brings a
number of additional requirements into consideration.
The algorithm has to be able to deal with possibly lim-
ited technical resources - not all workstations in a hos-
pital might be equipped with the newest hardware, and
the algorithm shall run in the context of radiology work-
station software which already occupies resources. Ex-
cellent time performance is required because automatic
algorithms often substitute manual workflows while the
result must be authorized and/or adjusted by the radiol-
ogist. In this case an automatic algorithm will only be
used if the execution time of the algorithm is consider-
ably shorter than the manual approach would be.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Feature Detection, Machine Learning, Decision Trees

This work presents a highly optimized general pur-
pose feature detection framework for the effective re-
duction of possible feature candidate positions in 3D
image data as preprocessing step for more expensive
object detection methods. Referring to the clinical ap-
plication context, we designed our method according to
the following requirements:

1. Time Performance: The result must be calculated in
relatively short time (e.g. within seconds) in order
to be usable in a clinical environment.

2. Memory Performance: The algorithm must also ex-
ecute on standard PCs with limited technical re-
sources.

Thus, the focus of the proposed algorithm and its im-
plementation is on a small adaptable memory footprint
while retaining as much execution speed as possible.

2 RELATED WORK

Object recognition, and local feature detection as a sub-
discipline of it, are since many years core topics of com-
puter vision research.

Point based methods beginning with the Harris cor-
ner detector [HS88] try to automatically extract points
of interest from an image. Exact control of which points
are extracted is not supported, therefore recognition of
complex structures/areas is done by combining sets of
feature points. The most prominent point detector is
the SIFT algorithm [Low99] which overcomes the lim-
itations of previous solutions by being scale, rotation
and perspective invariant. However, translating SIFT,
which is aimed for 2D images, to 3D volumes suffers
from dramatic performance problems. Niemeijer et al.
report in [NGL109] that SIFT feature extraction on a

200 x 200 x 1024 volume downscaled by 50% takes 10
minutes to compute.

Machine learning based approaches use a (learned)
classifier to decide if a specific region of an image be-
longs to an object. A prominent example for this class
of algorithms is the method for real time face detection
presented by Viola and Jones [VJO1] that uses a cascade
of boosted weak classifiers. A more general approach
has been proposed by Tu et al. [Tu05] by introducing
Probabilistic Boosting Trees (PBT). PBTs are decision
trees which use boosted learners as classifiers in each
tree node. Violas boosted classifier cascades are a spe-
cial case of a PBT. An alternative to PBTs is the pop-
ular d-tree forests method [MDUAOQ7] which produces
higher detection rates, but with the drawback of much
higher execution costs [LKOS].

PBTs have been successfully applied on tissue classi-
fication on medical images: Militzer and Vega-Higura
[MV09] use PBT for bone removal in CT angiography.
The volume is first split into segments using the wa-
tershed algorithm, then each segment is classified with
PBT.

Fast preselection of feature candidates for more ex-
pensive high level methods is the topic of the paper of
Langer and Kuhnert [LKO8]. They integrate classical
decision trees with simple color based features and a
multiresolution scheme for candidate computation for
the expensive SIFT feature detection.

The problem of the large memory footprint of vol-
ume data is often discussed in context of volume ren-
dering. LaMar et al. [LHJ99] use an octree structure
with blocks containing different resolutions, where only
the needed subvolume is downloaded to graphics hard-
ware. However, the whole volume data still has to fit
into main memory. This has been improved by Guthe
et al. [GWGS02] who proposed to hold the data 30:1
wavelet compressed in memory and extract needed data
on demand block-wise and cache the data as long as
possible.

The purpose of our feature detection method is sim-
ilar to that of Langer and Kuhnert [LKOS8] since we
also aim to reduce the list of possible candidate posi-
tion as much as possible for later more expensive meth-
ods. Langer and Kuhnert tailored their algorithm es-
pecially for pre-filtering for SIFT feature computation.
In difference to them we decided to use the more gen-
eral PBT [Tu05]. This has several advantages: first,
it is independent from SIFT features and easily adapt-
able to any kind of landmark/structure. Second, deci-
sion tree methods can capture large image variabilities
while only need to execute logn weak classifiers. Third,
they are robust against over-fitting unlike classic deci-
sion algorithms.

Our contribution. To satisfy the high performance re-
quirements to the algorithm in a clinical environment,
we extend the original PBT by integrating cascading

tree nodes into normal tree building and introduce the
concept of classifier sorting (Section 3.1). Both result
in higher execution speed of the classifier. A second
performance optimization is achieved by integrating the
PBT into a multiresolution classification scheme (Sec-
tion 3.2). An effective postprocessing step is intro-
duced that applies particle filters to compute probability
maps for candidate features for outlier detection (Sec-
tion 3.3). The memory footprint of our feature detection
framework is optimized by the introduction of a mul-
tiresolution, multi-derivative block cache data structure
(Section 4). The performance of our method has been
evaluated on a real world clinical usecase (Section 5).

3 ALGORITHM

In the following we explain in detail the classifier and
our extensions on it (Section 3.1), the multiresolution
feature detection framework (Section 3.2) and the post-
processing step based on candidate probability (Section
3.3).

3.1 Probabilistic Boosting Tree with Par-
tial Cascading and Classifier Sorting

Probabilistic Boosting Trees. A PBT [Tu05] is a spe-
cial kind of decision tree which holds at each tree node a
boosted classifier. PBTs are trained top down. Based on
a set of positive and negative samples a boosted classi-
fier with a limited number of weak classifiers is trained
for each tree node. On each recursion level the sam-
ple set is split using the generated classifier and the
new subsets are used to train positive and negative child
branches. Although multi-class classifiers are possible,
we limited our implementation to the simple two-class
model.

Classical Cascading. If the boosted classifier in each
tree node is trained in a way that it does not produce
false negative results, the resulting decision tree con-
sists of positive child nodes only. Traversing this tree
has only one sequential path and degenerates to the cas-
cade of boosted classifiers of Viola and Jones [VJO1]
(see figure 1 left). Cascading improves execution speed.
It allows the classifier to early terminate and reduces

Cascaded Boosting Classifier

Boosting Tree with one Cascading Step

(O Cascading Tree Node @ Default Tree Node

Figure 1: Probabilistic Boosting Tree. Left, tree with
cascading nodes only. Right, one cascading node at the
tree root followed by a default PBT.

in this way the number of classification tests, but it re-
duces also the flexibility of the original PBT to capture
a high variability of features.
PBT with Partial Cascading. We observed that a high
number of samples can be classified as false by execut-
ing only one boosted classifier (see section 5.2). This
allows to combine the speed-up of cascading with the
flexibilty of the PBT by placing one cascaded classi-
fier in front of the PBT: Our tree model contains one
cascading node at the root level. A negative outcome
stops the classification immediately, a positive outcome
is further processed using the full PBT (figure 1 right).
Classifier Sorting. = We also observed that a high
amount of samples can be early terminated with a cheap
and fast performing classifier (see section 5.2) and that
it is advantageous to use expensive classifiers only in
places which are executed less often. In our model the
most visited place is the cascading node at the root of
the tree which can discard a large amount of samples
as false. The rest of the tree is visited less frequently.
Hence, we sort the expensive classifiers into the later
tree nodes while the first node can only use fast execut-
ing classifiers.
Image Features. The classifier decides on a per voxel
basis if the current voxel belongs to the searched struc-
ture or not. Since PBT is a so called ensemble classi-
fier, basically every possible classification method can
be integrated. However, the selection of image features
has influence on detection performance and execution
speed.

In the current work we integrated classifiers which
make decisions based on five different image features.

1. Haar-like features with different patterns and sizes.
2. Image intensity
3. Gradients and principal curvatures

4. Region histograms based on image intensity and
derivatives with different sampling resolutions and
sizes.

5. Structure tensors

Haar-like features and image intensities are the fea-
tures with the lowest computational costs and are there-
fore used for building the cascaded root. Gradients need
to be computed by filtering as well as principal curva-
tures which need an additional Hessian analysis step.
Region histogram classification multiplies the cost by
the number of samples. Structure Tensors require the
convolution of the gradient image with a Gaussian ker-
nel and subsequent eigenanalysis of the structure tensor
matrix. These three types of classifiers are exclusively
used for the non-cascaded part of our PBT.

The chosen weak classifiers are scale variant which
is adequate for our application scenario because we ex-
pect anatomical structures to have a specific size (small

Level 2

Level 1

Level 0

[[]
I H

Not evaluated Evaluated but Evaluated and
not accepted accepted

Figure 2: Multiresolution Algorithm

variations in size should be accepted anyway, larger
variations because of age or gender can be covered with
different detectors and pre-classification based on pa-
tient background data).

3.2 Multiresolution Feature Detection

The PBT with Partial Cascading is embedded into a
multiresolution scheme based on a power of two Gaus-
sian image pyramid [AAB184] to further reduce the
number of voxels to be processed.

A separate classifier C; is trained for each resolution
level. Multiresolution classification starts at the lowest
resolution level n by applying classificator C,, on image
I,. Classification results in a set positively marked vox-
els (pg™",...,pm™"). These voxels are propagated into
the next higher resolution level n — 1 where each posi-
tive lower resolution voxel marks the voxels within the
corresponding filter kernel in level n — 1 as candidates.
Classification of the current level is only computed on
the remaining candidate voxel. The propagation is re-
peated until the original resolution (level 0) is reached.
Figure 2 depicts the algorithm with a 1D example. Note
that most of the high resolution voxels do not need to
be checked using this scheme.

In the case of overlapping kernels some higher reso-
lution voxels have two or more parent voxels and it can
happen that a voxel is marked as positive and negative.
In this case the positive mark is kept. This leads to a
slight over-segmentation, but on the other hand the ef-
fect of false negative samples might be reduced, which
is a wanted effect.

3.3 Filtering of Results Using Fast Proba-
bility Computation

The direct result of our feature detection algorithm is a
bit mask of candidates which still might contain false
positives. One method to reduce the number of false
positives is to assign a probability to each candidate that
reflects the confidence in its classification. The result-
ing probability map can then be further processed by
thresholding which effectively removes outliers and/or
non-maximum-suppression which only leaves the can-
didates which are at the center of the expected shape.

intensity gradient curvature

—» @ 5 W@

& > @

ﬁﬁ

derivatives

—>»>

resolution

normalization

Figure 3: Datastructure: Only the base intensity volume
is kept completely in memory. All other data, derivative
and lower resolution volumes are computed block wise
on demand.

Probabilistic boosting trees can deliver such a proba-
bilistic classification. Drawback of this straight forward
approach is the low time performance.

We observed that the result of feature detection form
clusters at the feature location resembling already the
searched structure (e.g. the intervertebral discs in figure
9). Thus, we propose to assign probabilities to candi-
dates by comparing the shape of its surrounding cluster
with the searched shape.

A fast option to compute this are shape particle filters
which are applied in our framework. The likelihood that
a candidate belongs to the searched structure is com-
puted by applying a shape approximating the structure
of interest around each candidate and by measuring the
ratio of overlap of neighborhood and shape.

4 IMPLEMENTATION

4.1 Data Preprocessing

The spatial resolution of medical 3D images in a clin-
ical environment is generally highly anisotropic. Es-
pecially the slice distances show high variability from
modality to modality, from scanner to scanner depend-
ing on the used imaging protocol. The scale variant
nature of the image features described in section 3.1 re-
quires the same spatial resolution of all images to be
processed.

Thus, training data as well as unseen data is prepro-
cessed by resampling the original volume data to an
isotropic voxel size that is selected based on the targeted
anatomical landmark. The current implementation uses
bilinear interpolation for resampling.

The resampled volume (in the following denoted as
"base volume") is the basis for all following computa-
tions and the original data can be discarded at this point.

4.2 Data Management and Derivative
Computation

The data management component is responsible for ef-
ficiently providing the necessary data to compute the
requested weak classifiers on all resolution levels while
keeping the memory footprint small and flexible.

The supported weak classifiers require intensity,
gradient and principal curvature data for all positively
marked voxel positions on the different levels of
resolution. It is obvious that the performance of the
weak classifiers decides on the performance of the
whole PBT.

It is well known that filtering volume data with sep-
arated filters for derivative computation is much faster
than applying a three dimensional filters per voxel in-
dividually. We currently use a 3 x 3 x 3 Sobel for gra-
dient computation, which can be replaced by any other
appropriate separable filter. However, applying a sepa-
rable filter for derivative computation requires to keep
the whole filtered volume in memory, which might be
problematic having our initial requirements in mind.

To overcome this limitation and to make the memory
footprint manageable also in an environment with lim-
ited resources, we introduce a cached block structure
(see Figure 3). The intensity base volume is entirely
located in memory. Lower resolution volumes, gradi-
ents, structure tensors and principal curvature are or-
ganized into smaller blocks that are only computed on
request. After computation, block data remains cached
in memory. If the memory for allocation of new blocks
gets low, the cache is partially cleaned by removing data
which was accessed the longest time ago.

For fast computation of Haar-like features an addi-
tional data structure, an integral volume, is needed.
This data is currently computed as a whole and kept in
memory. This is due to the more complicated genera-
tion method of this data which makes it hard to compute
the value block-wise on demand.

4.3 Optimized Classifier Execution

Generally each voxel can be classified individually by
executing the whole boosting tree starting from the low-
est resolution. However, having in mind that one voxel
in a lower resolution volume has influence on a num-
ber of voxels in the higher resolution and that the data
is arranged in a cached block structure, it is worth to
consider a optimal execution order.

Detection of features on the whole volume or of a sub
volume follows two strategies. First, feature detection
is done in resolution level order. This means that the
PBT for one level is executed on the whole region of
interest and then all positive classified voxels are prop-
agated to the next higher level.

Second, all per level classification is performed block
wise. In this way only a small number of data blocks

must be in cache. Any other execution order (for ex-
ample line wise) would cause a lot of cache misses and
would likely lead to often re-computation of block data.
If multiple classifiers must be applied on the same vol-
ume all classifiers are executed on each block sequen-
tially. After the first classifier is executed the block
cache remains in (partially) filled state. Data which is
already cached must not be computed if the next clas-
sifier tries to access this data. Parallelization is imple-
mented using a worker thread-pool. Classification of
one block is fed into a job queue which distributes the
work to the worker threads.

S EXPERIMENTS

Our multiresolution PBT framework was tested in a
real world scenario as preprocessing part for a semi-
automatic annotation algorithm for the vertebral col-
umn. The task was to preselect appropriate candidates
for the location of the intervertebral discs and the spinal
canal.

For the intervertebral discs, three different detectors
were trained to cover the different appearance of lum-
bar, thoracic, and cervical disks. The spinal canal could
be detected by using only one detector.

5.1 Setup and Training

The algorithm has been trained and evaluated on 19 CT
datasets (13 for training 6 for evaluation only) contain-
ing different parts of the vertebral column. The datasets
have up to 1112 axial slices with a slice resolution of
512 x 512 and a slice distance between 0.62 mm and
3.0 mm. Some of the data contains pathologies (bro-
ken vertebrae, collapsed disc, scoliotic spines) as well
as one cervical dataset from a child.

Experiments have shown that the thinnest interver-
tebral discs in the cervical section can still be distin-
guished if the slice distance is at least 1.5 mm. We
therefore fixed the base volume voxel scale for this ex-
periment as 1.5 mm isotropic and the datasets were re-
sampled accordingly.

In all datasets position and location of the interver-
tebral discs and the spinal column have been manually
labeled. Based on the given annotation, positive sam-
ples have been generated randomly inside the interver-
tebral disc and the spinal column. Negative samples
have been generated randomly all over the volume with
the constraint to have a minimal distance to positive
samples of 10 mm.

5.2 Performance Evaluation

Time performance of the algorithm has been assessed
based on a set of eleven CT volumes (six evaluation
and five training datasets). The properties of the data,
its original and normalized size is listed in table 1. The
classifier is trained using one cascading step and al-
low only intensity and Haar-like features in the cascade

Volume original size normalized size
1] 512x512x202 | 106 x 106 x 134
2| 512x512x163 | 113 x 113 x 108
3| 512x512x361 | 144 x 144 x 168
4 | 512x512x%x222 89 x 89 x 148
5| 512x512x249 | 170 x 170 x 166
6 | 512x512x152 91 x91 x 101
7| 512x512x277 | 245x245x 184
8 | 512x512x260 | 244 %244 x 179
9 | 512x512x 1112 | 274 x 274 x 370
10 | 512x512x228 | 176 x 176 x 228
11 | 512x512x945 | 244 x 244 x 630

Table 1: Properties of volumes for performance evalua-
tion.

time (ms)

L Volume 4
14000

[= Volume5
12000

[= Volume 6
10000

Volume7

8000

6000 [

4000

2000 \

L [I I I MB
0 50 100 150

Figure 4: Memory Limits

node. Influence of the different optimizations is mea-
sured against this default. Detection performance was
measured based on 8 datasets containing the 6 evalua-
tion datasets.

Limited Memory The data structure is designed to
cope with limited resources. However, reaching the
bounds of memory provokes clearance of cache blocks
that might have to be recomputed at a later stage of
the algorithm. Figure 4 illustrates the time performance
over different cache memory bounds for datasets 4 — 7
and show a clear threshold (~ 25 MB) for all four
datasets where the performance/memory ratio changes
dramatically. This memory limit is slightly different for
each dataset and depends on the dataset size. If the
available memory falls below that threshold computa-
tion time rises heavily whereas performance remains
stable if enough memory is available. The threshold
marks the point where data blocks need to be frequently
recomputed. As long as enough memory is available
deletion of block data from the cache and occasional re-
computation has almost no influence on performance.
Multithreading. = We tested the multithreading per-
formance of our algorithm on an Intel quad core CPU
with 2.4 Ghz and hyperthreading. Figure 5 plots the
computation speed over the number of threads again on
datasets 4 — 7. Time drops until 4 threads are used. For
more threads no significant speed-up (but also no sig-
nificant slowdown) can be monitored.

time (ms)
= Volume 4

25000

= Volume5
20000 = Volume 6

= Volume 7

15000
10000

5000 k

0 2 4 6 8

threads
0

Figure 5: Plot computation time against number of
threads. Tested on a quad-core with Hyperthreading.
time (ms)

30000 |-
25000 |

20000 |-

[cascading
15000 |

[no cascading

10000

el L WH

5000

k3 9 10 11

Figure 6: Detection speed comparison between PBT
with (blue) and without (green) cascading on eleven dif-
ferent datasets.

The scaling with the number of threads below four is
not linear. This is caused by the current locking strat-
egy that prohibits accessing one block if it is currently
computed by another thread. This situation mainly oc-
curs if 2nd derivatives have to be computed that require
accessing also neighboring first derivative blocks. If
another thread is classifying one of these neighboring
blocks at the same time it has to wait until the lock is re-
leased. This kind of collision happens more frequently
as more threads are used. We expect therefore a loga-
rithmic scaling of time performance with the number of
cores as long as the locking behavior is not improved.
Cascading Speed-up. The impact of cascading on
detection speed has been measured by comparing the
time performance of our default detectors with detec-
tors which are trained without including a cascading
step. The result is plotted in figure 6. Over eleven
datasets we measured a speed-up of 1.45 —2.67 for de-
tectors including a cascading step.

Classifier Sorting Speed-up. The impact of classi-
fier sorting is plotted in figure 7. We compare the time
performance of our default detector including cascad-
ing and sorting with detectors which are allowed to use
all classifiers in the cascading node. Classifier sorting
results in a speed-up up to 1.65 for detectors which use
sorting.

Multiresolution Speed-up. To measure the impact
of multiresolution feature detection we compared de-

time (ms)

20000 -

15000

[sorted
[not sorted

10000 -

TﬂﬂﬁqﬂﬂmwﬂTjHHH H

T T
7 8 9 10 11

5000

Figure 7: Detection speed comparison between PBT
with (blue) and without (green) classifier sorting on
eleven different datasets.

time (ms)

200000 -

150000 -

[multi resolution

100000 - [one resolution

50000 -

== HﬁH [!_'H’_‘ ﬁﬂm

1 2 3 4 5 € 7 8 9 10 11

Figure 8: Detection speed comparison between mul-
tiresolution vs. one resolution.

tectors using three levels of resolution against detectors
using only one level. The results are plotted in figure 8.
The measured speed-up ranges between 3.44 and 17.51.

Detection Performance. Two feature detection results
are depicted in Figure 9. The first row shows the detec-
tion of intervertebral discs in the lumbar section of the
spine, the second row the detection of the spinal canal
on a whole spine. The detection progress from lowest
to highest resolution level is depicted from left to right.

The images illustrate well the effectiveness of the
multiresolution scheme since already at the lowest res-
olution level the major part of the volume is excluded
from higher resolution analysis.

The selected voxels (blue) reproduce the shape of the
searched anatomical parts to a large extend. However
outliers can be observed, for example inside the verte-
bral body (first row) or at the ventral side of the ribcage
(second row). Moreover missing features can be ob-
served as well (first row, ventral side of the topmost
disc).

This observation is also reflected in recall and 1-
precision plots (figure 10). Recall denotes the ratio be-
tween selected voxels within the ground truth and all
possible ground truth voxels. 1-precision stays for se-
lected voxels outside the ground truth divided by all
the voxels which were selected by the feature detection
(also the falsely selected ones). The evaluated data in-
volves healthy spines (1, 2, 3, 6, 7 in figure 10) and

it h Aa) A(1t

Figure 9: Coronal and sagittal images of detection results for the intervertebral disc (first row) and the spinal
column (second row). Three levels of resolution document the detection process, lowest resolution left to highest

resolution right.

Lumbar Spine CT Data

Particle-filtered Lumbar Spine CT Data
1 T T T

Spinal Canal CT Data Particle-filtered Spinal Canal CT Data

-raca\l -raca\l
09t [1-precision o9l [1-precision

spines with diseases like scoliosis and broken vertebrae
(4,5, 8 in figure 10).

The first and the third graph show results after feature
detection without any postprocessing where the high re-
call rates give information about good detection results
of structures of interest (discs and spinal canal). How-
ever, besides the high recall rates there are also high
rates of 1-precisions because of the occurrence of out-
liers (i.e. spongy bone within vertebrae with similar
features to discs). The high I-precision rates can be
reduced by postprocessing steps such as particle filters
which are visible in the second and fourth graph of fig-
ure 10. The recall rates remain fairly the same, minor
reductions are due to moving towards the center voxels
of the discs by particle filtering.

An example for postprocessing of the resulting fea-
ture mask is depicted in figure 11. First probabilities are
computed by applying a box shape particle filter with
the dimensions 9 x 9 x 60mm>. The box approximates
elongated shape of the spinal canal. Second, the feature

T T 1 T
-recaH -vecall
09l [1-precision 09 [01-precision

08r q 08

Figure 11: Feature mask (blue) post processed with par-
ticle filtering, non-maximum suppression and thresh-

olding (yellow).

points are reduced by non-maximum suppression of the
probabilities. Third, outliers are removed by threshold-
ing the probability. The threshold is defined atr = 0.15.

6 DISCUSSION AND CONCLUSION

We have presented a method for time and memory ef-
ficient feature detection on medical 3D volume data.
The goals and requirements formulated at the end of

Section 1 have been reached by selecting a classifica-
tion based approach based on a Probabilistic Boosting
Tree classifier. The classification method was improved
by combining the decision tree with one cascading step
and the introduction of classifier sorting. This classi-
fier was embedded into a multiresolution framework.
We could show that all optimizations together result in
a huge time performance gain with an approximated
speed-up factor of 20.

Multithread performance was measured to scale non
linear (almost logarithmic) which is due to internal data
locking. The speed-up is for state of the art quad core
CPUs still significant. But to benefit from more paral-
lelism, improvements have to be done in this section.
However it is likely that more sophisticated access pat-
terns and locking schemes can help to overcome this
problem.

The behavior of the block cache data structure was
evaluated in section 5.2. It is noticeable that even larger
datasets require only ~ 25M B for the block cache to run
almost unhindered. However even under circumstances
where less memory is available the algorithm will just
perform slower.

Detection rate of this feature detector is not as good
as it could be. We believe that other image features and
filtering techniques, a finer bases scale and also a dif-
ferent kind of classifier could result in better detection
performance. However, trading detection performance
against execution speed was a conscious design deci-
sion. The results are good enough to use this method to
reduce the search space for more specialized and more
expensive image processing methods.

REFERENCES

[AAB*84] E.H. Adelson, C.H. Anderson, J.R. Bergen, PJ. Burt,
and J.M. Ogden. Pyramid methods in image processing.
RCA engineer, 29(6):33-41, 1984.

S. Guthe, M. Wand, J. Gonser, and W. Stra3er. Interac-
tive rendering of large volume data sets. In Visualiza-
tion, 2002. VIS 2002. IEEE, pages 53-60. IEEE, 2002.

C. Harris and M. Stephens. A combined corner and
edge detector. In Alvey vision conference, volume 15,
page 50. Manchester, UK, 1988.

E. LaMar, B. Hamann, and K.I. Joy. Multiresolution
techniques for interactive texture-based volume visual-
ization. In Proceedings of the conference on Visualiza-
tion’99: celebrating ten years, pages 355-361. IEEE
Computer Society Press, 1999.

[GWGSO02]

[HS88]

[LHJ99]

[LKO8] M. Langer and K.-D. Kuhnert. A new hierarchical ap-
proach in robust real-time image feature detection and
matching. In Pattern Recognition, 2008. ICPR 2008.
19th International Conference on, pages 1 —4, dec.

2008.

D.G. Lowe. Object recognition from local scale-
invariant features. In iccv, page 1150. Published by the
IEEE Computer Society, 1999.

Christophe Marsala, Marcin Detyniecki, Nicolas
Usunier, and Massih-Reza Amini. High-level feature
detection with forests of fuzzy decision trees combined

[Low99]

[MDUAO7]

[MVO09]

[NGL*09]

[Tu05]

[VIO1]

with the rankboost algorithm. Technical report, Univer-
sité Pierre et Marie Curie-Paris, 2007.

A. Militzer and F. Vega-Higuera. Probabilistic boost-
ing trees for automatic bone removal from CT angiog-
raphy images. In Society of Photo-Optical Instrumenta-
tion Engineers (SPIE) Conference Series, volume 7259
of Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, February 2009.

M. Niemeijer, M.K. Garvin, K. Lee, B. van Ginneken,
M.D. Abramoff, and M. Sonka. Registration of 3D spec-
tral OCT volumes using 3D SIFT feature point match-
ing. In Society of Photo-Optical Instrumentation Engi-
neers (SPIE) Conference Series, volume 7259, page 51,
2009.

Z. Tu. Probabilistic boosting-tree: learning discrimina-
tive models for classification, recognition, and cluster-
ing. In ICCV, volume 2, pages 1589 —1596, 2005.

P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. In Proceedings of
the 2001 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR 2001), vol-
ume 1, pages [-511 — I-518, 2001.

