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Abstract The larval brain of the fruit fly Drosophila
melanogaster is a small, tractable model system for neurosci-
ence. Genes for fluorescent marker proteins can be expressed
in defined, spatially restricted neuron populations. Here, we
introduce the methods for 1) generating a standard template
of the larval central nervous system (CNS), 2) spatial mapping
of expression patterns from different larvae into a reference
space defined by the standard template.We provide a manually
annotated gold standard that serves for evaluation of the regis-
tration framework involved in template generation and map-
ping. A method for registration quality assessment enables the
automatic detection of registration errors, and a semi-automatic
registration method allows one to correct registrations, which
is a prerequisite for a high-quality, curated database of expres-
sion patterns. All computational methods are available within

the larvalign software package: https://github.com/larvalign/
larvalign/releases/tag/v1.0

Keywords Drosophilamelanogaster .Larvalbrain .Standard
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Introduction

Due to the availability of an extensive genetic toolkit, the fruit
fly Drosophila melanogaster has become one of the preferred
model organisms in neuroscience. The brain of the fruit fly
larva consists of only about 10,000 (Nassif et al. 2003) neu-
rons, which renders it a tractable model system that, despite its
simplicity, sharesmany of the structural features of the adult. In
combination with the considerable behavioural repertoire that
even the fruit fly larva possesses, this allows studies on behav-
ioural responses to sensory stimuli, such as odors (Gerber and
Stocker 2007) and light (Keene and Sprecher 2012).

Genetic tools are widely used also in the study of the larval
brain. For example, the GAL4/UAS system serves to express
a marker, such as the green fluorescent protein (GFP), in a
defined subpopulation of the neurons (Brand and Perrimon
1993; Venken et al. 2011).

Here, we develop the computational methods for displaying
such gene expression patterns from different larval brains in a
common reference space. Based on microscope images of
brain anatomy, neuropil (NP, anti-N-cadherin antibody) stain-
ing and nerve tract (NT, anti-neuroglian antibody) staining, we
construct a standard brain template onto which the anatomical
NP channels from different individuals are registered. Using
the transformations thus obtained, the NT and the gene
expression (GE) channels from these individuals can subse-
quently be mapped into a common reference space.
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Both the generation of the brain template and the mapping
of individuals onto the template rely on image registration. In
this work, we propose and evaluate computational methods
that are robust in the face of biological and experimental var-
iation, such as brain deformations, inhomogeneous staining,
and inconsistencies in sample preparation for data recorded
over a long period of time.

Image registration is a highly data dependent process.
However, there is no generic image registration approach that
works best for all applications, that is, for each application a
specialized registration algorithm or registration framework
has to be developed.We opted to develop a registration frame-
work based upon a well-established generic state-of-the-art
registration algorithm. The core of an image registration
framework lies in the actual registration algorithm, which typ-
ically consists of different components such as transformation
models, similarity measures, and regularization and optimiza-
tion techniques. Optimal combination and parametrization of
these components is crucial for obtaining the best possible
image registration accuracy (Sotiras et al. 2013; Viergever
et al. 2016; Tustison et al. 2013).

The software package larvalign presents a computational
framework, that is, a dedicated sequence of image processing
methods optimized for the registration of microscope images
of the CNS of the third instar Drosophila larva. larvalign
utilizes open source software toolkits for image processing
(elastix, ITK-SNAP, Fiji). The image processing pipelines
for image registration and quality assessment are implemented
and bundled inMatlab, providing an installable self-contained
software whose functionalities can be accessed programmati-
cally or by a graphical user interface for easy and convenient
conduction of single scan and batch registration.

In the following, we introduce a gold standard for evalua-
tion and then describe our registration framework (Materials
andMethods), followed by extensive empirical evaluation and
biological use cases (Results) demonstrating the practical ap-
plicability of the method for the mapping of gene expression
patterns.

Material and Methods

Gold Standard for Evaluation of Registration Accuracy

Image registration is the spatial mapping of each voxel in one
image onto the corresponding voxel in the other image. In
order to evaluate the complete spatial mapping obtained by
image registration, the true underlying spatial correspondence
of each voxel between two images has to be known, the
ground truth (Pluim et al. 2016). In biomedical image regis-
tration applications, such a ground truth is usually not avail-
able. However, it is possible to establish point-wise or regional
correspondences between images by assigning landmarks at

distinct positions of the imaged object or by segmenting dis-
tinct regions, typically related to the anatomical structure of
the imaged object. In image registration, such a set of spatial
correspondences is called a gold standard. Having a gold
standard available, one can assess the registration accuracy
by calculation of the Euclidean distance between the position
of the reference landmark and the position computed by the
registration algorithm. In the following we refer to this mea-
sure for registration accuracy by the term Landmark
Registration Error (LRE). In contrast to a ground truth, a gold
standard inevitably contains a certain annotation error due to
biological variation and image quality (limited spatial image
resolution, image acquisition artifacts etc.) and is affected by
inter-, and intra-rater deviation in case of manual annotation.

An expert in neurobiology (co-author AT) selected land-
mark positions that are expected to be clearly visible in
most scans, to have little anatomical variance, and to be
located at relevant regions of neural pathways. In this way
we defined 30 anatomical landmark positions covering the
entire larval CNS: Fig. 1. The diameter of the anatomical
structures at the selected landmarks – often nerve entry
points – is in the range of 2-8 μm, with more than 50%
of the structures having diameters >5 μm.

In order to assess the intra-rater variability of the land-
mark annotation, four scans were annotated twice by the
same neurobiologist (AT, co-author). For these four exem-
plary scans, the mean intra-rater deviation over all land-
marks per scan is 2.0 ± 1.2 μm and the maximum deviation
is 3.5 ± 1.8 μm. Table 1 lists the intra-rater deviation per
landmark and per scan.

Fig. 1 Maximum intensity projection (MIP) of an exemplary scan with
annotated landmarks. For landmark labels, see Table 1
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Additional Visual Quality Assessment

Additional quality assessment by an expert (co-author AT)
involved a visual inspection process guided by the following
6 error categories. Only registrations without any error of the
type 1–6 were accepted.

1) The thoracic segments in the VNC were shifted.
2) The ventral nerve cord (VNC) was stretched beyond the

standard brain border.
3) A brain hemisphere at the level of the developing optic

lobes was misaligned.
4) The entire alignment of subject and target was wrong, i.e.

both brain hemispheres were extremely stretched and
multiple misalignments were present in the VNC.

5) The VNC was shifted to the left or right side.
6) There was no neuropil staining and thus no possibility for

the program to register the brain scan.

Registration Algorithms

Typically, image registration is performed in two stages: the
global alignment of images (linear transformation), and the
local alignment (non-linear transformation), the so-called de-
formable image registration. For the deformable registration
one can distinguish between non-parametric methods (varia-
tional methods) and parametric methods (mostly B-Spline
models). For both categories, we investigated the respective
most promising state-of-the-art toolkit for biomedical image

Table 1 Intra-rater variance. For each of four scans, all 30 landmarks
(landmark positions: see Fig. 1) were annotated twice by the same expert.
The table shows the deviation (inμm) between the two annotations for each

landmark/scan combination. Additionally, we report mean ± standard devi-
ation and the maximum for each landmark

# Landmark label Scan 1 Scan 2 Scan 3 Scan 4 Mean ± Std Max

1 left antennal nerve 3.0 3.0 0.5 0.7 1.8 1.4 3.0

2 right antennal nerve 2.6 3.4 0.5 2.9 2.3 1.3 3.4

3 left tip of vertical lobe 2.6 2.2 1.8 3.8 2.6 0.9 3.8

4 right tip of vertical lobe 2.2 0.5 1.5 0.5 1.2 0.9 2.2

5 end of ventral nerve cord 0.5 4.1 2.1 0.7 1.8 1.7 4.1

6 left thoracic nerve entry T1 2.1 0.6 0.9 2.0 1.4 0.7 2.1

7 right thoracic nerve entry T1 1.3 0.5 1.3 1.0 1.0 0.4 1.3

8 left thoracic nerve entry T2 1.0 0.5 1.3 0.7 0.9 0.4 1.3

9 right thoracic nerve entry T2 3.4 3.9 2.4 1.5 2.8 1.1 3.9

10 left thoracic nerve entry T3 0.6 0.6 1.0 0.9 0.8 0.2 1.0

11 right thoracic nerve entry T3 5.6 2.1 1.0 2.3 2.7 2.0 5.6

12 left upper peduncle 3.1 3.3 2.9 6.2 3.9 1.6 6.2

13 right upper peduncle 5.6 4.4 2.1 3.6 3.9 1.5 5.6

14 anterior upper commisure 4.2 1.0 1.5 2.9 2.4 1.5 4.2

15 posterior upper commisure 0.0 0.6 3.9 2.3 1.7 1.8 3.9

16 left anterior LON nerve 1.0 2.5 2.0 2.3 1.9 0.6 2.5

17 right anterior LON nerve 0.6 1.4 4.4 2.3 2.2 1.6 4.4

18 left MB vertical medial lobe connection 0.5 0.5 0.5 2.9 1.1 1.2 2.9

19 right MB vertical medial lobe connection 2.4 1.4 2.7 0.5 1.7 1.0 2.7

20 center SEZ neuropil fusion 1.6 4.3 1.4 1.8 2.3 1.3 4.3

21 left upper most anterior nerve entry 0.9 2.2 2.4 4.3 2.5 1.4 4.3

22 right upper most anterior nerve entry 10.0 1.0 2.7 5.4 4.8 3.9 10.0 (overall max)

23 right basal brain neuropil border posterior 0.5 2.2 1.4 2.1 1.5 0.8 2.2

24 left basal brain neuropil border posterior 4.2 0.6 4.2 2.3 2.8 1.7 4.2

25 left A8 nerve entry 0.0 1.8 1.5 4.4 1.9 1.8 4.4

26 right A8 nerve entry 1.8 1.4 1.0 4.6 2.2 1.6 4.6

27 right A7 nerve entry 0.0 0.6 1.3 1.0 0.7 0.6 1.3

28 left A7 nerve entry 1.0 0.5 0.5 1.4 0.8 0.5 1.4

29 left A6 nerve entry 2.1 0.5 0.5 0.7 0.9 0.8 2.1

30 right A6 nerve entry 0.5 2.1 0.0 2.8 1.3 1.3 2.8

Average 2.2 1.8 1.7 2.4 2.0 1.2 3.5 ± 1.8
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registration, ANTs (Avants et al. 2011) and elastix (Klein et al.
2010). Both have been employed successfully for image reg-
istration of human, rat, and mouse brains (Klein et al.
2009a; Murphy et al. 2011).

ANTs is a state-of-the-art medical image registration and
segmentation toolkit. It contains algorithms for image regis-
tration with various transformation models (rigid, affine, elas-
tic, diffeomorphic, symmetric) and similarity metrics (cross-
correlation, mutual information, landmarks etc.). ANTs image
registration is probably best known for its symmetric
diffeomorphic registration algorithm (SyN) (Avants et al.
2008). In an evaluation study of 14 nonlinear deformation
algorithms applied to human brain MRI registration, SyN
was one of two algorithms that achieved the best registration
accuracy (Klein et al. 2009a). However, it should be noted that
the elastix toolkit was not yet available at the time of this
evaluation study.

The elastix image registration toolkit consists of a collec-
tion of state-of-the-art algorithms that are commonly used to
solve (medical) image registration problems (Klein et al.
2010; Shamonin et al. 2014). Similar to ANTs, it provides
various transformation models, similarity measures, optimiza-
tion methods as well as a GPU implementation.

ANTs and elastix are open source software and are based
on the Insight Segmentation and Registration Toolkit (ITK,
https://itk.org/), a widely used medical image processing
library of the National Library of Medicine.

We conducted an initial registration experiment to compare
the ANTs SyN and the elastix B-Spline registration approach
for the pairwise (subject-to-subject) registration on our image
data. We registered each of the initially annotated four scans to
each other, yielding six combinations of pairwise registrations.
The registration setup used, is described in the following.

Global (Linear) Registration

The global registration (linear transformation) serves as an
initialization for the deformable registration (non-linear
transformation) step. The aim of the global registration is to
match the orientation and size of the larval brains in both
images. Both, the ANTs and the elastix toolbox, provide an
affine transformation method and a normalized cross correla-
tion (NCC) or mutual information (MI) similarity metric.

In general, brain samples may be positioned arbitrarily on
the object plate and thus the images may display the brain
sample with large rotations and/or in flipped Z-direction.
The images used here did not show large rotations and were
inverted, if necessary, in a preprocessing step. We found that
an affine transformation aligned the images well regarding
orientation and size. The NCC similarity measure performed
better than the MI similarity measure with respect to LRE. We
therefore used an affine transformation and the NCC similarity
measure for the global registration with ANTs and elastix.

Local (Non-Linear) Registration with ANTs

We tried to optimize the setup of the nonlinear registration in
order to find the best (smallest LRE) configuration for both the
ANTs and the elastix approach for confocal images of the larval
Drosophila brain. A multi-resolution scheme of five levels and
the NCC similarity measure was used for both approaches.

We employed the SyN registration method of the ANTs
toolbox (Avants et al. 2011). We evaluated the registration
accuracy for varying values of the parameter defining the reg-
ularization of the velocity field. The best registration accuracy
in terms of the landmark registration error, was achieved with
values between 24 and 28 for the regularization parameter
<r > (cf. parameter settings listed below) Using the default
parameter value of 3, one registration takes about 8 h
(Intel(R) Core(TM) i7-6700 K CPU @ 4.00GHz, 64GB
RAM), and with larger values of the parameter <r > the com-
putation increases further.

antsRegistration, release 2.1:

– ini t ia l-moving-t ransform [<referenceImage>,
<subjectImage>, 1]

– transform Affine[0.1]
– metric GC[<referenceImage>,<subjectImage>, 1, 0,

Regular, 0.25]
– convergence [500x500x500x500, 1e-6,10] –smoothing-

sigmas 4x2x1x0 –shrink-factors 8x4x2x1]
– transform SyN[0.1,<r>,0]
– metric CC[<referenceImage>,<subjectImage>, 1, 4]
– smoothing-sigmas 8x4x2x1x0vox –shrink-factors

16x8x4x2x1 –convergence [500x500x500x500x100,
1e-6,10]

The value of the parameter <r > was increased stepwise
from 3 up to 28.

Local (Non-Linear) Registration with elastix

We employed the B-Spline transformation model along with
the adaptive stochastic gradient descent optimizer along with
random image intensity sampling (Klein et al. 2009b; Klein
and Staring 2015) and the NCC similarity metric of the elastix
toolbox (Version 4.7). The most important parameter was the
size of the B-Spline grid spacing, which implies a B-Spline
regularization on the deformation field. elastix provides the
option to (randomly) sample image intensities in a sub-region
of the image, implementing a local similarity metric compara-
ble to the ANTs SyN local similarity metric. A local similarity
metric can be superior to a global in case of intensity inhomo-
geneity (Avants et al. 2008; Klein et al. 2008), e.g. caused by
imaging artifacts/image inconsistencies (inconsistent intensity
normalization of tilewise image acquisition or inconsistent
staining of samples).

Neuroinform
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elastix registration with sampling from a random sub-
volume for each iteration failed for this type of image data.
We suppose that this is due to the inconsistent yet abundant
presence of structures, such as nerve strings, outside of the
brain, and hence did not use random sampling.

For elastix, the best image registration accuracy was
achieved with a B-Spline grid spacing of 12 μm and random
intensity sampling on the entire image domain. In contrast to
ANTs, the employed stochastic gradient descent optimizer
does not have a convergence based stopping criterion.
Therefore we adapted the number of iterations of the elastix
optimizer The computation of one pair-wise registration took
between 3 and 4 min.

An Initial Experiment Motivates the Use of elastix

We conducted an initial registration experiment to compare
the performance of two registration algorithms of different
underlying methodology, ANTs and elastix. The landmark
registration error (LRE) of ANTs decreased with increasing
value of the regularization parameter r. For ANTs, we obtain-
ed the best mean LRE of 3.33 μm ± 0.57 with parameter
r = 28, which is slightly better than the 3.54 μm ± 0.54 LRE
achieved by elastix. However, the corresponding maximum
LRE error was 10.26 μm ± 7.76 for ANTs and
8.29 μm ± 1.2 for elastix.

On the evaluation data, we obtained comparable results
with both registration methods: They exhibited a difference
in mean LRE of only about 0.2 μm (average voxel size:
0.5 × 0.5 × 2.0 μm). However, the registration with ANTs
was computationally much more expensive (> = 8 h vs.
4 min). Our aim is to provide an accurate and fast image
registration approach for batch processing of existing large
scale image data (on computing clusters) as well as a fast
registration of new brain samples to a standard brain template
(on personal computers). Based on our results of the compar-
ison of the state-of-the-art registration methods for biomedical
images, we opted to employ the elastix image registration
toolbox (CPU implementation for cluster computing, GPU
implementation for small data sets) for the generation of a
standard brain template and the registration of subject scans
to the template.

Template Generation Methods

There are several approaches reported in the literature for gen-
erating a representative brain template that serves as a refer-
ence for all individual brains. The simplest solution is to select
an image of an individual brain sample. Other approaches aim
to calculate an average image template. The motivation for
using an average-morphology template is based on geometri-
cal aspects regarding the required deformable registration of
many sample brain images to the template image. An average-

morphology template is intended to represent the expected
mean morphology of a population, and therefore it should
require less deformation to map any sample image of the pop-
ulation to the average-morphology template than to any ran-
domly selected individual brain image template.

Rohlfing et al. evaluated the impact of atlas selection strat-
egies and found that an average-morphology template can
indeed yield better registration accuracy (Rohlfing et al.
2004). The average-morphology template method (average
Bbrain shape^) evaluated was proposed by Ashburner (2000)
and is based on an iterative approach. In the first iteration, one
arbitrary individual image is selected as reference image and
each of the remaining images is registered to the reference
image using affine transformations. Based on these transfor-
mations, an average intensity image is calculated. In the sec-
ond iteration, all images are registered to the average image
using nonrigid transformations. A new average intensity im-
age is calculated based on the nonrigid transformations and
used as the new reference image. This procedure is repeated
until convergence. The authors state, that the shape of the
arbitrary reference image does not predetermine the shape of
the resulting final average image because the first iteration of
the algorithm is an affine registration only.

Peng proposed an approach for generating an optimized
‘average’ template for the adult Drosophila brain (Peng
et al. 2011). The employed registration method is landmark-
based and inherently uses a quality measure to verify the over-
all landmark matching. The first step of the template genera-
tion is the selection of one image of a real brain as a target
brain image, TR. Next, a large set of images is aligned globally
to TR with an affine registration. Those images that are aligned
with a quality score larger than 75% are chosen for the gener-
ation of an average template brain. These automatically select-
ed 256 images are then deformably registered to TR and a new
average template target brain, T_A, is generated by computing
the mean image of the 256 deformably registered images. In
this manner, local intensity inhomogeneities of the initial real
image are rectified. Similar to Rohlfing et al. (2004), Peng
et al. (2011) showed that the registration accuracy with the
generated template is significantly improved compared to
the registration with an individual brain image.

Van Hecke et al. (2008) compared a subject based (SB)
with a population based (PB) template construction frame-
work for inter-subject diffusion tensor magnetic images of
the human brain. Both approaches explicitly construct an av-
erage shape space by averaging spatial transformations obtain-
ed by deformable image registration. In the following, the
images of the different subjects are denoted as Ii (with i = 1,
…, NS, and NS the number of subjects). The deformation field
that warps image Ij to image Ii, is then defined as Tij.

The SB method is based on the calculation of the nonlinear
transformations Tij of all data sets Ij to a specific data set Ii of
the subject group, which was selected as the initial reference
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image. Thereafter, the mean deformation field of the initial
reference image Ii to all other data sets Ij of the group is
computed, that is, the transformation of the initial subject
space to the average space of the population. Next, all images
Ij of the subject group are transformed to the final template
space by the composed transformation Tij (Ti). Finally, the
warped images Ĩj are averaged to compose a SB template in
the average space of the population.

In the PB method, nonlinear transformations Tij are calcu-
lated between all images Ii and Ij (with j = 1, …, NS).
Subsequently, all NS images Ii are transformed to the average
space of the population with a specific mean deformation field
Ti that is calculated as the average deformation of this data set
Ii to all other images. Finally, the warped images Ĩj are aver-
aged to compose the PB template.

Generation of the Larval Standard Brain Template
for Drosophila

We chose the PB approach (van Hecke et al. 2008, van van
Pelt 2013) to generate a template image of the larval brain (see
discussion for a motivation of our choice).

Image Data for Template Generation

From a large data set (Li et al. 2014), an expert manually
selected 20 image stacks of good staining quality
(DataSetGoodQual) that should 1) clearly show all important
structures in each channel (NP, NT, GE), and 2) be morpho-
logically representative for the population of the large data set.

Registration Framework for Template Generation

For the pairwise registrations in the PB template generation,
we optimized an image registration framework consisting of
the following four stages.

Two images are involved in each registration process. One
image, the moving image, is deformed to fit the other image,
the fixed image. The choice of the registration components,
such as the similarity metric, is equivalent to the experimental
setup for comparing registration algorithms.

1) Nonlinear histogram matching. For each registration, the
intensity distribution of the moving image is nonlinearly
matched to the intensity distribution of the fixed image.
We employed the method described in (Nyul et al. 2000).

2) Z-flip transformation. Samples of the larval brain can be
placed on the object plate in anterior or posterior position,
i.e. the images acquired might be flipped in the Z-axis
with respect to each other. elastix affine registration was
not able to recover such large flip/rotation transformation
and got stuck in a local minimum in the initial brain po-
sitioning. We therefore conducted two separate affine

registrations where we initialized one with a transforma-
tion that flipped the image in Z-axis direction.

3) Affine registration. Of both conducted affine registrations,
the transformation was selected that achieved a superior
matching according to the similarity measure after the
final iteration.

4) Deformable registration. The deformable image registra-
tion process is initialized with the affine transformation
selected in the previous stage.

Generation of the Template

After computing the pairwise registrations for all 20 images,
we constructed the template average space with the PB meth-
od (van Hecke et al. 2008, see Introduction). All images were
transformed to the average space and then fused into the final
template image by computing the voxelwise arithmetic mean
of the intensities. We propose a modification of the Bclassical^
image fusion step: To enhance image quality, compute the
voxelwise median instead of the arithmetic mean. In the
Results section, we compare both variants.

In order to generate a template for the tracts morphology,
we applied the image transformation obtained by registration
of the neuropil channel to the tracts channel.

Subject-to-Template Registration

Subject-to-template registration refers to the registration of an
imaged brain of a subject of a population to the representative
template of that population. This registration process is required
to construct a standard model of the larval brain, i.e. a common
spatial reference framework for analysis and data mining.

Registration Framework

In order to obtain optimal image registration performance, the
registration framework needs to be adapted to the particular
registration scenario. We extended and adapted the registra-
tion framework employed for the template generation to the
subject-to-template registration scenario.

Global Registration

The global registration was extended by one additional regis-
tration stage to cope with large rotations and the previously
affine transformation was replaced by a similarity transforma-
tion. The difference between an affine and a similarity trans-
form is that the latter only allows uniform scaling whereas the
affine transform allows non-uniform scaling and shearing. Both
are linear yet non-rigid transformations. DataSetGoodQual,
which we used for the generation of the brain template, contains
scans that have little rotation in the X-Y imaging plane,
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however, the other data sets contain scans with larger rotations
which could not be recovered by an affine intensity based reg-
istration. To cope with large rotation, we added a registration
stage that aligns images based on the Signed Distance
Transform (SDT). Further, there were cases in the
DataSetRandomQual where the affine registration produced a
wrongly stretched image that resulted in insufficient initializa-
tion and failure of the deformable registration process.

The framework for global registration consists of the fol-
lowing six stages:

1) Dorsal-ventral alignment by a translation transformation
to the geometrical center of the template image and flip-
ping of the dorsal-ventral direction if the center of mass is
located on the bottom half of the image.

2) Z-flip transformation. Equal to template generation
approach.

3) SDT feature-based registration to cope with possible
large rotations in the X-Y imaging plane. First, the image
intensity is rescaled such that image acquisition block
artifacts in the background are excluded. Then a coarse
image mask of the brain is computed by morphological
opening operations on a half-resolution resized and
binarized image in order to exclude or minimize the size
of artifacts in the background and at the border of the
brain to the background. Next, the signed distance trans-
form is computed on the computed binary image mask to
obtain a more distinctive image pattern for rotation align-
ment. In a similar manner, a SDT image is computed for
the brain template image. However, the background of
the median fused template is homogeneous, and hence a
precise image mask can be obtained by simple intensity
thresholding. Finally, both SDT images are used as input
images for intensity-based registration along with the
MMI metric and the similarity transform.

4) If the STD-based registration fails (similarity measure
<0.4), we also perform an intensity-based registration.
We select the intensity-based registration if it is successful
(similarity measure ≥0.4). Otherwise, we select the meth-
od that achieved the higher similarity measure and issue a
registration failure warning to indicate that no method
passed the 0.4 threshold.

5) Neuropil image registrationwith similarity transform and
NCC image metric.

6) Composition of the final global transformation based on
steps 1)-5). The final global transformation is used to
initialize the deformable registration.

Deformable Registration

In subject-to-template registration, the fixed image is always
the template image. The generated median fused template

image provided the option to compute a precise image mask
of the brain. We therefore used an image mask in the deform-
able registration. An image mask allows us to compute more
robust measurements of image similarity because possibly
confounding image information in the background can be ex-
cluded, i.e., the similarity measurement is most accurate be-
cause it is focused on intensity information in the region of
interest. Moreover, with the help of an image mask it was
possible to reliably employ a local similarity metric which
previously failed when applied on the entire image domain.

For the deformable image registration, we employed a local
NCC similarity metric. An isotropic sub-region (cubic sub-
volume of 20 μm edge length) was chosen for intensity
sampling.

Automatic Quality Assessment and Semi-Automatic
Registration Adjustment

Automatic Registration Quality Assessment

While the correlation between template and registered subject
captures the global registration error, such a global measure
often neglects local errors. We observed two types of local
registration errors for images with weak staining, one at the
terminal part of the ventral nerve cord (VNC) and one in the
thoracic nerve region (s.a. Results). Similar to Muenzing et al.
(2012), we developed statistical image descriptors for specific
regions to detect and quantify local misalignments.

The descriptors of the VNC terminal (VI) and the thoracic
nerve (TI) regions are confidence values that assess the simi-
larity of the respective regions in the template and in the reg-
istered image stack. Based on a training data set, we deter-
mined that confidence values below 50% were indicative of a
major registration error in the respective region. Hence, a con-
fidence value below 50% for VI or TI initiated a manual error
correction procedure.

VNC Terminal Error Indicator (VI) The mutual informa-
tion score (as defined in Mattes et al. 2003) was calculated
between the registered subject image and the template image
on spherical regions with a radius of 10 μm at two terminal
VNC landmark positions defined in the template image. The
mutual information score was expressed in percent of the max-
imum observed score (for all scans), such that the VNC termi-
nal that was registered best resulted in a VI value of 100%.

Thoracic Nerve Error Indicator (TI) The magnitude of the
Eulerian strain tensor (Mase 1970) was calculated on the de-
formation field at spheres with radius of 35 μm at all six
thoracic nerves defined in the template image. The strain mag-
nitudes were then normalized by subtracting the median strain
magnitude (of all scans) and dividing by the median absolute
deviation. The normalized strain, denoted by S, was scaled to
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the range from 0 to 100%.We found that the 95% percentile of
the normalized strain measurement was the most reliable in-
dicator of local image distortion caused by failed registration
of the thoracic nerve region.

In addition, the mutual information score, M, was comput-
ed as for the VI case: Here, at all six thoracic nerves a region
with a radius of 15 μm was extracted. Both M and S range
from 0 to 100%. We combined them to compute the thoracic
nerve indicator TI as M*S/100.

Semi-Automatic Registration Adjustment

If a registration achieves a confidence value below 50% for TI
or VI, landmarks are set manually in the subject image (using
the landmarks plugin in Fiji: Schindelin et al. 2012). In case of
the described VNC registration failures (VI), two landmarks,
i.e. the positions of the V6 nerve entries are sufficient to guide
the semi-automatic registration. Reliable correction of mis-
alignments at the thoracic nerve region requires the annotation
of all six thoracic nerve entry points. In case of registration
failure of both VNC and thoracic region, eight landmarks need
to be annotated manually. Corresponding landmark annota-
tions for the template image need to be provided only once.

The framework of semi-automatic deformable registration
is based on an approach where two similarity metrics drive the
registration process (elastix multi-metric registration: Klein
and Staring 2015, Chapter 6). In addition to the previously
employed NCC metric, the Euclidean distance of the corre-
sponding points (Baiker et al. 2011) is computed between the
landmarks in the template and the manually defined land-
marks in the subject image. Both metrics are computed simul-
taneously in a multi-resolution setting, and proper weights
have to be found to balance these two metrics in order to avoid
image distortions, especially in the scenario where few land-
marks define the correspondences of only a small part of the
region of interest. We achieved robust registration results by
using relative weights, that is, instead of balancing the simi-
larity metric measurements, the gradient of the similarity met-
ric is balanced to ensure that the registration process is
smoothly guided by both landmark correspondence and struc-
tural intensity based image information.

Image Data

We used image stacks of the Janelia database of the larval
Drosophila CNS (wandering third instar; data by courtesy of
co-author JWT). Data recording followed the protocol de-
scribed in Li et al. (2014): The employed labels were Bmouse
antineuroglian (1:50 BP-104; Developmental Studies
Hybridoma Bank), rat anti-N-cadherin (1:50 DN-Ex #8;
Developmental Studies Hybridoma Bank) and rabbit anti-
GFP immunoglobulin (Ig) G (1:1,000; Invitrogen A11122)^.
The size of the 8 bit image stacks is about 1000 × 1400 × 100

voxels (in-plane resolution: 0.5 μm, slice thickness: 2 μm, z-
step: 2 μm).

Results

Standard Brain Template

We computed the NP template as described (Methods) and
then applied the obtained transformations for NP to the NT
channel to generate the NT template.

Figure 2 shows both the NP and NT template images com-
puted by mean intensity fusion and the median intensity fu-
sion proposed in this work (Methods).

All templates exhibit a high level of detail. Also the NT
templates (Fig. 2c, d), that were computed indirectly through
warping, contain all the expected tracts that are visible in
single sample brain images. Thus, the image registration
framework has generated an accurate mapping of the intensity
information on the neuropil channel along with robust and
undistorted deformation fields. The difference between mean
fusion and median fusion is most apparent in the background
where diffuse blur is visible from nerve string structures in the
mean fusion image, whereas the background of the median
fusion template appears homogeneous.

Subject-to-Template Registration

Image Data

We evaluated the subject-to-template registration on image
stacks of the Janelia database of the larval Drosophila CNS
(Li et al. 2014). From the database, we selected three subsets
of different image quality, where DataSetGoodQual and
DataSetMediumQual contain higher-quality image stacks se-
lected by visual inspection, while DataSetRandomQual con-
tains a random selection of stacks (Table 2, Fig. 3). A neuro-
biologist assessed image quality based on whether there was a
low/high staining background or whether the staining was
complete/incomplete. For quantitative evaluation, we
established a gold standard (Methods) for the generated
neuropil template and for all stacks from the three data sets.

Results for Subject-to-Template Registration

Table 3 summarises the landmark registration errors (LRE) for
all three data sets. The lowest LREs were obtained on the data
sets with the best image quality, DataSetGoodQual and
DataSetMediumQual.

DataSetRandomQual contains several images with overall or
partially weak staining. Here, we frequently observed two types
of registration errors that resulted in partial or global distortions
of the registered image (VNC error: Fig. 3a, b, thorax and VNC
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error: Fig. 3c). For comparison, Fig. 3d-f show successful reg-
istration results on images of medium quality.

Computation Time for Subject-to-Template Registration

Both, the fully automatic and the semi-automatic registration
have onlymoderate computational requirements of 7 or 8 min,

respectively, per image stack (Table 4). Computation times
were measured for an exemplary set of 7 image stacks on a
machine with the following configuration: Intel(R) Core(TM)
i7-6700 K CPU@ 4.00GHz, 64GB RAM, NVIDIA GeForce
GTX 980 Ti, Windows 7 64 bit operating system.

Semi-Automatic Registration Correction

We evaluated the semi-automatic registration (Methods) on
DataSetRandomQual. There were three cases of the described
registration failures: two VNC and one thoracic case. Table 5
lists the registration error of the subject-to-template registra-
tion for each image after fully automatic and after semi-
automatic registration of the three failed registrations. The
average error of the partially failed registrations (bold font)

Fig. 2 Generated template
images for the NP (a,b) and NT
(c,d) channels. a NP, mean fusion
(b) NP, median fusion (c) NT,
mean fusion, dNT, median fusion

Table 2 Data sets for evaluation (see Fig. 3 for example images)

Name # images Image quality

DataSetGoodQual 20 good

DataSetMediumQual 30 medium

DataSetRandomQual 25 randomly selected images
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was reduced from 12.9μm to 5μm and the overall registration
error of the data set was reduced from 6.4 μm to 5.4 μm. Only
few landmark annotations (2 for VNC errors, 6 for thorax
errors) were required to correct a partially failed registration.

Complete Subject-to-Template Registration Workflow
(Including Error Correction)

In order to evaluate the frequency of cases where semi-
automated registration correction is needed and to assess the

reliability of the automatic registration error detection and
semi-automatic registration adjustment, we performed an
evaluation of the entire registration workflow, i.e. the
subject-to-template registration and automatic registration er-
ror detection followed by semi-automatic registration correc-
tion (Methods), on a large data set.

We registered the first 250 scans (ordered by scan ID) of the
public data set (Li et al. 2014) to the previously generated
neuropil template. All 250 registrations underwent a quality
check by merging the registered NP channel with the NP

Fig. 3 Example registrations (NP channel) from DataSetRandomQual.
Red circles denote landmark positions on the registered subject image.
Yellow circles refer to the corresponding landmark positions on the
template. The circles have a diameter of ca. 10 μm. a-c poor image

quality causes large registration errors. a, b Two cases of registration
failure at the VNC terminal. c registration failures at both the thoracic
nerve region and at the VNC terminal. d-f Successful registrations from
DataSetMediumQual
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template in different colors (green and magenta) to then visu-
ally inspect deviations by experts in neurobiology (Methods).
Registrations that partially failed were corrected using the
semi-automatic registration framework (Methods).

222 out of the 250 automatic registrations passed the qual-
ity check by neurobiologists. The remaining 28 scans, about
11% of all scans, were corrected using the semi-automatic
error correction method.

After semi-automatic error correction, 20 of the 28
failed registrations passed the human-observer quality
check, i.e. overall 242 of the total of 250 scans could be
registered successfully. The remaining 8 scans, for which
the registration failed, can be attributed to problems with
data acquisition: They either suffered from bad image qual-
ity or did not cover the entire brain. Figure 4 shows three
examples for failed registrations.

Automatic Vs. Human Expert Quality Check

We also compared the automatic quality assessment based on
the VI and TI criteria (Methods) with the quality check by a
human expert. The confusion matrix in Table 6 shows that all
but one of the 28 human-rejected registrations were also

predicted as Brejected^ by the automatic quality assessment,
while seven registrations were falsely predicted as Brejected^.

Biological Use Cases: Overlap of Registered Expression
Patterns

To assess the quality of the proposed registration framework,
we addressed two different biological use cases. A key appli-
cation will be the visualization and identification of overlap-
ping expression patterns in specific neuropil regions or even
on the single cell level.

We chose the larval mushroom body, a central brain region
involved in learning and memory, for a closer inspection on
the neuropil level. Figure 5 shows five different expression
patterns (Fig. 5a-e) of different Gal4 lines that all label the
larval mushroom body (Pauls et al. 2010). When all registered

Table 5 Registration errors on DataSetRandomQual with fully
automatic and semi -automatic registration

Scan LRE [μm]

Automatic Semi-automatic

# Mean Sd Median Max Mean Sd Median Max

1 7.9 (7.5) 5.4 29 7.9 (7.5) 5.4 29

2 4.5 (4.0) 3.2 15 4.5 (4.0) 3.2 15

3 6.9 (5.8) 4.6 19 6.9 (5.8) 4.6 19

4 6.6 (6.1) 4.0 21 6.6 (6.1) 4.0 21

5 7.9 (6.3) 5.6 31 7.9 (6.3) 5.6 31

6 7.9 (8.2) 3.7 32 7.9 (8.2) 3.7 32

7 4.8 (3.9) 3.7 15 4.8 (3.9) 3.7 15

8 4.2 (3.7) 2.5 15 4.2 (3.7) 2.5 15

9 5.9 (5.9) 3.5 23 5.9 (5.9) 3.5 23

10 5.2 (4.8) 3.4 21 5.2 (4.8) 3.4 21

11 4.4 (3.5) 3.5 18 4.4 (3.5) 3.5 18

12 13.3 (18.2) 5.2 69 7.0 (5.0) 3.3 15

13 5.4 (2.8) 4.1 14 5.4 (2.8) 4.1 14

14 4.7 (5.2) 2.4 24 4.7 (5.2) 2.4 24

15 14.0 (19.2) 3.9 55 3.9 (2.1) 3.4 9

16 4.1 (3.5) 3.0 16 4.1 (3.5) 3.0 16

17 4.2 (3.0) 3.3 12 4.2 (3.0) 3.3 12

18 3.9 (2.8) 3.2 12 3.9 (2.8) 3.2 12

19 11.4 (14.8) 4.5 49 4.2 (2.9) 3.9 15

20 4.6 (3.1) 3.5 14 4.6 (3.1) 3.5 14

21 5.5 (6.4) 3.3 27 5.5 (6.4) 3.3 27

22 6.5 (5.4) 4.8 21 6.5 (5.4) 4.8 21

23 3.8 (2.9) 2.7 13 3.8 (2.9) 2.7 13

24 6.7 (7.1) 4.4 27 6.7 (7.1) 4.4 27

25 4.5 (2.8) 3.7 13 4.5 (2.8) 3.7 13

Average 6.4 (6.3) 3.8 24.2 5.4 (4.6) 3.1 18.8

Partially failed registrations: bold font

Table 4 Average computation times for subject-to-template registra-
tion (entire image registration pipeline including all steps) measured for
CPU and GPU computation. For the semi-automatic case, computation
times do not include manual interventions

Average computation times [sec] Fully automatic Semi-automatic

CPU GPU CPU GPU

Linear registration 112 109 140 130

Nonlinear registration 172 145 176 173

Combining transformations 42 42 42 42

Warping of image channels 79 78 76 75

Automatic quality assessment 35 35 36 36

Sum [sec] 440 409 470 456

Sum [min] 7 7 8 8

Table 3 Evaluation of subject-to-template registration. Landmark reg-
istration errors (LRE) were averaged per registration and then the median
error, the mean error and the corresponding standard deviation were cal-
culated. The maximum error denotes the mean over the largest registra-
tion errors for each registration

Name LRE [μm]

Mean ± Sd Median Max

DataSetGoodQual 2.5 ± 1.5 2.2 7.1

DataSetMediumQual 4.1 ± 3.6 2.9 15.2

DataSetRandomQual 6.9 ± 6.4 4.6 24.5
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expression patterns are merged into one image, the mushroom
body (marked by arrows) appears as a precise overlay (Fig.
5f), demonstrating the accuracy of the registration procedure.

Figure 6 focuses on four individual dopaminergic neurons
that were reported to be all (expression pattern of 64H06) or
partially (58E02 and 30G08) included in GAL4 lines
(Rohwedder et al. 2016). After registration, the four different
innervations of each neuron are clearly visible. The four dif-
ferent neurons precisely adjoin each other, appearing as four
distinct ball-like structures reflecting the presynaptic areas of
each neuron (Fig. 6d).

Discussion

Template Generation

In principle, a single brain scan of high quality could serve as
the template against which all other brain scans are registered.
However, using a population mean instead of a single brain

has been reported to yield better registration results (Rohlfing
et al. 2004; Peng et al. 2011), and, indeed, a population mean
template is the minimizer of the average deformation magni-
tude needed for registration to the template.

In contrast to adult brain images (see e.g. Peng et al. 2011),
the acquired images of the larval brain show large deforma-
tions introduced by sample preparation or positioning of the
sample on the object plate. It is therefore crucial to use accu-
rate nonlinear mappings for all aspects of the template gener-
ation process in order to obtain a good representative template
with respect to morphology and image quality (sharpness and
conservation of details).

The SB and PB method (van Hecke et al. 2008) appears to
be best suited for our data since both SB and PB generate a
template of average shape, as well as an average intensity
appearance. Van Hecke et al. (2008) stated that there is a
potential bias in the SB approach towards the selected single
reference image, and they demonstrated on synthetic data that
the PB approach is able to outperform the SBmethod by about
30% on diffusion tensor images.

We hence opted for the PB approach to generate a template
image of the larval brain. Deviating from the original PB ap-
proach, we used the median instead of the mean in the final
image fusion step (Methods), which led to visible improve-
ments of the template image (Fig. 2).

Choice of Registration Algorithm

The initial evaluation (Methods) of the two most prom-
ising state-of-the-art registration methods, ANTs and

Fig. 4 Failed registrations of images (NP channel) using the semi-
automatic registration framework. 8 images of the entire set of 250 images
did not allow for a successful registration, either because images were

incomplete (a), had a high staining background (b), or because of missing
staining throughout the ventral nerve cord (c)

Table 6 Confusion matrix for the comparison of human quality check
(accepted/rejected) and automatic quality check based on the VI and TI
criteria (predicted as accepted/rejected)

Predicted as accepted Predicted as rejected sum

Accepted 215 7 222

Rejected 1 27 28

Sum 216 34 250
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elastix, showed that LRE performance on gold standard
data was similar for both methods. However, computa-
tional costs were in the order of several hours for ANTs,
while elastix only required minutes for the same task.
The high computational demands of ANTs would be in
conflict with our goal of providing an accurate and fast
image registration approach that allows users to align
their own expression patterns to the template brain using
standard computing hardware. As the data sets in this
domain can contain hundreds or thousands of scans, we
decided to employ elastix as the registration algorithm
for larvalign.

Quality of the Registration Results

We have provided extensive empirical evaluation of our reg-
istration framework (Results). For measuring registration ac-
curacy, we relied on the landmark registration error (LRE) that
is based on a gold standard with landmarks annotated by an
expert (Methods).

We could thus obtain a reliable measure of accuracy, lim-
ited only by biological and intra-rater variance, for three data
sets of manually annotated brains.

The proposed regis t ra t ion achieved a LRE of
2.5 μm ± 1.5 μm (Table 3) for the data set with the highest

Fig. 5 a-f Five different registered GE images that all label the mushroom bodies (marked by arrows in a). f All five registered images merged into one
(data: Pauls et al. 2010)
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image quality (DataSetGoodQual). This is in the order of the
human intra-rater variation (2.0μm± 1.2μm) that sets a lower
limit for the landmark-based error that can be measured.

For comparison, the size of a complete third instar larval
CNS is about 500 × 200 × 200 μm3 (Lemon et al. 2015), the
first order center of the olfactory pathway has a diameter of
about 28 μm and the subesophageal zone, the first order inte-
gration center of the gustatory pathway, has a width of about
116 μm.

The LRE was 6.9 μm ± 6.4 μm (Table 3) for the worst
image quali ty within the representat ive data set
(DataSetRandomQual). It should be taken into account that
the intra-rater variance was measured on high-quality data, i.e.
the intra-rater variance as a baseline error could also be higher
for DataSetRandomQual. However, the high standard devia-
tion for DataSetRandomQual is an indicator for a number of
failed registrations (see Fig. 3).

Even with the most sophisticated registration algorithms,
registration failures can occur if image quality is insufficient.
We have thus introduced a semi-automatic approach to detect
and correct failed registrations (Methods) that could reduce
the LRE for DataSetRandomQual to 5.4 μm ± 4.6 μm
(Table 5).

For further evaluation, we relied on an expert vote for each of
250 brain registrations from a larger data set. We employed this
larger data set to evaluate the entire registration framework, i.e.
registration followed by semi-automatic error correction, in a
realistic high-throughput application scenario. According to the
expert vote, only 8 out of 250 registrations were not acceptable,
and there were obvious reasons, such as incompletely scanned
brains, for the registration failures (Fig. 4).

Overall, the proposed registration framework is thus suit-
able for its intended application purpose, and robust in the face
of variable image quality.

Biological Applications

In addition to the quantitative evaluation, application exam-
ples for mapping gene expression patterns serve as a qualita-
tive evaluation of our registration framework. In both biolog-
ical use cases (Figs. 5 and 6), precise overlay within the ex-
pected brain parts and cells was visible for the registered ex-
pression patterns, demonstrating that the achieved registration
accuracy is high enough for addressing biological questions of
brain organization and function in Drosophila larvae.

With the proposed registration framework at hand, it is now
possible to 1) label every neuron in a larval meta-brain where
different neurons have been labelled in different GAL4 lines,
2) quantify how conserved expression patterns are between
individual larvae, 3) estimate neural connectivity through de-
tection of neuron overlap.

Going beyond the alignment of gene expression channels
shown here, the same registration framework could also be
used to align whole-brain brain activity snapshots as enabled
by the CaMPARI calcium indicator (Fosque et al. 2015).

Conclusion

We have introduced and evaluated computational methods to
1) generate a reference template of the larval brain of
Drosophila, and to 2) register individual brains onto the tem-
plate, enabling the mapping of expression patterns from dif-
ferent larval brains into the same reference space.

Our methods allow for a high degree of automation, but
also include a semi-automatic correction for failed registra-
tions. High-throughput processing of large data sets is thus
augmented by manual treatment of problematic cases,

Fig. 6 Registered Gal4 lines
images. a 58E02 (blue), b 64H06
(green), c 30G08 (red) d All three
registered Gal4 line images
merged. All pictures show a
zoom-in on both brain
hemispheres. The three different
GAL4 lines were reported to label
different sets of four central
dopaminergic neurons. The
presynaptic areas of the four
neurons are marked by numbers
(data: Rohwedder et al. 2016)
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facilitating the creation of a curated database of registered
expression patterns with a high standard of quality.

Information Sharing Statement

A software implementation of the registration framework,
larvalign, is available at: https://github.com/larvalign/
larvalign/releases/tag/v1.0

The larvalign (RRID:SCR_015815) distribution contains
open source software: elastix (RRID:SCR_009619, Klein et al.
2010) for image registration, ITK-SNAP (RRID:
SCR_002010, Yushkevich et al. 2006) for image pre- and
postprocessing, and Fiji (Schindelin et al. 2012) for landmark
annotation, image format conversion, and image visualization.

The image data sets are available at https://github.com/
larvalign/Data and https://github.com/larvalign/larvalign/tree/
master/ImageData

Requirements:

– Matlab runtime (available for free at: https://www.
mathworks.com/products/compiler/mcr.html)

– Memory requirements depend on image size. For the im-
age stacks used in this work, we recommend a minimum
of 16GB RAM with at least 8 GB RAM available for the
larvalign software. larvalign will work with less, howev-
er at the cost of longer computing times.
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