
MIP-Mapping With Procedural and Texture-Based Magnification

Markus Hadwiger∗ Thomas Theußl† Helwig Hauser∗ Meister Eduard Gröller†

∗VRVis Research Center †Institute of Computer Graphics and Algorithms
Vienna, Austria Vienna University of Technology, Austria

{Hadwiger|Hauser}@VRVis.at {theussl|meister}@cg.tuwien.ac.at

1 Introduction

The flexible programmability of current consumer graphics
hardware at the pixel level allows to use higher-order, e.g.,
cubic, magnification for texture filtering as an alternative to
the hardware-native linear interpolation. Higher-order filter
kernels can either be evaluated procedurally [NVIDIA 2002]
or be stored in texture maps [Hadwiger et al. 2002].

When MIP-mapping is used for minification, the higher-
order magnification filter degenerates to nearest-neighbor in-
terpolation for lower-resolution MIP-map levels (figure 1).
We show how to remove the resulting artifacts (figure 2) by
automatically adapting the magnification filter to the actual
MIP-map level used for a given pixel.

2 Algorithm

Both procedural and texture-based higher-order magnifica-
tion filters require exact matching of input texture samples
to filter weights. In order to achieve this, the exact resolution
of the input texture has to be known, which can actually be
different from pixel to pixel in the presence of MIP-mapping.
On current hardware, it is not directly possible to determine
the MIP-map level used for a given pixel, and thus the actual
per-pixel input texture resolution. For interpolation between
adjacent MIP-map levels, even two input texture resolutions
have to be considered for a single pixel. In order to get access
to all the required MIP-map level information in the pixel
shader, we use an additional four-channel meta MIP-map
that contains information about the MIP-map itself:

• U and V texture coordinate scaling factors for matching
filter width and MIP-map level, specified relatively to
the base level to stay within a [0, 1] range (e.g., 0.25 for
a MIP-map level of size 16 and a base level of size 64).

• U and V texture coordinate offsets to get from one texel
to the next (e.g., 1/64 for a MIP-map level of size 64).

The meta MIP-map is used in the pixel shader for adjust-
ing the interpolated texture coordinates to reflect the per-
pixel input texture resolution. This allows to implement
a GL CUBIC MIPMAP NEAREST minification filter. The same
scheme can also be applied for interpolation between MIP-
map levels, thus yielding a GL CUBIC MIPMAP LINEAR filter.

References

Hadwiger, M., Viola, I., Theußl, T., and Hauser,
H. 2002. Fast and flexible high-quality texture filtering
with tiled high-resolution filters. In Proceedings of Vision,
Modeling, and Visualization 2002, VMV’02, 155–162.

NVIDIA, 2002. Cg effects browser 5.0, bicubic texture fil-
tering example. See http://developer.nvidia.com/.

Figure 1: The input samples used by the reconstruction filter
depend on a proper scaling of the filter kernel with respect
to the input texture, which can only be done if the input
texture resolution is known. When MIP-mapping is used,
the filter kernel is usually scaled for the base level, leading
to an incorrect scaling for lower-resolution levels. For these
levels, this leads to replication of input samples with respect
to the reconstruction filter. The filter effectively uses fewer
and fewer input samples, more and more degenerating to
nearest-neighbor interpolation. For a cubic filter, degenera-
tion to nearest-neighbor already starts two MIP-map levels
away from the base level, i.e., for a resolution mismatch of
4:1, which is depicted here.

Figure 2: Linear interpolation and MIP-mapping (top left).
Cubic reconstruction improves magnification (top right;
MIP-map levels color coded), but degenerates to nearest-
neighbor interpolation at lower-resolution MIP-map levels
(bottom left). Cubic magnification with correct MIP-map
filtering at all levels (bottom right).

