Die von VRVis im Kollaboration mit der Wiener Staatsoper entwickelte Virtual Reality-Lösung ermöglicht digitale kollaborative Bühnenbildgestaltungs- und Bauprobenprozesse – unabhängig vom realen Bühnenraum.
Zum Training von KI-Algorithmen braucht es viele Daten. Gerade Rohdaten enthalten jedoch oftmals heikle Informationen. Homomorphe Verschlüsselung bietet hier die Lösung, um sicheres Machine Learning – mit geschützten sensiblen Daten – zu ermöglichen.
Erneuerbare Energien, wie die Wasserkraft, bilden eine wichtige Stütze für eine klimafreundliche Zukunft. Um eine bessere Echtzeitüberwachung und damit Instandhaltung von Wasserkraft-Infrastruktur zu ermöglichen, werden in diesem Projekt innovative digitale Wasserkraft-Zwillinge entwickelt.
Das Projekt Rail4Future arbeitet an der Gestaltung eines digitalen Bahnsystems der Zukunft. Dafür wird eine neuartige und vollständig virtuelle Validierungsplattform für großskalige Simulationen ganzer Bahnstrecken zur Effizienzsteigerung der bestehenden Schieneninfrastruktur entwickelt.
Das Ziel des Anwendungsprojekts IVC Multi ist die Erforschung neuartiger intelligenter Visual Computing-Methoden zur Unterstützung der Entscheidungsfindung in der Automobilindustrie, der Medizin und den Biowissenschaften auf Basis von Ensembles heterogener, multiskaliger und/oder multitemporaler Daten.
Das Ziel des Projekts IVC Stream ist die Erforschung neuartiger Visual Computing-Lösungen für Simulations- und Messdaten.
Dieses Projekt IVC Image zielt auf die Beschleunigung und Automatisierung bildbasierter Entscheidungsfindung mit einem Anwendungsschwerpunkt in der Medizin sowie Recycling- und Qualitätssicherungsprozesse in der Fertigung.
Das strategische Projekt IVC Complex ist der Dreh- und Angelpunkt für die Realisierung des flächendeckenden intelligenten Visual Computing-Ansatzes für Analytik und Modellierung auf der Basis von Ensembles aus dichten rasterbasierten Daten, abgeleiteten Daten und digitaler Einbettung.
Das Forschungsziel von AMASE ist die Entwicklung von Werkzeugen und Methoden zur Aufnahme, Verarbeitung, Visualisierung und Manipulation heterogener, großräumiger Geodaten, bei welchen es sich um die ständig aktualisierte Darstellung der realen Welt in Form eines sich entwickelnden digitalen Zwillings handelt.
Im Projekt Raincloud wird die Simulationssoftware Visdom zur Bewältigung der sich mehrenden Herausforderungen in der Wasserplanung und dem Katastrophenschutzmanagement angesichts des Klimawandels optimiert und erweiter.
Das Forschungsziel des Projekts Ingress besteht darin, die Prozesse von Data Scientists, die mit Industrie 4.0- und IoT-Daten arbeiten, zu beschleunigen, indem eine engere Integration der visuellen Analyse in bestehenden Arbeitsabläufe ermöglicht wird.
Das RAILING-Projekt beschäftigt sich mit der Erforschung und Entwicklung von interaktiven, skalierbaren und vertrauensschaffenden Visualisierungs- und Analysewerkzeugen für die Exploration von zeitabhängigen und komplexen Daten.