
Studierstube: An Application Environment for
Multi-User Games in Virtual Reality

Anton Fuhrmann1), Werner Purgathofer2)

1) VRVis center for virtual reality and visualization, fuhrmann@vrvis.at
2) Vienna University of Technology, purgathofer@cg.tuwien.ac.at

Abstract: Studierstube is an operating system for
applications in virtual reality. It supports multiple users
collaborating in a distributed system. While initially
developed for scientific visualization, the generic
approach supports almost any kind of VR application on
a wide range of VR-hardware. Inherent concepts of
Studierstube – like real-time graphics, high-level
interaction methods, multi-user integration, and
distributed execution – make it an ideal environment for
multi-user games in virtual reality. In this paper we
show how Studierstube implements these concepts and
how game programmers can utilize them.

1. Introduction.

Virtual Reality has become something of a buzzword.
While the advent of head-mounted displays and cyber
gloves about 20 years ago created the most impressive
images for hyping this new technology in magazines and
on TV, today – in computer terms almost an eternity
later – almost the same images keep popping up when
VR is discussed in the media. Additional boost for this
popular conception of VR has come from an unexpected
direction: the world-wide web and its commercial
companion e-business have adopted the adjective
“virtual” for almost all of their features. However, the
term “virtual reality” is more justified when applied to
3D computer games. Many of these games aim to
immerse the player in a simulation of reality, even if this
simulation is only limited to the visual output of a
computer screen. Which brings us to our definition of
virtual reality:

“Virtual Reality (VR) is an immersive simulation of
some properties of reality. In most cases these

properties include the simulation of visual aspects and
interactive responses.”

While this definition does not apply to “virtual shopping
on the internet” – which is about as realistic a simulation
as catalog shopping – it certainly applies to most modern
3D games. These games deliver real-time graphics at
about 50 frames per second, implement interaction with
the virtual environment, and simulate physical properties
like gravity, inertia and kinematics.

Game engines, which drive those 3D games, are
commercially available. Some of these are even
affordable for educational purposes [1]. While these
games represent the low end of the spectrum of VR
applications, they are by no means trivially
implemented: the popularity of 3D games has probably
driven more research in computer graphics hardware
during the last years than any other application, and has
allowed prices of 3D hardware accelerators to drop from
workstation levels (>50k€) to mere commodity prices
(approximately 200€).

Nevertheless the images of persons wearing bulky
goggles and manipulating imaginary objects with wired
gloves are deeply ingrained in the popular conception of
VR. Some companies have already tried to
systematically cash in on these expectations: One – now
defunct - company tried to enter the arcade game market
producing VR equipment for location-based
entertainments (LBEs) and supplying their own games
(most famous was the “Dactyl Nightmare”). Disney
Corporation tested the potential of VR in the
entertainment industry in their own amusement parks.
Their installation took the players on a virtual ride on a
flying carpet [5]. Both companies used purpose-built
equipment and specifically designed software.

These two scenarios – commercially available game
engines executing on commodity PCs and application-
specific software executing on custom built hardware –
define a range of sophistication available to VR game
designers. On both ends of this range multi-user games

are available. Local and global interaction of multiple
players via LAN and internet are supported for many
games and seem to be a central feature of interest for
many players. Competitions, teamwork and interaction
with “real” opponents add spice to the experience of
immersing oneself in a fictive world.

Figure 1: Personal displays secure privacy when
playing Mahjongg – the left player (top view) cannot
see his opponent’s tile labels and vice versa (bottom
view)

2. Studierstube – a collaborative virtual
environment

Over the past 5 years, we have developed Studierstube, a
virtual environment “operating system” providing a
comprehensive application programmer interface (API)
for developing virtual reality applications. The initial
proposal [7] centered mainly on the multi-user or
groupware aspect of the system. At first, Studierstube
was mainly applied in scientific settings for visualization
purposes [2]. Further development of the API allowed us
to introduce students to VR application programming,
which resulted in some small game-like applications [3]
and even a complete implementation of the traditional
board game “Mah-Jongg” (Figure 1) [9].

The initially proposed hardware set-up for the
Studierstube environment [7] consists of multiple users
wearing head-mounted displays (HMDs) and interacting
with a pen-and-pad combination called the Personal
Interaction Panel (PIP) (Figure 2). The PIP is a black

plastic panel on which computer-generated images can
be projected. Its position and orientation is tracked by
the system and it can be used as output device or – in
combination with the tracked stylus – as input device by
displaying buttons and sliders.

Figure 2: Two users wearing see-through displays
and adjusting visualization parameters on the
Personal Interaction Panel (PIP)

Studierstube possesses a lot of properties we see as
essential for implementing a multi-user collaborative
virtual environment. Most of these properties are
prerequisites or at least of added value when
implementing multi-user VR games:

real-time graphics Since a virtual environment has to
update the graphics for each user continuously, real-
time graphics are an essential feature of the whole
system. As opposed to a normal graphical user
interface, the ability to deliver graphics in real-time is
one of the basic properties of Studierstube.

collaboration Multiple user can enter the same
environment and interact with each other and the
objects therein. In the context of a game, collaboration
means of course also competition. Studierstube is
mainly based on local collaboration, where all players
are physically in the same location while using the
virtual environment.

augmentation The user sees not only the computer
generated images, but also the real environment. This
mixture of real and virtual reality – called augmented
reality or mixed reality – not only allows us to
integrate real objects in the virtual environment, but
also reduces the users stress or claustrophobia.
Furthermore augmentations allow direct social
interaction between local players, reducing the
necessity for additional communication features, e.g.
communication channels between members of a team
of players.

augmented props Computer generated images
can be displayed over real objects. When the position
and orientation of these objects is tracked by the
system – e.g. using magnetic trackers – the object
becomes a prop in the game. Such a prop may be
integrated in the gameplay, as light saber, magic
mirror or any other object the designer can think of.
One of our primary interaction devices - the PIP - is
such an augmented prop.

privacy The issue of defining what other may see or
not of course only applies to multi-user environments.
While used mostly as a structuring tool for reducing
display clutter when using Studierstube as a groupware
tool, in a gaming environment the ability to hide
certain information from members of the opposing
team can be essential (Figure 1). Imagine playing
poker without privacy for your own hand!

high-level interaction Interaction methods are
implemented using an event distribution mechanism.
High-level interaction methods like widgets (buttons,
sliders, trackball) and 3D windows (Figure 3) allow
for easy design and implementation of structured input
and output.

distributed execution Studierstube contains the
Distributed Open Inventor extension [4], a library of
functions developed to specifically allow for the
distribution of our virtual environment over a network.
Distribution takes place mainly transparent for the
application programmer. This means a sufficiently
clean coded application executes as well in a single or
multi computer set-up.

Figure 3: A simple 3D-painting application. Two 3D
windows contain the paintable volumes and sliders
on the PIP (foreground) can be used two select color
and thickness of the lines.

All of the properties mentioned above resulted not
specifically from game-oriented design of the API, but

from necessities, which arose from elemental groupware
applications. In combination they provide a rich and
versatile base for game programming.

3. Application programmer’s interface

Studierstube’s software development environment is
realized as a collection of C++ classes built on top of the
Open Inventor (OIV) toolkit [8]. The rich graphical
environment of OIV allows rapid prototyping of new
interaction styles. The file format of OIV enables
convenient scripting, overcoming many of the
shortcomings of compiled languages without
compromising performance. At the core of OIV is an
object-oriented scene graph storing both geometric
information and active interaction objects. Our
implementation approach has been to extend OIV as
needed, while staying within OIV’s strong design
philosophy.

The Studierstube API imposes a certain programming
model on applications, which is embedded in a
foundation class, from which all Studierstube
applications are derived. By overloading certain
polymorphic methods of the foundation class, a
programmer can customize the behavior of the
application. Studierstube can execute multiple such
applications at a time. Applications can be dynamically
loaded at runtime, or the system can load a single
application at startup, preferably the method one would
use for a multi-user game.

sghkjkl lksdfj lkjf dg
dfsghhj fhjgjkdflhjlskd jgflkjsdfgkjvakltj
i4trrtg
dfs;lghjksdl;fhkl;sgkdh dfsgkjdsfkjg

dfgdsfghjsdghkljgfhjklg h
khjlkjnlkjl;kfjg;lksdfjbhl;kjsl

ykbjm ll;rth
fhjdlfghkk

kjhjjlknjklj
hjkhfdjkhgseizr

uivhseuityb hiouyi jrt
jhrnthj si

jitosjhimthibmriptmbdnoi

ijniojniojfoijiojhgiojfdghiom
dfoimhn
ifgjosdjigoijdiosfh
dfghklj hh h jhjhjh jkh jh iu iuh uihiuh
uhiuhij h
‘ji hnjn nun nn

kj lkjlkji

window application

PIPsheet
(per user)

sghkjkl lksdfj lkjf dg
dfsghhj fhjgjkdflhjlskd
jgflkjsdfgkjvakltj i4trrtg
dfs;lghjksdl;fhkl;sgkdh
dfsgkjdsfkjg

dfgdsfghjsdghkljgfhjklg
h

khjlkjnlkjl;
kfjg;lksdfjbhl;kjslykbjm
ll;rth
fhjdlfghkk

kjhjjlknjklj
hjkhfdjkh

Context 1

Context 2

Figure 4: An application is implemented as a node in
the scene graph, as are windows and PIP sheets.
This allows for the organization of all relevant data in
the system in a single hierarchical data structure.

To create a useful application, a programmer need only
create a subclass of the foundation class and overload
the 3D-window and PIP creation methods to return
custom scene graphs (Figure 4). Typically, most of the
remaining application code will consist of callback
methods responding to certain 3D events such as a
button press or a 3D direct manipulation event. This
mirrors input concepts common to most graphical user-
interfaces.

4. Hardware Set-Up

Studierstube has been initially developed on Silicon
Graphics hardware and the IRIX operating system, but
general availability of Open Inventor and the rapid
development of inexpensive 3D graphics hardware
mentioned above allowed us to port it to PC hardware
and the Windows and linux operating systems. But the
real challenge has been the integration of a wide range
of the more or less exotic input and display devices
necessary for virtual reality.

4.1 Tracking

Tracking is one of the main issues when implementing
virtual reality. It means measuring the users position in
space in real-time. In most cases the users head position
and orientation in space is used to generate the correct
view of the environment and the users hands are tracked
to enable direct three-dimensional interaction.

Main issues for the application of tracking hardware in
game applications are:

Delay and update rate of the tracking system. Systems
having large delay lengthen response times and low
update rates (<30Hz) make the system miss fast
gestures.

Measurement range of the tracking system. Magnetical
and most optical tracking systems only support
operating areas of a few square meters, making the
implementation of games involving larger playing areas
(virtual soccer) impossible.

Wireless operation is desirable, otherwise the length of
the wires limits the operating area and the wires can
tangle.

Ruggedized hardware is a requirement for most games
running in arcades or other locations open to the public.

For many gaming applications optical tracking like our
own system [10] seems to be a viable solution: it
provides fast, reliable tracking in a sufficient large
operating area for many gaming applications. Its main
disadvantage, the occlusion of tracked markers, is only

of secondary significance when a single user set-up is
desired. Further advantages are its ruggedized
application - the user only carries lightweight retro-
reflective markers, which are inexpensive and hard-
wearing – and the lack of wires.

We support a range of magnetic tracking devices
(ASCENSION, Polhemus), inertial tracking (InterSense)
and our own optical tracking system as positional input
devices for HMDs, stylus and PIP. The necessary
hardware abstraction layer and configuration mechanism
is implemented by our OpenTracker toolkit [6].

Tracked
display Tracked head Desktop

Field
sequential

Sony
Glasstron Virtual Table Fishtank VR with

shutter glasses

Line
interleaved i-glasses

VREX
VR2210
projector

i-glasses w/o head
tracking

Dual screen i-glasses
Protec

Single user
dual-projector
passive stereo
w/head track.

Multi-user dual-
projector passive

stereo

Mono i-glasses
(mono)

Virtual Table
(mono) Desktop viewer

Table 1: All combinations of camera control and
display modes have distinct uses.

4.2 Displays

Studierstube is intended as an application framework
that allows the use of a variety of displays, including
projection based devices and HMDs. There are several
ways of determining camera position, creating stereo
images, setting a video mode etc. After some
consideration, we implemented an OIV compatible
viewer with a plug-in architecture for camera control
and display mode.

This approach, together with a general off-axis camera
implementation, allows runtime configuration of almost
any available display hardware. Table 1 shows an
overview of some devices that have evaluated so far.

Display mode in the leftmost column describes if and
how stereoscopic information is transferred to the
display, whereas camera control in the top row describes
how the viewpoint can be changed by the user: “Tracked
display” means tracking of a head-mounted display,
“Tracked head” means a stationary display is used and
users head position is tracked (e.g. a CAVE or back
projection wall), and “Desktop” means that the user
selects the viewpoint via a mouse and keyboard
interface.

5. Game design in Studierstube

Studierstube supports game design on different levels of
the design process.

Modeling can be performed in any 3D design tool
exporting VRML files [11]. VRML (Virtual Reality
Markup Language) is a standardized file format
implementing polygon based modeling and simple
interaction and animation.

Animation scripting – as mentioned above – can be
implemented directly in the VRML file for simple
animations (e.g. periodic motions, path or keyframe
animation, controlled transformations).

Widgets can be used to implement simple, three-
dimensional interactions like the opening of doors,
placement of objects and so on.

Complex interactions can be implemented in C++,
utilizing the full power and complexity of the
OpenInventor framework together with the Studierstube
3D event distribution mechanism. Typically game-
specific interaction is realized on this level.

Below we describe three simple game implementations
in Studierstube.

Figure 5: Maze - a simple game of skill and
coordination.

5.1 “Maze”

OpenInventor comes with a simple demo application
implementing a classical game of skill. It simulates a
wooden tablet with a simple maze containing holes on
strategic positions (Figure 5). By tilting the panel, one is
able to navigate the ball from a given start point to the
goal.

One of our first game implementations in Studierstube
was an adaptation of this game. The user takes the PIP,
which is virtually overlaid with the maze, and tilts it
accordingly.

The only implementation work was to remove the 2D
mouse event to 3D orientation mapping of the demo and
replace it with the orientation of the real PIP, supplied
by the attached tracker. Some house-keeping functions
for scoring and ending the game finished the conversion
from window-based 2D-application to virtual game
executing in Studierstube.

5.2 “Blockout”

The goal of the old arcade game “blockout” was the
complete removal of all bricks of a wall by bouncing a
ball of them. Originally played in 2D, the player had to
manipulate a paddle in one dimension to direct the ball
to the remaining stones.

We adapted this game for VR by allowing the player to
move his paddle (Figure 6, right) directly via a handle
tracked with sic degrees of freedom. Thereby not only
position, but also orientation of the paddle could be used
to aim the ball.

Figure 6: The game "Blockout" simulates a popular
arcade game testing reflexes. The user tries to
remove all the blocks on the wall by bouncing the
ball of them with the paddle.

Implementation was quite straightforward. Wall and
bricks (Figure 6, left) as well as ball (Figure 6, middle)
were modeled in VRML and copied into the
Studierstube scenegraph, where their position and – in
case of the bricks – visibility could be manipulated by
the application via simple OpenInventor fields. The
geometry of the paddle was bound to the transformation
supplied by the tracker on the real rod. For every time-
step of the applications main loop, collisions between
ball, paddle, and bricks were evaluated, and the state of
the game – ball position and direction, number of bricks,
score – manipulated accordingly. Since OpenInventor
supplies all essential geometric calculations like

intersections between lines, ray object intersections and
so on, the coding was kept at a minimum.

5.3 “Virtual Casino”

Our most sophisticated game environment so far has
been the “Virtual Casino”, a multi-user environment for
virtual gambling. In this game two or more users are
able to play against the bank in a fully functional casino
simulation (Figure 7).

The players use their PIP as purse, distributing their
jetons on the table at will. Bets are commented and
displayed by flyover texts (Figure 7, inset). When all
players have placed their bet, the wheel is started and the
bets are collected. We used a combination of widgets,
procedural animation and specially coded interaction to
implement this game.

Studierstube supplies via its API a general interface to
multiple users, allowing the application programmer to
response to input depending on which user is interacting.

Figure 7: A "Virtual Casino", utilizing widgets with
flyover explanations (inset).

6. Conclusion

Studierstube provides a powerful application
programmer interface, network distribution mechanism
and the necessary device interfaces for the
implementation of virtual reality games. Its main
strengths are high-level interaction methods, an
integrated multi-user concept and the adaptability to
many different hardware set-ups.

Most of the games implemented hitherto are relatively
simple, but we expect this to change with the impending
open source distribution of Studierstube.

Future work will include the integration of a scripting
language (JAVA or Python) to allow for faster
prototyping of game behavior.

7. References

[1] Conitec Datensysteme GmbH, web page,
http://www.conitec.net/a4info.htm

[2] A. Fuhrmann, H. Löffelmann, D. Schmalstieg, M.
Gervautz. Collaborative Visualization in Augmented
Reality. IEEE Computer Graphics & Applications, Vol.
18, No. 4, pp. 54-59, IEEE Computer Society, 1998.

[3] “Collaborative Games in Augmented Reality”, TU-
Wien, http://www.cg.tuwien.ac.at/research/vr/gaming/

[4] Hesina G., D. Schmalstieg, A. Fuhrmann, W.
Purgathofer. Distributed Open Inventor: A Practical
Approach to Distributed 3D Graphics, Proc. VRST ‘99,
London, pp. 74-81, Dec. 1999.

[5] R. Pausch, J. Snoddy, E. Hazeltine, Robert Taylor
and Scott Watson: Disney's Aladdin: First Steps Toward
Storytelling in Virtual Reality. SIGGRAPH 96
Conference Proceedings, pp.193-204, Addison Wesley.

[6] G. Reitmayr, D. Schmalstieg. OpenTracker - An
Open Software Architecture for Reconfigurable
Tracking based on XML. Appeared as a poster in: IEEE
Virtual Reality 2001, Yokohama, Japan, March 13-17,
2001.

[7] D. Schmalstieg, A. Fuhrmann, Z. Szalavari, M.
Gervautz: "Studierstube" - An Environment for
Collaboration in Augmented Reality. Extended abstract
in proceedings of Collaborative Virtual Environments
'96, Nottingham, UK, Sep. 19-20, 1996. Full paper in:
Virtual Reality - Systems, Development and
Applications, Vol. 3, No. 1, pp. 37-49, 1998.

[8] P. Strauss, R. Carey. An object oriented 3D graphics
toolkit, Proc. SIGGRAPH ‘92, pp. 341-347, 1992.

[9] Z. Szalavári, E. Eckstein, and M. Gervautz:
“Collaborative Gaming in Augmented Reality”
Proceedings of VRST'98, pp.195-204, Taipei, Taiwan,
November 2-5, 1998,

[10] Miguel Ribo, Axel Pinz, Anton L. Fuhrmann: “A
new Optical Tracking System for Virtual and
Augmented Reality Applications”, technical report:
http://www.vrvis.at/TR/2001/TR_VRVis_2001_004_Full.pdf

[11] Rikk Carey, Gavin Bell: The Annotated VRML 2.0
Reference Manual. Addison-Wesley, 1997.

