
Copyright © 2003 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

to republish, to post on servers, or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions Dept, ACM Inc., fax

+1 (212) 869-0481 or e-mail permissions@acm.org.

© 2003 ACM 1-58113-861-X/03/0004 $5.00

Texture Mapping for View-Dependent Rendering

Mario Sormann ∗

Christopher Zach †

Konrad Karner ‡

VRVis Research Center

Abstract

View-dependent multiresolution meshes allow smooth in-
teractive animation and optionally time-critical rendering
of huge geometric data-sets and are therefore an impor-
tant tool for large-model visualization. So far most view-
dependent rendering frameworks are restricted to models
with a topologically simple texture mapping. Our ap-
proach overcomes this restriction with a new texturing
technique, which allows texture mapping during the run-
time simplification process. In fact, novel algorithm gen-
erates a graph of textures in a preprocess automatically.
This texture graph is furthermore integrated into a view-
dependent rendering approach. Particularly we perform
a texture validation step for the whole vertex tree, which
is the basic data structure in the framework. At runtime
the vertex tree is traversed and we introduce a texture
proxy map to assure correct texture mapping during view-
dependent rendering. Additionally the new technique al-
lows us to guarantee a constant frame rate. Finally the
results of our method enhancing visual detail of geometric
models are shown.

Keywords: texture mapping, texture generation, texture
atlas, level of detail, multiresolution meshes, real-time ren-
dering.

1 Introduction

Real-time visualization of very large data-sets is a chal-
lenging problem in computer graphics, especially it is a
growing domain with an important number of applica-
tions. Example areas are architectural visualizations, vir-

∗sormann@icg.tu-graz.ac.at
†zach@vrvis.at
‡karner@vrvis.at

tual environments and flight simulations. However, the
bottleneck of these applications is the rendering perfor-
mance. To guarantee interactive or even real-time render-
ing view-dependent rendering of multiresolution polygo-
nal meshes can be utilized. View-dependent rendering of
multiresolution meshes is sometimes referred as dynamic
levels of detail. These multiresolution meshes can be gen-
erated automatically using well known simplification tech-
niques. Approaches of this type update the displayed mesh
according to the current viewing parameters. These up-
dates are essentially refinements or coarsening of local
patches of the mesh. A single refinement or coarsening
step applied to a textured mesh may create regions with
potentially much clamping artifacts. To avoid these arti-
facts and consequently meshes with very poor visual qual-
ity, a texture atlas [12] (i.e. a set of textures mapped onto
patches) can be utilized. Our work describes primarily the
integration of texture atlases into a view-dependent render-
ing framework. Several algorithms generate such atlases
for multiresolution meshes, but normally approaches of
this type are not suitable for real-time rendering, because
they assume simple textured models with perhaps one or a
limited number of texture images. In a real-time rendering
framework one has to handle richly textured multiresolu-
tion representations with several associated texture images
and texture coordinate discontinuities.

In this paper we present a general dynamic level of de-
tail framework, which can handle textured view-dependent
multiresolution meshes. We use the view-dependent
simplification (VDS) framework [10] to provide view-
dependent rendering. Without a convenient texture hierar-
chy the simplification process is very limited [17], there-
fore it is necessary to utilize a kind of texture atlas.

In a preprocessing step the texture hierarchy (graph) is
generated, i.e. several textures are replaced by one with
a lower resolution. The obtained texture is mapped on a
larger patch of the mesh. After several iterations we obtain
a graph of textures with different resolutions and geomet-
ric extents. Furthermore we integrate this texture hierar-
chy into the VDS framework, in particular we validate a
suitable texture set for each possible triangle. At runtime
appropriate textures are selected for each visible triangle.
Consequently we are able to handle richly textured view-
dependent multiresolution meshes and we reduce clamp-
ing artifacts due to the simplification process.

131

2 Related Work

2.1 View-Dependent Multiresolution
Meshes

The generation of view-dependent multiresolution meshes
is a very active research area in recent years. A very
popular approach is the view-dependent progressive mesh
concept proposed by Hoppe [7] and its variants [4, 16].
In these approaches the key operation to locally modify
the displayed mesh comprise the edge collapse, which re-
places two vertices in the source mesh by one, and its in-
verse operation, the vertex split. One edge collapse usu-
ally removes one edge and several triangles in the current
mesh. The sequence of edge collapses should be carefully
chosen, because the overall shape of the model has to be
preserved. Several metrics to rank edge collapses were
proposed [5, 6].

Many researchers observed that the linear sequence of
edge collapses can be replaced by a more general par-
tial ordering, which can be encoded as a vertex tree. Our
LOD-framework is based on VDSlib1, which is the im-
plementation of the approach proposed by Luebke and
Erikson [10]. They introduced a generalized vertex tree,
which can incorporate other mesh simplification methods
than edge collapses. The refinement operation is vertex un-
folding, which replaces one vertex by several new vertices.
The inverse operation clusters (folds) a set of vertices into
one representative vertex. These local mesh operations in-
sert or remove vertices, and additionally displayed trian-
gles may change their shape. The vertex tree is created
during a preprocessing step and at runtime the nodes in
the tree can be separated into three categories, which are
illustrated in Figure 1. Rendered triangles of the currently
displayed mesh belong to active nodes. Boundary nodes
comprise the corners of displayed triangles, whereas inac-
tive nodes do not contribute to the displayed mesh at all.
For each frame, the vertex tree is traversed and the actual
rendered mesh, in particular the active nodes are selected
according to some error metric.

2.2 Texture Mapping for Multiresolution
Models

Several authors discussed the problem of texture map-
ping in combination with multiresolution meshes. Most
approaches assume a 2D parameterization of the original
model to interpolate texture coordinates during simplifica-
tion. Sander et al. [12] created a global texture map called
texture atlas from the mesh texture information. With the
help of this texture atlas a progressive mesh sequence is
constructed, such that the texture deviation caused by the
simplification procedure is minimized.

Garland and Heckbert [5] explicitly included material
properties in their quadric error metric. Cohen et al. [3]

1see http://vdslib.virginia.edu

Figure 1: A schematic view on the vertex tree. The trian-
gles associated with (dark shaded) active nodes are actu-
ally displayed. Boundary nodes comprise the corners of
rendered triangles.

proposed a linear mapping function for each simplifica-
tion and utilized this function to measure deviation of the
current surface from the previous level of detail and fur-
thermore to compute appropriate texture coordinates.

Our texture hierarchy generation method (described in
Section 3.1) extends the approach proposed by Hoppe [8].
He introduces a block based simplification scheme, which
constructs a progressive mesh as a hierarchy of block re-
finements. Initially the geometry is simplified such that
generated triangles stay within the texture borders at the
highest level until no further simplification is possible. Af-
terwards the next coarser texture is used to allow further
edge collapses. These steps are repeated until the root tex-
ture is reached. In Hoppes work the texture hierarchy con-
sists of a quad-tree like texture tree.

2.3 Impostor for Real-Time Visualiza-
tion

The idea of using image-based representations to replace
complex geometric objects in virtual environments was
first introduced by Maciel and Shirley [11]. A particu-
lar object is rendered into a texture map with transparency
information and then mapped onto a quadrilateral placed
into the scene instead of the object. The resulting quadri-
lateral is called impostor. In other approaches [9, 13] im-
ages of different distance are cached and replace complex
geometry according an image discrepancy criterion.

Sillion et al. [14] introduced a method based on the
general level of detail approach. The method utilizes im-
postors for distant scenery in combination with three di-
mensional geometry to correctly model large depth effects
and therefore reducing the parallax problem. Additionally
such impostors, often called 3D impostors, can be used
for a much larger number of viewpoints, which further in-
crease the visual quality of the scene.

A similar approach for rendering 3D geometric models
at a guaranteed frame rate is proposed by Aliaga and Las-

132

tra [1]. A preprocessing algorithm stores the 3D model in
a hierarchical data structure (e.g. octree) and at each grid
point a well defined number of images is created to repre-
sent a subset of the model. The runtime system determines
images from a grid point closest to the current viewpoint
and a render engine displays these images surrounded by
geometry.

A rather new impostor enhancement is the use of point-
based impostors instead of regular textures [15]. Such im-
postors allow longer cache life, this means that, similar to
3D impostors, they are visually correct for a larger number
of different viewpoints.

3 Texture Mapping for View-
Dependent Multiresolution
Meshes

In this Section we present a texture mapping technique for
view-dependent multiresolution meshes in a real-time ren-
dering framework. As already mentioned our approach
is based on freely available VDSlib library. We inte-
grate texture mapping into this view-dependent simplifi-
cation framework, avoiding clamping and other rendering
artifacts. Our approach consists of a preprocessing com-
ponent which automatically generates a graph of textures.
This graph is used for the texture validation pass in our
multiresolution framework. At runtime we select the most
suitable texture for each visible triangle.

3.1 Automatic Texture Hierarchy Gener-
ation

Here we address the question how to automatically create
a graph of textures from a set of well defined and struc-
tured texture rectangles. This means that in case of terrain
textures a quad-tree structure can be used to accomplish
this type of problem. But for more complex scenes the
generation of a texture hierarchy can not be done in such a
simple way.

In our approach we replace two textures by one with a
lower resolution and a larger geometric extent (i.e. the
resulting texture can be mapped on all triangles associ-
ated with the source textures). Furthermore we regard
textures as rectangular images orthographically projected
onto mesh patches. In order to generate a texture graph,
we have to perform more pairwise texture merges through
every iteration. Hence we define a metric to rank all pos-
sible texture merges.

In fact, our texture metric is represented as a tuple of
some parameters. Thus we get for every pair of textures
a score according to the defined metric. In every iteration
of the texture hierarchy generation those pairs of textures
with highest scores are merged. During the iteration pro-
cess textures are replaced by the combined one. The tex-
ture generation terminates, when the best possible texture

score is less than some predefined threshold. As output,
the algorithm provides a graph of textures with increasing
coarser resolutions. Figure 2 illustrates the simplification
sequence.

Finally this texture graph, the textures and important
texture parameters are stored for further use. It should
also be mentioned that the resampling of coarser textures
is done with OpenGL.

C1 C2

C3 C4

(a) Original tex-
ture planes

C12

C13

(b) Best and additional
candidate

C13

C2

C4

(c) After first it-
eration

C1234

(d) After last it-
eration

Figure 2: An example for a simple texture generation se-
quence.

3.1.1 Texture Metric

The basic criterion and procedure to generate a texture hi-
erarchy is described in [17].

In order to define some metric to rank texture merges,
every texture is represented as a tuple of some parameters.
These parameters are made up of a volume enclosing the
triangles associated with this texture, called the geometric
hull H , the center of projection of the texture �c, the direc-
tion of projection �d and finally �u and �v are the right and
the up vectors of the texture (see Figure 3). These val-
ues induce an orthographic projection and consequently a
projection matrix.

The score function is formulated in terms of these tex-
ture parameters and based on some observations:

• Relative orientation of textures: the directions d of
two merge candidates should be similar (collinear) to
avoid textures with very poor visual quality.

• Loss: Textures are rectangular, thus there is usually
some loss, if one has to merge two arbitrarily ori-
ented textures. Further, a large loss usually implies
low visual quality.

• Absolute texture size: Also the size of the new texture
is important for the resulting score function.

133

Up−Vector

Direction

Geometric Hull

Center

Right−Vector

Figure 3: Basic texture characteristics. Geometric hull H ,
center of projection �c, direction �d and right and up vectors
�u and �v of the texture are the basic parameters to describe
a single texture.

• Depth distance: Additionally, in consideration of the
merge result, it is not useful to merge textures with
very distant texture hulls.

All the above aspects are covered by the score function,
assigning higher scores to potentially good texture merges.
In fact, the score function sf is a linear combination of
terms quantitatively evaluating the mentioned items

sf = w1 ∗ s1 + w2 ∗ s2 + w3 ∗ s3 + w4 ∗ s4

where w1...4 are the weights and s1...4 are the scores of
introduced terms.

3.1.2 Texture Graph Details

Each node in the texture graph includes basic texture pa-
rameters, which are used in our extended VDS framework
for the texture validation process and the texture mapping.
These parameters include the texture projection matrix,
which is used for the texture validation process, the two
texture coefficients for automatic texture coordinate gen-
eration and the direction of the texture plane. Furthermore
to produce synthetic scenes with several same textures
mapped onto different parts of the mesh, it is necessary
to introduce a texture name as well as a texture identity.
Figure 4 gives an example of a texture graph, produced by
the texture generation algorithm.

3.2 Texture Validation

The vertex tree as illustrated in Figure 5, created during
a preprocessing stage, is the fundamental data structure
of the VDS framework. Leaf nodes of the tree specify
single vertices in the original model and interior nodes are
representative vertices of its successor nodes. Every node
stores geometric data, its children and a list of associated
triangles, the so called subtris. To support texture mapping
it is necessary to implement some extensions in the data
structure of the vertex tree. The essential internal structure
is the so far mentioned sub-triangles. They are used to
validate suitable textures for each node in the vertex tree.

Original texture set

Name

Identity

Projection Matrix

Direction

S−Coefficient

T−Coefficient

Texture Texture Texture Texture

Texture

Texture
Node 5

Node 6
Texture

Texture
Texture
Node 8

Texture Node 6

Node 2 Node 3

Node 7

Node 0

Node 4

Node 1

Figure 4: A small texture graph example. Nodes cor-
respond to texture images and arrows represent texture
merge steps. The nodes in the bottom row represent coarse
texture covering large portions of the mesh.

3.2.1 The Validation Process

In our implementation the texture validation process is per-
formed offline as a preprocessing step. In Figure 5 some
nodes are emphasized with a rectangle. These nodes are
possible corners for the sub-triangle V 1V 2V 3. Addition-
ally each sub-triangle has its own original texture. In order
to discover which textures stored in the texture graph are
suitable candidates for a node, it is necessary to check all
possible variations of corners (i.e. all shapes of triangles
possible at runtime). Hence we keep two of three corners
constant and the third one is varied according to the valid
path in the vertex tree. After all three corners are tested, we
obtain a set of possible triangles. Now the algorithm de-
termines which triangles from this set exceed the primary
texture, such that texturing this triangle yields to clamping
artifacts. For these critical triangles we use a depth-first-
search to acquire all valid textures in the texture graph.
We extend the data structure of the vertex tree to provide
these valid textures for the runtime management. Hence
the valid textures for each sub-triangle are inserted into
the set of allowed textures of the owner node.

In case of no crossing texture borders the original tex-
ture is well suited and no new texture is registered to the
node structure. The algorithm stops when all sub-triangles
are processed. Now the vertex tree provides for each sim-
plification possibility a set of suitable textures. To concre-
tise these ideas the pseudo-code in Section 3.2.3 gives an
overview of our implementation.

3.2.2 Data Structure Extensions

In our approach we implement three essential extensions
in the data structure of the VDS-framework. For texture
handling we first need a general structure for them. This is
accomplished with the following basic structure:

134

V3

V2
V1

Original vertices

Root node

V1

V3V2

subtri

Figure 5: The vertex tree. Leaf nodes correspond to origi-
nal vertices in the source mesh, whereas interior nodes are
generated by the mesh simplification procedure. At run-
time the original corners of the highlighted triangle can be
replaced by one of its (emphasized) ancestor nodes.

struct RuntimeTexture {
string texturename;
unsigned int textureid;
float svec[4];
float tvec[4];
Vector3f direction;
Matrix4f projection;

};

Consequently the RuntimeTexture stores the relevant pa-
rameters acquired from the texture graph. Further, the tri-
angle structure must be extended with a texture identity pa-
rameter, thus we are able to obtain which textures are used
for rendering. Finally, as mentioned above, each node of
the vertex tree is upgraded with a set of suitable textures:

struct RuntimeNode {
vds relevant parameters;
...
RegTextures rtextures;

};

With these additional data we are able to select the most
suitable textures for each frame at runtime.

3.2.3 Implementation

In this section we show the straightforward pseudo-code
for the texture validation process, which is currently im-
plemented in C++.

3.3 Runtime Management

This section describes the texture mapping process during
runtime. As in Section 2.1 already mentioned at runtime

Algorithm 1 The texture validation process
Require: vertex tree, texture graph

1: for all subtris in the vertex tree do
2: find all possible variations for the current subtri
3: for all possible triangle variations do
4: project the triangle to the the current texture rect-

angle according to the projection matrix
5: check the normalized device coordinates
6: if one of the triangle corners cross the texture

border then
7: find new texture options
8: register the new textures to the current node

structure
9: end if

10: end for
11: end for

the vertex tree is traversed in a top down order and active
nodes are determined according to some screen error met-
ric. Subtris of active nodes comprise the triangles selected
to render. In the framework of Luebke and Erikson [10]
triangles are rendered directly whereas in our approach
we implement several significant extensions to the com-
mon framework, which will be explained in the following
Sections. Furthermore we utilize a texture proxy map to
ensure correct mapping of textures during the simplifica-
tion.

Texture Proxy Map The texture proxy map is a direct
mapping from the original textures to the textures which
are used for the current refinement. At the beginning the
texture proxy map is the identity (Figure 6a). Obviously
if this map is consistently updated, then we can guarantee
correct texture mapping during simplification (Figure 6b).

Texture selection In Section 3.2.1 we mentioned that
a set of valid textures is inserted into the nodes of the
vertex tree. Now, at runtime we need to select the best
possible texture for the current viewpoint in this texture
set. Therefore the viewing direction needs to be compared
with the normal vector of the texture rectangle, to select
the most suitable texture. On the other hand, when the
set of suitable textures in the processed node is empty, the
original texture is valid and used for the texture mapping
at runtime.

After the most convenient texture is determined, we per-
form a breadth-first search in the texture graph to acquire
the common texture ancestor of the new texture and the
texture which is already used in the texture proxy map.
This common texture is further used to update the texture
proxy map.

Algorithm 2 provides the pseudo-code for the runtime
management.

135

texture
id 0

texture

texture

texture

texture

texture

texture

texture

id 1

id 2

id 3 id 3

id 0

id 1

id 2

texture texture texture texture

Corresponding mesh

 id 0 id 1 id 2 id 3

(a) Initial texture proxy map

texture
id 0

texture

texture

texture

texture

texture

texture

texture

id 1

id 2

id 3 id 3

id 2

texture texture

Corresponding mesh
id 4

id 4

texture
 id 4 id 2 id 3

(b) Updated texture proxy map. A triangle linked with texture 0
would be rendered with texture 4 in this case.

Figure 6: The texture proxy map that is maintained at run-
time. This mapping assigns actual textures to original tex-
ture ids.

View Frustum Culling View-dependent refinement
assigns higher resolution to the parts of the mesh inside
the viewing frustum and the lowest possible resolution
to invisible portions. If all triangles are considered for
texture selection, invisible but coarse parts of the mesh
force coarser textures to be selected. Thus a view frustum
culling has to be done before selecting suitable textures.
Otherwise, the texture becomes coarser if a user zooms
closely to some mesh detail. This situation is illustrated
in Figure 7, where all active triangles are considered for
texture selection. Without view frustum culling the light
shaded texture is erroneously selected instead of the dark

Algorithm 2 Texture selection during runtime
Require: Active triangles

1: for all active triangles do
2: perform the view frustum culling
3: end for
4: for all visible triangles do
5: if registered texture set is empty then
6: use original texture
7: else
8: find the most suitable texture
9: update texture proxy map

10: end if
11: end for

shaded ones.
Therefore texture selection must only be based on visi-

ble triangles instead of all active triangles. This reduction
is achieved by culling active triangles against the viewing
frustum. Determining visible triangles can be accelerated
by exploiting the spatial hierarchy induced by the vertex
tree: if the bounding sphere of a node is entirely inside
or outside the viewing frustum, the visibility status of all
subtris is known immediately. Otherwise the subtris must
be checked for visibility individually.

View Frustum

Figure 7: View frustum culling. Without view frustum
culling before the texture selection, the light shaded tex-
ture is used instead of the dark shaded ones.

Rendering After the texture selection and the view
frustum culling the actual mesh with the proper texture is
rendered. Initially the list of active triangles is sorted with
respect to the associated proxy texture to minimize graph-
ics state changes. Whenever a set of triangles with a com-
mon texture needs to be rendered, the appropriate coeffi-
cients for automatic texture coordinate generation stored
in the proxy are passed to the graphics library.

4 Results

The majority of the material we will present is focused on
testing our approach on artificial and real data-sets. Fur-
thermore we will analyze the performance of our method.
Note, that all results reported were obtained on a 666Mhz
Intel processor with 512MB main memory and a GeForce2
GTS with 32MB graphics memory.

Three data-sets (artificial and real) were tested to span
several model categories (Figure 8 to Figure 10) and to
cover a large range of texture counts.

Model Triangles Original
Textures

Complete
Texture
Set

Estimated
Space
(MB)

Grid 32768 16 39 5.1
Sphere 5120 20 72 3.0
Alley 24576 12 29 13.8

Table 1: The names, complexity and the texture memory
consumption of the tested models.

136

One of the artificial data-sets consists a Grid of texture
patches (see Figure 8). Typical terrain datasets are topo-
logically similar to such regular grids. As expected, tex-
ture mapping of such meshes produces no texture distor-
tions or other rendering artifacts, thus we obtain a smooth
transition between the representations (Figure 8a-d).

The correct texture mapping for complex 3D models is
shown on a Sphere. Figure 9 illustrates several approxima-
tions applied on a sphere. We obtain a high visual quality
for the simplified sphere, compared to the original mesh.

Also the approach has been used for texture mapping
in urban environments, particularly in virtual city models.
Figure 10 shows two mesh approximations of an typical
Alley. The face count of the simplified mesh is relatively
low, with respect to the original mesh of nearly 15,000
faces. In contrast to the face count the visual quality of the
simplified mesh is slightly reduced.

It should be also mentioned that the underlying geome-
try for the original model is synthetically subdivided using
a common subdivision algorithm.

4.1 Performance

Table 2 summarizes the validation performance of our ap-
proach on all these models. As expected, the validation
performance depends mainly on the triangle count of the
models.

Model Triangles Complete
Texture Set

Validation
Time (ms)

Grid 32768 39 496.938
Sphere 5120 72 75.697
Alley 24576 29 409.546

Table 2: Texture validation performance for the test mod-
els.

Figure 11 shows a comparison between the overall ren-
dering time and the texture selection time for a defined
path applied on the alley. It can be clearly observed that
the texture selection requires only 10 to 15% of the overall
rendering time. We should also mention that the texture
selection is performed for a complete texture set of 29 tex-
tures. But for thousand of textures the time spent in texture
selection will be probably more significant and should be
therefore accelerated.

5 Conclusion and Future Work

In this work we presented the integration of general tex-
ture mapping into a view-dependent rendering framework.
Textures for the actual displayed mesh are chosen from a
pool of possible candidates covering various patches of the
mesh at different resolutions. Criteria for runtime texture
selection incorporate geometric validity and visual fidelity

for the current viewing parameters. To our best knowledge
this approach is the only framework that handles richly
textured multiresolution representations with several asso-
ciated texture images and texture coordinate discontinu-
ities.

Our approach represents a smooth transition between
highly detailed objects in the near field and coarse
impostor-based geometry in the far field. Therefore it
can be seen as a natural generalization of traditional level
of detail and impostor approaches with only slightly in-
creased memory and performance costs.

Future work will address several aspects:

• The visual quality should be enhanced, e.g. by uti-
lization of more sophisticated metrics to rank texture
merges [2].

• The numbers of generated textures should be mini-
mized to save memory bandwidth and to allow faster
streaming over a network.

• Runtime texture selection must be accelerated to han-
dle very large scenes with possibly thousands of tex-
tures. For these scenes the time spent in texture se-
lection will be probably significant. An incremental
approach similar to the method proposed in [18] to
refine the selected textures can be beneficial.

6 Acknowledgements

This work has been done in the VRVis research center,
Graz and Vienna/Austria (http://www.vrvis.at), which is
partly funded by the Austrian government research pro-
gram Kplus.

References

[1] Daniel G. Aliaga and Anselmo Lastra. Automatic
image placement to provide a guaranteed frame rate.
In Proceedings of SIGGRAPH ’99, pages 307–316,
1999.

[2] Alexander Bornik, Peter Cech, Andrej Ferko, and
Roland Perko. Beyond image quality comparison.
Technical report, Technical University Graz, 2003.

[3] Jonathan Cohen, Dinesh Manocha, and Marc Olano.
Simplifying polygonal models using successive map-
pings. In Proceedings of IEEE Visualization ’97,
pages 395–402, 1997.

[4] J. El-Sana and A. Varshney. Generalized view-
dependent simplification. In Proceedings of EURO-
GRAPHICS ’99, pages 83–94, 1999.

137

[5] Michael Garland and Paul S. Heckbert. Simplifying
surfaces with color and texture using quadric error
metrics. In Proceedings of IEEE Visualization ’98,
pages 263–270, 1998.

[6] Hugues Hoppe. Progressive meshes. In Proceedings
of SIGGRAPH ’96, volume 30, pages 99–108, 1996.

[7] Hugues Hoppe. View-dependent refinement of pro-
gressive meshes. In Proceeding of SIGGRAPH ’97,
volume 31, pages 189–198, 1997.

[8] Hugues H. Hoppe. Smooth view-dependent level-of-
detail control and its application to terrain rendering.
In Proceedings IEEE Visualization ’98, pages 35–42,
1998.

[9] Stefan Jeschke and Michael Wimmer. Textured depth
meshes for real-time rendering of arbitrary scenes. In
Eurographics Workshop on Rendering ’02, 2002.

[10] David Luebke and Carl Erikson. View-dependent
simplification of arbitrary polygonal environments.
In Proceedings of SIGGRAPH ’97, volume 31, pages
199–208, 1997.

[11] Paulo W. C. Maciel and Peter Shirley. Visual naviga-
tion of large environments using textured clusters. In
Symposium on Interactive 3D-Graphics, pages 95–
102, 1995.

[12] Pedro V. Sander, John Snyder, Steven J. Gortler,
and Hugues Hoppe. Texture mapping progressive
meshes. In Proceedings of SIGGRAPH ’01, pages
409–416, 2001.

[13] Gernot Schaufler and Wolfgang Stürzlinger. A three
dimensional image cache for virtual reality. In Pro-
ceedings of EUROGRAPHICS ’96, pages 227–236,
1996.

[14] François Sillion, George Drettakis, and Benoit
Bodelet. Efficient impostor manipulation for real-
time visualization of urban scenery. In Proceedings
of EUROGRAPHICS ’97, pages 207–218, 1997.

[15] Michael Wimmer, Peter Wonka, and Francois Sil-
lion. Point-based impostors for real-time visualiza-
tion. In Proceedings of the Eurographic Workshop
on Rendering ’01, pages 163–176, 2001.

[16] Julie C. Xia and Amitabh Varshney. Dynamic view-
dependent simplification for polygonal models. In
IEEE Visualization ’96, pages 335–344, 1996.

[17] Christopher Zach and Joachim Bauer. Automatic tex-
ture hierarchy generation from orthographic facade
textures. In Workshop of the Austrian Association
for Pattern Recognition ’02, 2002.

[18] Christopher Zach and Konrad Karner. Fast event-
driven refinement of dynamic levels of detail. In
Proceedings of the Spring Conference on Computer
Graphics ’03, 2003.

138

(a) Close up of the base mesh (2178 triangles) (b) Simplified mesh (350 triangles)

(c) Intermediate mesh (74 triangles) (d) The coarsest mesh (18 triangles)

Figure 8: Images obtained from an interactive flight over the artificial grid dataset. Correct texture mapping of all mul-
tiresolution representations can be guaranteed.

(a) High resolution mesh (3976 triangles) (b) Simplified mesh (523 triangles) (c) Coarse mesh (108 triangles)

Figure 9: Snapshots from three simplification steps applied on a sphere. In spite of a drastic geometric simplification a
smooth transition in the visual quality between (a) and (c) can be obtained.

139

(a) A scene from an simplified alley in an urban environment (613
triangles)

(b) Same scene as (a) but rendered with the highest possible res-
olution (14343 triangles)

Figure 10: These two snapshots illustrate an example rendering of facade textures which are normally used in urban
environments. Despite the drastic simplification of the geometric resolution in (a) and (b), the visual quality is only
slightly different.

Figure 11: Overall rendering time and texture selection time for the alley model applying a defined path. The complete
texture set consists of 29 textures.

140

