Publikationen

zurück
T. Maindl,  C. TraxlerT. Ortner,  G. Paar,  C. Schäfer (2020)

Momentum Enhancement and 3D Visualization of the DARTKinetic Impact

Wo ist die Publikation erschienen?

Lunar and Planetary Science Conference (LPSC) 2020

Abstract

We study deflecting sub-kilometer sized potentially hazardous asteroids that may collide with Earth by deploying a kinetic impactor. The momentum delivered by theimpact of a spacecraft may sufficiently alter the asteroid’s orbit and henceforth avoid an impact with our home world.While near-Earth asteroids of this size are difficult to observe,theyare believed to be very common and to consist of a wide variety of materials with varying bulk densities.Apart from directly transferring momentum from the projectile to the target, post-impact effects of a ki-netic impact will cause material to be ejected from the impact site. This material will carry additional momen-tum and hence increase the target’s momentum after the impact, translating to a momentum transfer efficiency b>1 which is only weakly constraineddue to the un-known target material and porosity.In an effort to con-strain this bfactor, we studythe impact of aspacecraft onto an asteroid similar in size to the secondary body “Didymoon” of the binary near-Earth asteroid (65803) Didymos, the target of NASA’s Double Asteroid Redi-rection Test (DART1) and ESA’s Hera2mission con-cepts.We present results from simulations with our own 3D smooth particle hydrodynamics (SPH) hyperveloc-ity impact code. Depending on the impact angle and tar-get porosity, we find bfactors between 1.15 and 1.93, which is compatible with results obtained in a previous study and by others using various methods.Real-time analysis of the simulated impact process and the result-ing surface features will allow us to align simulation re-sults with observations of the ESA Hera mission, further constraining material and porosity parameters of the mission target.

Forschungsthemen