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Abstract. Quality of segmentations obtained by 3D Active Appear-
ance Models (AAMs) crucially depends on underlying training data.
MRI heart data, however, often come noisy, incomplete, with respiratory-
induced motion, and do not fulfill necessary requirements for building an
AAM. Moreover, AAMs are known to fail when attempting to model lo-
cal variations. Inspired by the recent work on split models [1] we propose
an alternative to the methods based on pure 3D AAM segmentation. We
interconnect a set of 2D AAMs by a 3D shape model. We show that our
approach is able to cope with imperfect data and improves segmentations
by 11% on average compared to 3D AAMs.

1 Introduction

Correct segmentation of the left ventricle (LV) in cardiac MRI short-axis images
is very important for further diagnosis of the heart’s function. Manual segmen-
tation is very time-consuming and therefore efforts are taken to automate this
process to the largest possible extent.

Although variants of Active Appearance Models (AAMs) [2] have been ap-
plied to this problem [3,4,5], a robust and completely automatic segmentation
still poses a challenge.

Several problems appear in the context of shape- and appearance-based mod-
eling of the left ventricle:

– The appearance of papillary muscles and trabeculae varies irregularly from
patient to patient. Especially in slices close to the heart’s apex these fuzzy
anatomical structures are hard to model statistically. The necessary require-
ment for building an AAM – that the underlying training data has a gaussian
distribution – is not satisfied in the apical/apex region.

– Often, only a part of the left ventricle is captured. Training data consisting of
poorly corresponding volumes decreases the quality of the resulting model.

– Respiratory-induced motion introduces shifts of neighboring slices and so
leads to irregular local variances in the data.

– Principal Component Analysis (PCA) involved in the build leads to a model
where variances apply to the complete model. This makes it hard to handle
local variations, e.g. different brightness of individual slices.
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In this paper we propose a new and robust approach to segmentation of the
left ventricle. By linking a set of 2D AAMs with a simple 3D shape model we
perform model matching on a global and local context iteratively. With this
approach we handle the above list of problems.

This paper is structured as follows. In section 2 we review related work on
statistical models of shape and appearance in context of LV segmentation. In
section 3 we introduce a two-component model of the left ventricle. In section
4 we outline how the two-component model is matched to unseen data. Results
are presented in section 5 and a conclusion is drawn in section 6.

2 Statistical Modeling of the Left Ventricle

Our approach benefits from the combination of both Active Shape Models (ASMs)
[6] and Active Appearance Models (AAMs) [2]. ASMs are statistical models of
shape that can be used for identification and segmentation of known objects in
unknown images. AAMs are a direct extension of ASMs and incorporate not only
information about shape but also model the underlying texture. Variations of
both methods have successfully been applied to segmentation in medical imaging
[4,7,8].

Statistical models of shape and appearance are created from a finite number
of training data sets. In other words, the model is only able to represent and thus
segment new data sets that are similar to the ones in the training set. Increasing
the size of the training set is a rather limited way to improve the generalization
ability of the model. By adding local deformability the generalization ability
can be increased explicitly. The statistical model is used to find a rough initial
segmentation which is refined by restricted local deformations [8].

Several authors have discussed local and global deformability of a model.
Independent Component Analysis (ICA) [9,10] leads to modes of variation which
have a rather local effect compared to the global modes of variation derived from
the conventionally used PCA. To deal with local variations of a model it can
explicitly be split into sub-models. The split is achieved either with the help of
human expertise or by means of optimization based on the Minimal Description
Length (MDL) [1].

A great problem that arises in segmentation of short-axis MRI images of
the left ventricle is respiratory-induced motion. Such artifacts appear as slight
displacements of spatially neighboring slices. Handling of these displacements is
crucial to achieve both a correct model and correct segmentations. A recently
proposed approach [11,12] first detects the left ventricle in one or multiple slices.
In a second step image alignment is used to compensate the shifts of neighboring
slices. Finally a 3D AAM search is performed to achieve the final segmentation.

3 A Two-Component Model of the Left Ventricle

Inspired by the idea of modeling global and local features separately [1,8] we
propose to combine a set of local 2D AAMs with a global 3D shape model. The
purpose of the 2D AAMs is to precisely match the well articulate slices of the



(a) (b) (c) (d)

Fig. 1. Typical examples of (a) basal, (b) mid (the arrows indicate papillary
muscles), (c) apical, and (d) apex slices (top) and the first two principal compo-
nents of texture after PCA (bottom).

heart’s base. The purpose of the 3D shape model is twofold: to propagate the
position and size of the basal slices to apical ones and to keep the global shape
characteristics plausible. In the following we describe the two components of our
model.

3.1 Component 1: A Set of 2D Active Appearance Models

In a first step we consider the given training data, i.e. texture and annotation,
slice-wise. From base to apex we identify the following four classes of slices:

Basal slices (fig. 1(a)) reside close to the base of the heart and do not contain
papillary muscles.

Mid slices (fig. 1(b)) clearly show papillary muscles (arrows).
Apical slices (fig. 1(c)) contain trabeculae and papillary muscles, which are

represented by irregular texture.
Apex slices (fig. 1(d)) show the very apex of the heart and contain highly

irregular texture.

We performed PCA on the shape-normalized texture vectors of all slices in the
training set. Scatter-plots of the first two principal components are shown in
figure 1 for the according classes of slices. We observe that basal and mid slices
show a relatively compact gaussian distribution and are thus well suited for
linear statistical modeling using PCA. This is not the case for apical and apex
slices, whose texture is much more irregular.

With a manual classification of slices we build a set of four individual 2D
AAMs. This proceeding has the advantage that even incomplete MRI data sets
can be included in the training set and used for building the first component of
the model.
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Fig. 2. The original and smoothed centerlines projected to XZ (a) and YZ (b)
plane. (c) The assignment of sub-models to sections of the global shape model.
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Fig. 3. The first (a), second (b), and third (c) modes of variation of the global
shape model. The plots show the mean shape together with the largest possible
deformations.

3.2 Component 2: A Global Shape Model

The intention of the global model is to represent the ventricle’s shape in an
overall simplified way. Its task is to assure a valid relative placement and scaling
of the four 2D AAMs.

The core of the global model is a centerline connecting the 2D AAMs in 3D.
For the landmark points of each slice of the annotated training set a centroid
is calculated. The assembly of these centroids forms the centerline. Figures 2(a)
and 2(b) show such a centerline for one of the annotated data sets. It can be
seen that respiratory-induced shifts of neighboring slices appear in the data. We
use a gaussian filter to smooth the centerlines and to reduce respiratory motion
artifacts in the training set.

Additionally to the centroids we incorporate the radii of slices into the global
model. For each slice a radius as the mean distance of shape points to the centroid
is calculated. This results in three variables that approximately describe the
ventricle’s shape on one slice: x/y-coordinates and radius.



To build a statistical shape model, an equal number of corresponding land-
marks has to be placed in every training example. We interpolate centroid posi-
tions and radii to get a total of 20 evenly-spaced slices. With the three features
per slice this results in a total of 60 features included in the global shape model.

Before PCA can be applied, the individual training examples have to be
aligned. Since we model not only the positions of centroids but also the radii
we can not directly apply 3D Procrustes analysis. We rather align the center
lines with respect to x/y-coordinates. The radii are thus not affected by the
alignment. Figure 3 illustrates the first three modes of variation of the global
shape model.

3.3 Combining Local Models and Global Model

In order to benefit from both components the local models have to be linked to
the global model. As some data sets are delivered without apex or basal slices,
we compensate this missing information by attaching two 2D AAMs to each
slice. For example, the top most slice is assigned the basal model and the mid
model. The better matching model is kept while the other one is ignored. Figure
2(c) shows the assignment of 2D AAM sub-models to the global shape model.

4 Matching the Two-Component Model

In the previous section we have outlined the idea of splitting a statistical model
of the left ventricle into four parts and described how those parts are coupled
over a global model. In this section we explain how the model iteratively is
matched to unseen data.

4.1 Matching the Local Sub-models

We switch between two strategies. First a local matching of 2D AAMs is carried
out for individual slices by standard AAM search [2]. In theory it should be
possible to match all 2D AAMs in this way to get a valid global segmentation.
While a valid match is obtained in basal and mid areas the 2D AAM search very
often fails in the apical and apex slices. This is where the global model comes
into play.

4.2 Updating the Global Model

Using the global component we propagate information from the better fitting
slices to badly matching slices: The root mean square (RMS) texture error is
calculated for all slices and the best 80% are used to update the global shape
model. This update is done analogously to ASM search [6].

4.3 Iterative Global and Local Matching

After the global model has been updated the local AAMs are aligned to it. The
search proceeds iteratively switching between 2D AAM search and update of the
global model. In this way divergence due to bad initialization in critical slices
is avoided and the overall segmentation gets improved. The loop of 2D and 3D
updates is repeated until convergence.



The resulting segmentation still suffers from the lack of local variability.
Further improvements are achieved performing additional 2D AAM search steps
with position updates restricted by a constant maximum displacement.

Finally respiratory-induced shifts are compensated. The slices are shifted
such that the centroids of the 2D AAMs align to the global model’s centroid
coordinates. Compared to the work of Stegmann [11] our motion compensation
thus benefits from prior knowledge that is encoded in the global shape model.

5 Results

We evaluated the described method with a set of 32 different short-axis studies.
The quality of segmentation achieved with the two-component model was com-
pared to that of 3D AAMs. Leave-one-out tests for all of the 32 data sets were
performed. The average point-to-surface error (PSE) with respect to expert an-
notation was used to validate the segmentation quality. Figure 4 illustrates the
measurements. Although the two-component model led to slightly worse results
in 9 cases out of 32, the overall PSE got improved from an average of 2.20mm
(3D AAM) to 1.96mm (the two-component model). Even though the average im-
provement by 0.24mm does not sound impressive, we emphasize that compared
to the standard 3D AAM the two-component model performs better by 11%.

In figure 5 we provide a visual comparison for the largest improvement in
terms of the average PSE which could be achieved for data set 10. It shows the
result obtained with a standard 3D AAM (fig. 5(a)) and the improved segmen-
tation achieved with the two-component model (fig. 5(b)).

Figure 6 demonstrates the motion compensation performed with the two-
component model. A section of data set number 10 is depicted in figure 6(a).

Fig. 4. Point-to-surface error measured in leave-one-out tests for all training
data sets.
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Fig. 5. Results of matching data set 10 with 3D AAM (a) and two-component
model (b).

(a) (b)

Fig. 6. Motion compensation of data set 10 carried out by the two-component
model. The original data (a) and the automatically corrected data (b) are shown.

Figure 6(b) shows the data set after matching and aligning the slices to the
centerline of the global shape model.

Between 10 and 20 iterations are necessary for the two-component model
matching algorithm to converge. The whole segmentation process typically takes
a few seconds on standard PC hardware.

6 Conclusion, Discussion, Future Work

We have introduced a new approach to 3D segmentation of the left ventricle from
short-axis MRI images by interconnecting a set of 2D AAMs with a simple 3D
shape model. The two-component model is more robust than a 3D AAM since
local irregularities such as respiratory-induced motion and different intensities
of gray values in individual slices can be handled.

Incomplete training data sets that do not contain the entire LV from base
to apex pose a severe problem for 3D AAMs. If such data sets are present in
the training set the correspondence between them is ill-posed. The outcoming
model allows for shrinking within its modes of variation. The topmost or the



bottommost slices thus often remain unsegmented. This disadvantage is avoided
with the two-component model which allows the use of incomplete data sets as
training examples. Since slices are assigned to individual 2D AAM sub-models
even a single annotated 2D short-axis slice can be added to the training set. As
the two-component model attempts to match two neighboring 2D AAMs to each
slice, segmentation of data sets that do not cover the entire LV is still possible.

We are convinced that the idea of combining different types of models over a
global shape model is promising for other medical segmentation problems. Espe-
cially if local anatomical abnormalities (e.g., a tumor) appear, models consisting
of multiple components will likely lead to more precise results.
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