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Introduction 
Visualization as currently practiced is mostly a craft. 
Methods are often designed and evaluated by presenting 
results informally to potential users. No matter how 
efficient a visualization technique may be, or how well 
motivated from theory, if it does not convey information 
effectively, it is of little use. User studies offer a 
scientifically sound method to measure a visualization’s 
performance. Although their use has become more 
widespread, we believe they have the potential for a much 
broader impact. This article describes our experiences with 
user studies. We offer some examples of our own studies, 
talk about the pitfalls and problems we encountered, and 
show how the results were applied to produce successful 
visualizations. Although our main goal is to encourage the 
use of studies in visualization, we recognize that other 
disciplines also offer important insights into visualization 
design, for example, the areas of visual design or the visual 
arts. We conclude by discussing when knowledge from 
these areas might be preferable to a traditional user study. 

Why Conduct User Studies?  
There are many reasons to pursue user studies. Studies can 
be used to evaluate the strengths and weaknesses of 
different visualization techniques. For example, Laidlaw 
compared six methods for visualizing 2D vector fields 
(Figure 1, [7]). His experiments measured user 
performance on three flow-related tasks for each of the six 
methods. The results were used to identify what makes a 
2D vector field visualization effective. 

Studies can show that a new visualization technique is 
useful in a practical sense, according to some objective 
criteria, for some specific task. Even more exciting are 
studies (like Laidlaw’s) that show that a new technique is 
more effective than an existing technique for an important 
task, where the existing technique was previously 
considered the best technique to use. User studies can 
objectively establish which method is most appropriate for 
a given situation. 

A more fundamental goal of conducting user studies is to 
seek insight into why a particular technique is effective. 
This can guide future efforts to improve existing 
techniques. We want to understand for what types of tasks, 
and under what conditions, a particular method will give 
high quality results. This knowledge is critical, since 
different analysis tasks may be best served by different 
visualization techniques. 

A final use for studies in visualization is to show that an 
abstract theory applies under certain practical conditions. 
For example, results from psychophysics or computer 
vision may or may not extend to a visualization 
environment. User studies can be run to test this 
hypothesis. Results can show when the theories hold, and 
how they need to be modified to function correctly for real-
world data and tasks. 

A good starting point in any study is the scientific or visual 
design question to be examined. This drives the process of 
experiment design. A poorly designed experiment will only 
yield results of limited value. Although a comprehensive 
discussion of experimental design is beyond the scope of 

  
Figure 1. Three of six visualization methods compared with a user study. Each method shows the same vector field. User 
performance on different tasks provided quantitative comparisons of the methods. 



this article, we offer some suggestions and lessons learned 
in the Basics of User Study Design sidebar. We also 
describe how we designed experiments to answer important 
questions from our own research. 

Color Sequences  
One reason for conducting studies is to determine if 
theoretical principles derived from other disciplines (such 
as psychophysics) can be applied to visualization design. 
The theory of human color vision has been studied for more 
than a century. Results from this work provide a solid 
foundation for the use of color in visualization. However, 
choosing colors for a particular visualization problem is 
normally very different from the extremely simple displays 
used by experimental psychologists. Experiments are 
needed to bridge this gap between theory and practice. 

Consider the problem of designing pseudo-color sequences 
for scientific images. We have a continuous data field over 
a plane (e.g., an energy distribution or a density 
distribution), and we want to use color to illustrate features 
in the data. Briefly, the relevant theory from human vision 
is as follows. Neural signals from the rods and cones in the 
retina are transformed by neural connections in the visual 
cortex into three opponent color channels: a luminance 
channel (black-white) and two chromatic channels (red-
green and yellow-blue). The luminance channel conveys 
the most information, enabling us to see form, shape, and 
detailed patterns to a much greater extent than the 
chromatic channels. Perception in the chromatic channels 
tends to be categorical. Colors tend to be placed into 
categories like red, green, yellow, and blue. Hues such as 
turquoise or lime green are seen more ambiguously. 
Another relevant theoretical point is that simultaneous 
contrast (the phenomena where perceived color is affected 
by surrounding colors) occurs in all three opponent 
channels. This can cause large errors when viewers try to 
“read” values in the data based on color. 

We can use these theories to draw a number of conclusions 
regarding the design of color sequences: 

1. If we want our color sequence to reveal form (such 
as local maxima, minima, and ridges), or if 
detailed patterns need to be displayed, then a 
sequence with a substantial luminance component 
should be used. 

2. If we want to display categories of information, 
for example, the classification of a terrain into 
regions of different geological type, then a 

chromatic sequence should be used. 

3. If it is important to minimize errors from contrast 
effects, then a sequence should be arranged to 
cycle through many colors. 

4. A general solution can be constructed that cycles 
through many colors (to allow for categorization) 
while continuously increasing luminance. 

Figure 2 illustrates three different color sequences selected 
to emphasize a different aspect of the underlying data. 
Experimental studies have verified that these theoretical 
predictions apply in the case of color sequences [11]. This 
demonstrates the use of well established theories to build 
design guidelines, together with experiments that validate 
the guidelines in an applied setting. 

Shape From Texture 

Numerous applications in scientific visualization involve 
the computation and display of arbitrarily shaped, smoothly 
curving surfaces. A common case is level surfaces in 
volume data. By default, the standard practice is to render 
these surfaces with a smooth, Phong-shaded finish. One 
important question that arises is, “Can we better convey the 
3D shape by rendering the surface as if it were made from a 
subtly textured material, rather than polished plastic?” 
There is ample evidence from psychophysics[9] to suggest 
that certain kinds of surface texture can facilitate shape 
perception (Figure 3, [4]). Unfortunately, the exact 
mechanisms by which surface texture affects shape 
perception, and hence the specific characteristics of texture 
patterns that best show shape, remain unknown. 
Complicating any naïve attempt to use texture to enhance 
shape appearance is the complementary evidence that under 
many conditions texture can camouflage surface shape 
features [2]. 

Through carefully designed experiments, it is possible to 
gain concrete insights into how texture might be used most 
effectively to support accurate shape perception. More 
specifically, we can start to answer the question, “If we 
want to design the ideal texture that best conveys the shape 
of a smoothly curving surface, what should the 
characteristics of that texture be?” User studies conducted 
by visualization researchers are essential to this endeavor 
for several reasons.  

First, traditional vision researchers are primarily concerned 
with elucidating the neural processes involved in the 
perception of shape from texture, and their investigations 
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Figure 2. Three color sequence: (a) a chromatic sequence, good for representing categories; (b) a luminance sequence, good for 
representing form; (c) a combine chromatic-luminance sequence, good for representing both categories and form. 



do not fully encompass the scope of the questions that we 
would like to ask.  

Second, there is a limit to the depth of understanding we 
can derive purely from introspection and informal 
empirical comparison. In the absence of a clear task, 
viewers may adopt differing opinions about which textures 
they believe have the greatest potential to be effective. 
Without concrete experimental evidence, it may be 
impossible to sort out these differences. Furthermore, it is 
rarely the case that complex problems yield simple 
answers. If texturing can help, it is unlikely that any 
method we initially attempt will turn out to be “the best” in 
all cases. We expect to discover complicated interactions 
between surface texture and shading, between texture 
orientation and surface geometry, and between aesthetics 
and convention. We may also find numerous task 
dependencies. This suggests we will need to iterate to 
achieve progressively more effective methods for different 
purposes. These goals are best achieved through carefully 
controlled, quantitative user studies that objectively assess 
the impact of particular texture pattern characteristics on 
the accuracy of performance on specific tasks. 

Perceptual Textures  
One key issue we must address when we design an 
experiment is which conditions to study. As the number of 
conditions (and the interactions between conditions) grows, 
so too does the number of trials needed to properly test 
each condition. Because of this, experiments are often 
restricted to only the most important conditions. 

As a practical example, consider an area where 
visualization and experimentation converge: visual 
perception. Understanding how we "see" the basic 
properties of an image allows us to create representations 
that take advantage of the human visual system. An 
important discovery in psychophysics from the past twenty-
five years is that human vision does not resemble the 
largely passive process of modern photography. A much 
better metaphor is a dynamic and ongoing construction 
project, where the products are short-lived models of the 
external world that are specifically designed for the current 
visual tasks of the viewer. Harnessing human vision for 
visualization therefore requires that the images be 
constructed so as to draw attention to their important parts. 

When we design visual perception experiments, we can 
exploit the fact that participants with normal or corrected-
to-normal vision usually exhibit the same relative 
performance variations during low-level vision tasks. Since 
we are interested in measuring exactly these differences, 
we can combine trials across viewers to increase the 
number of repetitions of each type of trial. 

To demonstrate how these kinds of experiments are 
constructed, we describe a study that investigates the visual 
properties of texture. Previous work in computer vision and 
psychophysics has decomposed texture patterns into a 
number of basic "texture dimensions" like size, contrast, 
regularity, and directionality. We wondered, "Can 
individual texture dimensions be used to display multiple 
attribute values?" Controlled experiments offer a way to 
answer this question. 

Viewers were shown regularly-spaced 20x15 arrays of 
perceptual texture elements (or pexels, as we call them) that 
look like upright paper strips. The pexels allow for the 
variation of multiple texture dimensions including height, 
density, and regularity of placement. Viewers saw the pexel 
grid for a short duration, and were then asked whether a 
group of pexels with a particular target value was present or 
absent. Our experiment tested five different conditions 
selected in part from models of human vision, and in part 
from texture segmentation and classification experiments in 
computer vision. 

We decided to vary target type (target pexels were defined 
by height, density, or spatial regularity), target-background 
pairing (different types of targets were tested, for example, 
both medium and tall targets), display duration (the amount 
of time the pexel array was shown to the viewer), target 
patch size (the number of pexels used as targets), and 
background texture pattern (whether non-target texture 
properties were held constant, or varied randomly). 

Each condition served a specific function. Target type 
allowed us to test three different texture dimensions. 
Target-background pairing searched for differences in 
performance based on the particular value of the target 
dimension. Display duration measured the amount of time 
needed to perform a target detection task. Target patch size 
asked whether smaller texture patches were harder to 
identify. Finally, background texture pattern tested for 
visual interference when secondary texture dimensions vary 
randomly across the display. Even these basic conditions 
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Figure 3. Four examples from a study to test different methods to enhance shape perception: (a) Phong shading (b) one principal 
direction; (c) two principal directions; (d) line integral convolution (LIC) 



produced 108 different display types (three target types by 
two target-background pairings by three display durations 
by two patch sizes by three background patterns). Each 
viewer who participated during the experiment observed 
576 trials from one target type (16 repetitions of a target's 
36 different display types). Eight trials in each display type 
were randomly selected to contain a target patch; the 
remaining eight did not. 

Results from the experiment showed a preference for target 
type (taller targets were easier than shorter, denser, and 
sparser targets, which were themselves easier than irregular 
or regular targets). High accuracy was possible for many 
target types, even for display durations of 150 msec or less. 
Finally, variations in regularity interfered with the 
identification of shorter, sparse, and denser targets (but not 
taller ones). A complete description of the experiment's 
results is available in [3]. These results have been applied 
as guidelines on the use of texture for multidimensional 
visualization. Figure 4 shows an example of using pexels to 
visualize typhoon activity in Southeast Asia. 

Usability Testing and SDOF  

Much of the work presented in this article is designed to 
test basic perceptual features or visualization techniques. 
We have found, however, that visualization applications 
have important aspects that need to be studied in the 
context of the application itself. 

The approach for this type of study is quite different from 
basic perception experiments. Participants must solve a 
relatively complex task, where there is a greater freedom of 
action, and also a higher potential for mistakes. Studying a 
technique in an application setting (as opposed to an 
artificially simple environment) is critical, because we 

cannot assume that low-level results automatically apply to 
more complex displays.  

Comments from participants in such a study are often more 
important than the other data we collect, since they provide 
valuable hints about what is happening during the 
experiment. Close observation of the participants can also 
offer information about experiment details that might not 
have been part of the original hypotheses. 

An example of this type of study is the evaluation of 
semantic depth-of-field (SDOF) [6], a technique for 
guiding a viewer to specific information in an image. 
SDOF is based on the depth-of-field effect from 
photography, where different parts of a picture are in or out 
of focus based on their distance from the focal point of the 
lens. SDOF generalizes this concept. The sharpness of an 
object depends not on its physical position, but on its 
relevance. Viewers are immediately drawn to the sharp 
(i.e., highly relevant) parts of the image, but they can still 
choose to look at other, out of focus objects (Figure 5). We 
designed an experiment that contained both basic 
perception and application components. The perception 
studies produced results that were significant, and close to 
what we expected to find. The application findings, 
however, were much less conclusive. 

During the perception part of the study we showed each of 
our 16 participants 480 separate images (for a total of 7680 
trials). We wanted to see if participants could rapidly locate 
a sharp object in a field of blurred objects. Each image was 
displayed for 200 msec. Participants were then asked to 
point to the quadrant that contained the sharp object. It was 
interesting to see how well participants performed (for one 
test, we recorded an error rate of less than 0.7%), and how 
little they used the breaks that were offered.  

During the application part of the study, one application 
was a map viewer which presented the user with a map 
containing nine layers of information (e.g., roads, 

 
Figure 5: An image from the SDOF study. The image was 
displayed for 200 msec, after which participants were asked to 
point at the quadrant with the sharp object. 

Figure 4: Perceptual texture elements (pexels) used to visualize a 
typhoon striking the island of Taiwan: pexel height represents 
wind speed (taller for stronger winds), density represents pressure 
(denser for lower pressure), and color represents precipitation 
(blue and green for light rainfall to purple and red for heavy 
rainfall; yellow indicates an unknown rainfall amount). 



elevations, and cities). They were asked to position a 
project (e.g., a factory) based on three “very important” and 
three “somewhat important” factors. Viewers could reorder 
the layers by selecting which layer was “on top.” The 
layers were displayed in three different ways: opaque, 
semi-transparent, and SDOF (in SDOF the top layer was 
sharp, and underlying layers were increasingly blurred). 
The hypothesis was that SDOF would make it easier to 
stack the layers in order of importance, and thus answer 
more quickly and more correctly. 

While some useful results were identified during the 
application study, we did not find statistically significant 
results in either response time or correctness. We 
concluded there were two problems with the study. First, 
the maps we used were visually too simple. Second, the 
number of tasks was too small; more examples per viewer 
might lead to significant results. We plan to consider these 
ideas in future work on SDOF. 

Automated Mini-Studies  

A final type of user study is something we are calling an 
automated mini-study. An example is the automatic 
generation of isoluminant colormaps (i.e., colormaps where 
all the colors appear equally bright) via a face-based 
method [5]. Images of faces are used to identify colors that 
are the same perceived brightness as a target gray patch. 
This is easy to do, because we are highly accurate at 
interpreting facial characteristics. In essence, the method 
automatically performs a small user study. Results from the 
study are accessed by a computer program to generate 
isoluminant colors.  

This automated mini-study offers an elegant solution to the 
problem of uncalibrated monitors. It also represents a 
compelling motivation for user studies and their results, 
since it demonstrates the added value that computer science 
can provide. To date, we have used methods from 
psychology to perform tests and analyze results, without 
thinking about ways to improve this testing procedure. 
With an automated study the computer generates results 
automatically, and uses the results directly to improve an 
application in different ways for different users. 

When Do User Studies Help? 
While user studies are an important tool for visualization 
design, they are not the proper choice in every situation. 
Other techniques are available, and experiments do not 
always work as expected. We discuss some of these issues 
in this section. 

Beyond User Studies?  
While formal, quantitative user studies have a clear role in 
visualization, they may not always be the right choice. It is 
important to consider other options before jumping in to 
design and run a user study.  Studies are very time 
consuming to design, implement, run, and analyze. 
Typically, they can only be used to answer small questions, 
and any larger conclusions rely on generalizations that may 
not be valid. Often, measures that are less precise, 
quantitative, and objective may provide sufficient insight 
about a visualization question to allow us to move forward. 

In our investigation of virtual reality tools for 
archaeological analysis [10], we labored long and hard to 
design a good user study to test the system that we had 
developed. But the experimental design eluded us. In the 
end, we videotaped a pair of archaeologists using the 
system to evaluate some of their scientific hypotheses. 
They also generated several new ideas, some of which 
would have been very difficult to generate with other 
analysis methods. This was sufficient to demonstrate the 
utility of the visualization application. 

In another context we can also, perhaps, transcend the 
traditional user study. Artists and designers have been 
creating visualizations for centuries and have evolved very 
effective methods. User studies come from science; in fact, 
they embody the scientific method of posing a hypothesis, 
taking measurements, analyzing them, and iterating to gain 
insight. For the scientific study of low-level vision, the 
methodology works, but as we rise up to the level of a 
scientific visualization application, it may not be possible 
to use these techniques to answer important questions. 

Can we replace some parts of the user testing process with 
expert visual designers? This is a conjecture we can likely 
test (not surprisingly) with a user study comparing results 
of a standard user study with expert visual designer input. 
Preliminary results suggest that visual designers can 
replicate some user study results more quickly and with 
more insight about why differences occur. However, there 
is still much to learn about the space between perceptual 
psychology and visual design. 

When Things Go Wrong  
For some studies, experimental design may lead to results 
that are not statistically significant. For example, in a recent 
study we hypothesized that users would perform differently 
for a visual search task in virtual reality if the virtual 
environment were different. In fact, we found that there 
was no statistically significant difference. Perhaps our 
conjecture was wrong, but it is also possible that our choice 
of task or other parts of the experimental design misled us. 
The virtual environment may really matter in some cases. 
We continue to think about how the virtual environment 
might make a difference, particularly since visual context 
has been shown to be important in 2D visual search tasks. 

Some studies are not published because of null results, or 
because the results are inconclusive or not compelling. 
These are three very different cases that need to be treated 
accordingly. 

Null results are completely natural (albeit usually not 
intended), because they simply show that the original 
hypothesis was not supported by the data. This can be 
because the difference is too small for the amount of data 
collected, but is most often because the hypothesized 
difference is not significant.  This is why the study was 
done in the first place, and should therefore not be 
considered a failure. In visualization, null results cannot be 
published (at least not on their own) easily. But they can 
provide valuable information about which directions of 
research to pursue, and which to abandon. 

Inconclusive results are a much more serious problem. 
They usually mean that there was a design error in the 



study, and that it has to be run again. Usually, however, 
only one part of a study is affected, so the effort is 
considerably smaller the second time. Also, additional 
hypotheses can be tested that might have arisen from the 
successful parts of the study. 

Results that are not compelling can be the result of 
choosing the wrong task or measuring the wrong 
performance quantity. For example, in the “Great Potato 
Search” [1], we chose a 3D visual search task. 
Unfortunately, it was a task that involved looking inward at 
a relatively small model. We believe a task that involved 
searching more broadly around the user might have shown 
important performance differences correlated with changes 
in the virtual context. While we can (and will) go on to test 
that new hypothesis, if we had chosen a different task in the 
first place, we would have been better off. There is a 
tension between proceeding to execute an experiment 
quickly and spending time on design. Practice can help to 
reduce or alleviate these types of mistakes. 

Conclusions 
In this article we have tried to go beyond the current state 
of the art in two ways. The first is to promote evaluating 
visualization methods with user studies. This is being done 
in certain cases, but it is still far from being a standard 
practice in our field. The second is to ask where user 
studies might be useful, and where other techniques might 
be more appropriate (e.g., ideas from the visual arts). 

User studies can improve the quality of our research since 
we normally strive for effective visualizations. Although it 
is difficult to design a good experiment, and the relevant 
skills require substantial study tempered with experience, a 
well conducted study is usually worth the effort. The results 
can ultimately have a considerable impact and potentially 
contribute to the scientific foundations of the discipline. 

Even though we advocate more user studies, we recognize 
that other methods are available that may be more 
appropriate in certain situations. We should be aware of 
these methods, so we can select the best tool for the 
problem at hand. One reason visualization is such a 
fascinating part of computer science is because there are so 
many other fields (e.g., psychology and the visual arts) that 
overlap with our research. 

How to do User Studies (Sidebar)  
While a complete tutorial on user studies is beyond the 
scope of a short article, we hope to share some useful 
lessons we have learned. 

The approach we are advocating is a form of applied 
perception research. Proper use of this technique requires 
an understanding of how to build experiments that include 
human participants. It is challenging to design an 
experiment that will give robust answers to the questions of 
interest. A typical study might ask, “Which of a set of 
prospective methods is most promising?” or, “Do any of 
these methods perform better than the best available 
alternative?” Unfortunately, there are many problems that 
can compromise the validity of the study, or make it 
difficult to draw useful insights from the results. Is the task 
appropriate? Is it possible that participants were using cues 

other than the ones being examined to perform the task? Is 
there a control condition to provide a baseline for 
comparison between different methods? Do all participants 
have a correct and equivalent understanding of the task? 
Are all participants sufficiently willing and able to perform 
the task? Is there a learning effect? 

These problems can be addressed by testing participants for 
adequate spatial acuity, stereo ability, and absence of color 
blindness, by randomizing the presentation order of the 
trials, by using written instructions, by allowing 
participants to rest during the experiment to avoid 
becoming fatigued, by devising robust methods to identify 
when participants are giving “garbage answers”, and by 
asking participants to successfully complete a training task 
before proceeding to the recorded trials. Due to the 
significant costs associated with running an experiment, it 
is often valuable to conduct a pilot study with one or two 
viewers. This allows testing and refining the experimental 
design before starting a full-fledged study with numerous 
participants. 

A wide range of experimental methods may be appropriate. 
At one end of the spectrum is the rigorous application of 
signal detection methods [8]. These can be used to assess 
the detectability of a target structure from a background of 
noise. A more common experiment type is the evaluation of 
a number of different visual features. For example, a study 
might address the question of how well motion parallax, 
stereoscopic depth, and surface texture contribute to the 
perception of surface shape. Such an experiment calls for a 
factorial design with analysis of variance (ANOVA) to 
evaluate the results. 

Another concern is the question of how many participants 
to use. The answer depends critically on what is being 
studied. For psychophysical experiments that measure low-
level visual phenomena it is acceptable to use only a few 
participants. This is because between-viewer variability is 
expected to be low. These experiments contain numerous 
repeated measures (i.e., multiple trials with the same 
experimental conditions) to ensure a sufficient total number 
of trials. If cognitive (as opposed to purely perceptual) 
processes are involved, more participants are normally 
required. Counterbalancing participants based on 
characteristics like gender, age, or experience may also be 
necessary. A detailed description of both participants and 
methods is an essential component for any publication 
involving user studies. 

Finally, researchers at US universities should be aware that 
they may be required to obtain prior approval (or 
exemption) from the Institutional Review Board (IRB) at 
their institution before conducting any work involving 
human subjects; in other countries, similar requirements 
may apply.   

In all cases, consulting with an expert on experiments can 
be invaluable. This will help not only with design, but also 
in applying appropriate statistical analyses to study the 
experimental results. 
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