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Abstract. In this paper we discuss reliable methods in the field of finite
precision geometry. We begin with a brief survey of geometric computing
and approaches generally used in dealing with accuracy and robustness
problems in finite precision geometry. Moreover, two reliable geometric
algorithms based on these approaches are presented. The first one is
a new distance algorithm for objects modeled in a common octree. The
results are exact and include good bounds on all subdivision levels. Using
smoother enclosures on the highest level, a link is provided to well-known
algorithms for convex and non-convex objects.
We discuss the general concept and advantages of special bounding vol-
umes with representations directly connected to the representation of
the enclosed object: Implicit and parametric Linear Interval Estimations
(I)LIEs are roughly speaking, just thick planes enclosing the object. They
are constructed using Taylor models or affine arithmetic. The particu-
lar structure of (I)LIEs allows the construction of effective hierarchies of
bounding volumes and the development of effective intersection tests for
the enclosed object with rays, boxes and other LIEs. In addition, a fast
reliable intersection test for two LIEs is presented in detail.

1 Introduction

Geometric algorithms are widely used in robotics, computer graphics, computer
aided design or any simulations of a virtual environment. Common representa-
tions for objects are constructive solid geometry models (CSG-models), bound-
ary representation models (B-Rep-models) or tessellations (e.g. octrees). Single
surfaces or surface patches are mostly represented in parametric or implicit form,
or as subdivision surfaces. The choice of the appropriate representation is de-
pendent on the application.

Because exact modeling of an object is very time consuming and can be
carried out only in certain special cases, polyhedral structures are recommended
for path planning in robotics. Octrees are often used for scene reconstruction



2 Katja Bühler et al.

Euclidean distance

(non-)convex obstacles
a sensor and an object

distance
computation

efficient speed up

modeling of a robot environment
intersection computation

offsets

collision avoidance
contact analysis

Fig. 1. Applications of distance computation.

from sensor data. Parametric surfaces are an important tool for objects which are
located near the robot. In the field of contact analysis and path planning, efficient
distance and intersection algorithms play a decisive rule in most simulations.

Distance algorithms are most frequently used in robotics (see Figure 1) and
also in computer games not only to determine the distance between two obsta-
cles in the environment of a robot or between a sensor point and an object,
but also to obtain the results of difficult geometric comparisons without actually
doing them. If we know that two surfaces are too far apart to intersect, we do
not need the more expensive intersection calculations. Here bounding volumes
are a common technique, which relies on a hierarchical model representation of
the two surfaces using axis-aligned bounding boxes (AABBs), oriented bounding
boxes (OBBs), parallelepipeds, discrete-orientation polytopes (DOPs), spheres,
or new concepts of parameterized bounding volumes such as Linear Interval
Estimations (LIEs) [7] or Implicit Linear Interval Estimations (ILIEs) [8]. Hier-
archies of bounding volumes provide a fast way to perform collision detection
even between complex models. The determination of the offset to a surface is
another example of a problem which can be formulated in terms of distance
computation. Hierarchical algorithms are also applied in computer graphics to
perform point- or box-surface incidence tests and ray-surface or surface-surface
intersections. Here, it is of interest not only to test whether an intersection exists,
but also to compute the (exact) intersection set. Some applications for such al-
gorithms are, for instance, the rendering of implicit and parametric surfaces, the
voxelization of implicit objects, the computation of surface-surface intersections,
and visibility computations.

The methods mentioned here represent only a small selection of the geometric
algorithms and structures commonly applied in the field of object modeling,
contact analysis and path planning.

Usually, they are sophisticated algorithms designed and proven to be correct
for objects defined over the domain of real numbers which can only be approxi-
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mated on the computer. Due to rounding errors many implementations of geo-
metric algorithms simply compute the wrong results for input values for which
they are supposed to work. Numerical non-robustness in scientific computing is
a well-known and widespread phenomenon. The implementation of an algorithm
is in general considered robust if its output is always the correct response to
some perturbation of the input, and stable if the perturbation is small.

Although non-robustness is already an issue in a purely numerical computa-
tion, it is more intractable in a geometric one. To appreciate why the robustness
problem is especially hard for geometric computation, we need to understand
what makes a computation geometric. Geometric computation involves not only
numerical computations but also combinatorial structures as well as certain non-
trivial consistency conditions between the numerical and combinatorial data.
Consequently, in purely numerical computations a result becomes unusable when
there is a severe loss of precision. In geometric computations errors become se-
rious when the computed result leads to inconsistent states of the program or is
qualitatively different from the true result, e.g. combinatorial structure is wrong.
Accordingly, a loss of robustness related to geometric algorithms must always be
understood in both its numerical and its topological meanings (see Figure 2).

Researchers trying to create robust geometric software use one of two ap-
proaches. The first is some form of exact computation in which every numerical
quality is computed exactly (explicitly, if possible) and which relies on big num-
ber packages and use filters to make this approach viable. Alternatively, they
can continue to use floating-point or some other finite precision arithmetic, and
try to make their computation robust.

Although exact computation is a safe method of achieving robustness, it
is somewhat inefficient for most robotic applications. Exact geometric compu-
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tation requires that every evaluation is correct, which can be achieved either
by computing every numeric value exactly (e.g. using exact integer or rational
arithmetic) or by employing some implicit or symbolic representation that allows
values to be computed exactly. But an exact computation is only possible when-
ever all numeric values are algebraic or if the result of the geometric algorithm
depends only on the signs of some quantities to be known (such information’s
can be obtained with adaptive methods). Furthermore, the cost of an arithmeti-
cal operation is no longer constant, as in the case of floating-point arithmetic,
but depends upon its context and increases due to geometric constructions in
which a new geometric structure is produced from an old one. Because of this
perceived performance cost, the exact geometric computation does not appear
to be widely used in robotics. Besides, in most robotic applications the input
data are arbitrary real numbers (e.g. sensor data) which have to be cleaned up
into exact values (e.g. an inexact input point can be viewed as the center of a
small ball) before being fed to the exact algorithm.
On the other hand, the common alternative to exact computation, finite preci-
sion geometry, is faster, readily available, and widely used in practice; however
exactness and robustness are no longer guaranteed. Here, correct and verifiable
geometric reasoning using finite precision arithmetic is demanded.

This paper aims to present new methods for the design of accurate and robust
finite precision geometric algorithms which yield reliable results despite rounding
errors caused by the limited precision of the computation. It begins with a short
overview of the most common reliable techniques in the field of finite precision
geometry: interval arithmetic or affine arithmetic, approaches which reduce the
effect of overestimation caused by interval evaluations, Taylor models, and the
exact scalar product.
Section 3 proposes a new algorithm for distance computation between octrees
based on the use of the exact scalar product. Another center of interest in this
section is the development of efficient and accurate algorithms for distance cal-
culation between a sensor point fixed on a robot and a target or obstacle (or
obstacles) in a complex environment. An accurate distance algorithm for convex
and non-convex polyhedra with a priori error bounds of the computed values is
provided. Robust solutions to these geometric problems are used in collision-free
path planning if a given end-effector is moving amid a collection of (un)known
obstacles from an initial to a desired final position as well as in dealing with the
resulting contact problems. The advantages of the special structure of (implicit)
linear interval estimations computed using Taylor models and affine arithmetic
are demonstrated in Section 4, followed by a detailed discussion of robust inter-
section and enumeration algorithms for implicit and parametric surfaces based
on spatial subdivision. Finally, Section 5 summarizes the results.

2 Handling of Robustness Problems

Because there is no general theory on how to deal with them, the handling
of robustness problems in finite precision geometry takes a number of different
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approaches. In order to avoid inconsistent decisions these fall into two categories.
The first places higher priority on topological and combinatorial data, while the
second emphasizes numerical data.

The topology-oriented approach leads to robust algorithms which never crash
and compute output with essential combinatorial properties, but the computed
numerical values do not necessarily correspond to the real solution of the geo-
metric problem being addressed. Typically a topology-oriented algorithm does
not treat sign computations producing sign zero. In those cases where the nu-
merical value of a sign computation is zero, it will be replaced by a positive or
negative value, whichever is consistent with the current topology. For this reason
the topology-oriented approach is not suitable for certain computations, such as
determining the real distance points between two objects.

In such cases numerical approaches are more appropriate. Their typical strate-
gies are based on an association of tolerances to geometric objects in order to
represent uncertainties. The representation of a value by an approximation and
an error bound or an interval is a numerical analogue of these strategies. In this
context the term interval geometry can also be found [33].

2.1 Interval Arithmetic

Approximation and error bounds define an interval that contains an exact value.
In interval arithmetic the real numbers are stored as intervals with floating-point
endpoints. Computations on the numbers are performed as sets of computations
on the interval bounds, e.g. [a, b] + [c, d] = [a + c, b + d]. Interval arithmetic
is the most common technique providing reliable solutions for many numerical
problems. Unfortunately, overestimation resulting from standard interval eval-
uations is an often criticized drawback of interval arithmetic. See Alefeld and
Herzberger [1] for further reading.

2.2 Epsilon Geometry

Another method closely related to interval arithmetic is epsilon geometry, which
was defined by Guibas, Salesin and Stolfi [21] and uses an epsilon predicate
instead of a Boolean value to obtain information on how much the input satisfies
the predicate. An epsilon predicate returns an interval that identifies a region
over which the predicate is definitely true, definitely false or simply uncertain. So
far, epsilon geometry has been applied only to a few basic geometric predicates.
Moreover, it is not clear how to handle the regions of uncertainty.

2.3 Affine Arithmetic

Affine arithmetic, first proposed by Comba and Stolfi [11], is an extension to
interval arithmetic which reduces the effect of overestimation by taking into
account the dependencies of the uncertainty factors of input data, approximation
and rounding errors. In this way, error expansion can often be avoided and tighter
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bounds on the computed quantities achieved.
When using this approach, each numerical number is stored as an affine form

x̂ = x0 + x1ε1 + x2ε2 + . . . + xnεn, (1)

where εi ∈ [−1, 1] denotes a noise symbol representing one source of error or
uncertainty. x0 is the central value of the affine form and the xi are partial
deviations. For each new source of error a new noise symbol εi is introduced and
added to the affine form.

Each interval can be expressed as an affine form, but an affine form can only
be approximated by an interval as it carries much more information. An interval
describes only the general uncertainty of the data, whereas affine arithmetic
splits this uncertainty into specific parts. Thus, a conversion from affine forms
to intervals in most cases implies a loss of information.

Let x̂ := x0 +x1ε1 +x2ε2 + ....+xnεn be the affine form of the fuzzy quantity
x. x lies in the interval

[x̂] := [x0 − ξ, x0 + ξ]; ξ :=

n
∑

i=1

|xi|

[x̂] is the smallest interval enclosing all possible values of x.
Let X = [a, b] be an interval representing the value x. Then x can be repre-

sented as the affine form
x̂ = x0 + xkεk

with x0 := (b + a)/2; xk := (b − a)/2.
Affine arithmetic is slower than standard interval arithmetic, but in cases

where there might be error correlation from one computation step to the next,
this approach is beneficial.

2.4 Arithmetical approaches

Certain approaches might be described as being based primarily on arithmetical
- as opposed to geometric - considerations. A highly precise evaluation of arith-
metical expressions provides a solid tool for the solution of various geometric
problems. The idea of arithmetical approaches is to isolate the basic operations
(primitives) which have to be handled in a numerically correct way, where the
manner in which the respective operands are represented is crucial. The primi-
tives have to be implemented in such a way that they yield a result which is as
close as it can be to the best possible machine representation. The computational
depth of geometric algorithms has to be kept low to control the propagation of
round-off errors.

Since scalar products occur frequently and are important basic operations in
many geometric computations, it is advantageous to perform the scalar product
calculation with the same precision as the basic arithmetical operations. Using
the exact scalar product delays the onset of qualitative errors and improves
the robustness of the implementation. Other arithmetical approaches, like the
permutation of operations combined with random rounding (up and down), can
also be used [33].
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2.5 Taylor models

The idea of this approach is the representation of a (multivariate) function as a
Taylor polynomial plus an interval that encloses the range of the remainder: the
Taylor model of the function.

Definition 1. Let be f ∈ Cn+1(D); D ⊂ IRm and
�
∈ IIRm an interval box with

�
⊂ D. Let T be the Taylor polynomial of order n of f around the point x0 ∈

�
.

– An interval I with ∀x ∈
�

: f(x) − T (x) ∈ I is called an n-th order
Remainder Bound of f on

�
.

– A pair (T, I) is called an n-th order Taylor model of f .
– A set of all remainder bounds is called the Remainder Family, the optimal

enclosure of the remainder is called the Optimal Remainder Bound.

Thus, a Taylor model is a polynomial of n-th order enclosing the approxi-
mated function on the interval box

�
.

Berz and Hofstätter [5] define an arithmetic for Taylor models based on uni-
and bivariate arithmetical operators and basic functions. It turns out that these
methods are similar to interval arithmetic for the case n = 0.

Taylor models have a remarkable feature with respect to the quality of the
approximation and its convergence: If

�
decreases, I will decrease in size as the

(n+1)-st power of the size of the box
�
.

3 Accurate Distance Algorithms

Obstacles are often modeled or reconstructed from sonar and visual data leading
to uncertain information. Descriptions based on polyhedral or hierarchical octree
structures lead to a considerable reduction of data, which makes effective storing
and processing possible. First, we will deal with objects represented by an octree
in three dimensions and then with a more general n-tree in higher dimensions.

Octrees are very suitable for building environments where obstacles must be
taken into account when considering collision-free path planning as they enable
the location of free and occupied regions based on accurate distance calculations.

In Figure 3 a non-convex object is represented by an axis-aligned, level-three
octree. The round nodes are gray because they have white and black leaves.
Since the octree is constructed through the subsequent division of boxes, all
constructed nodes are boxes whose boundary representations can be computed
using an appropriate fixed-point arithmetic.

3.1 An Accurate Distance Algorithm for Octrees

The distance calculation between two objects represented by a common octree
which has depth N and extra color information in gray nodes is based on a
simple computation of the distance between two boxes.
First, we establish a procedure dist2(Q1, Q2) for the rectilinear axis-aligned
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Fig. 3. Octree representing a non-convex object.

boxes Q1, Q2 described by a vertex point with the smallest coordinates and
the length of three edges:

Q1 : [X1, X2, X3, h1, h2, h3] = I1 × I2 × I3

Q2 : [Y1, Y2, Y3, k1, k2, k3] = J1 × J2 × J3

We introduce a case-selector determining by where the first box lies with respect
to the other (outside below or above, cutting):

cn :=







(Yn − Xn − hn)2, Yn > Xn + hn

(Xn − Yn − kn)2, Xn > Yn + kn

0, otherwise
, n = 1, 2, 3.

The following cases appear (including also the other cases surface to vertex etc.):

– Intersection:

I1 ∩ J1 6= ∅ ∧ I2 ∩ J2 6= ∅ ∧ I3 ∩ J3 6= ∅ =⇒ dist2 = 0

– Surface to surface (the distance vector may move on opposite facets; l, m, n
pairwise disjoint):

Il ∩ Jl 6= ∅ ∧ Im ∩ Jm 6= ∅ ∧ In ∩ Jn = ∅ =⇒ dist2 = cn

– Edge to edge (the distance vector may move on opposite edges):

Il ∩ Jl 6= ∅ ∧ Im ∩ Jm = ∅ ∧ In ∩ Jn = ∅ =⇒ dist2 = cn + cm

– Vertex to vertex:

I1 ∩ J1 = ∅ ∧ I2 ∩ J2 = ∅ ∧ I3 ∩ J3 = ∅ =⇒ dist2 = c1 + c2 + c3



Reliable Distance and Intersection Computation 9

i


j

k


i


j

k


i


j

k


i


j

k


distance surface/surface


distance edge/edge
 distance vertex/vertex


intersection


Fig. 4. Various examples of positioning two boxes.

If the entries X1, X2, X3, X1 +h1, X2 +h2, X3 +h3, Y1, Y2, Y3, Y1 +k1, Y2 +k2,
Y3 + k3 are machine numbers, the square of the distance can be calculated up
to 1 ulp with the aid of the exact scalar product. If a fixed point arithmetic is
used, the results are exact.
We will now assume that the octree represents two objects, a white (w) and a
black (b) one, and that the leaves are integrally white or black depending on
the represented object or red (r) for the free space. We further assume that the
octree has no bw-boxes which would yield dist2 = 0.

The second part of our algorithm computes the distance between the two objects
using the distance formulae between two cubes from part one:

– Initialize the lists LB, LW , LG, the distance D = 3, and boxes W =
[0, 0, 0, 0, 0, 0] and B = [1, 1, 1, 0, 0, 0].
/*The lists LB and LW are void, LG contains the unit cube. LB contains
actual black boxes, LW contains actual white boxes, LG contains gray boxes
of the i-th level */

– For all levels i = 0, 1, ..., N /* N depth of the octree */ do

/* Step 1: Fill lists LW, LB */

For all children Q of all boxes of size 2−i on level i

/* Update LG */
If Q = white then
{ Q → LW ; For all T ∈ LB do
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if (dist2(Q, T ) < D)
then { D := dist2(Q, T ); W := Q; B := T }

}
else if Q = black then
{ Q → LB; For all T ∈ LW do

if (dist2(Q, T ) < D)
then { D := dist2(Q, T ); W := T ; B := Q }

}
/* Two or more different kinds of subboxes*/
else if Q = gray then Q → LG;

/* Step 2: Drop all irrelevant boxes; define min(∅) = 0*/

For all T ∈ LB, T 6= B do

For all Q ∈ LG with attribute wr or bwr calculate dist2(Q, T );
dist2wr := min

{

dist2(Q, T )|Q has attribute wr
}

;

dist2bwr := min
{

dist2(Q, T )|Q has attribute bwr
}

;
if dist2wr > D and dist2bwr > 3 · 2−2i−2 then drop T in LB;

For all T ∈ LW, T 6= W do

For all Q ∈ LG with attribute br or bwr calculate dist2(Q, T );
dist2br := min

{

dist2(Q, T )|Q has attribute br
}

;

dist2bwr := min
{

dist2(Q, T )|Q has attribute bwr
}

;
if dist2br > D and dist2bwr > 3 · 2−2i−2 then drop T in LW ;

return D.

3.2 Remarks

This algorithm can be modified to return a list of all solutions. To this end, it is
necessary to establish a list of pairs of boxes with the same temporary distance.
The algorithm provides good upper and lower bounds: the temporary distance
D is an upper bound, but we may use D = 3 · 2−2i if there is a bwr-box on level
i. It is also possible to compute lower bounds. To this behind determine the
greatest level i with bwr-boxes. Replace on an arbitrary level j ≥ i all br-boxes
with black boxes and all wr-boxes with white boxes. Then apply the algorithm
to return D as a lower bound.
The algorithm works in any higher dimension when the definition of the case-
selector is generalized to arbitrary dimensions.
On level i we find 26(i+1)/3 as an upper bound for the number of box compar-
isons and distance calculations. Thus, in the worst case, overall complexity is
O

(

26(N+1)
)

. If we do not drop irrelevant black and white boxes, the complexity
is bounded by the product of the number of black and white boxes.
On the highest level tighter (convex) enclosures of the objects inside the boxes
can be used to obtain better bounds for D. Then the simple distance computa-
tions in the first step are replaced by an algorithm for convex objects.
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For an implementation it is not necessary to create the lists LB, LW , LG. All
work can be done on the underlying data structure by traversing the octree in a
certain manner and using appropriate flags in the nodes.

3.3 Examples

The first example concerns a level-three quadtree. In executing the algorithm the
white box on the right-hand side is dropped. The result is found in the second
and third quadrant. By applying a convex hull algorithm on the set of extreme
vertices we find simple convex enclosing sets.

Fig. 5. Quadtrees and convex hull of
two objects.

Fig. 6. Octree with two objects on level
three.

The convex hull of the extreme vertices is shown in Figure 5. The distance
remains unchanged. In the next example (see Figure 6) the algorithm eliminates
the boxes near the boundary z = 1 with respect to the coordinate system shown
in Figure 3.

3.4 Convex Hulls

Now let us turn our attention to the objects obtained by representing three-
dimensional convex sets S by octrees to apply distance theorems for this kind
of sets. If the sets are non-convex, they can be split into convex parts. Building
the octree corresponds to a certain kind of rasterization. So the question arises
whether the objects are digital convex. If we replace each box on the highest
level with its center point x we obtain sets of grid points S∆. This approach
allows us to apply results from digital convexity (d.c.):

Theorem 1 (see [16]). A digital set S∆ ⊆ Zd, the set of all d-dimensional
vectors whose components have integer values, is digital convex if and only if
for each point of x ∈ Zd\ S∆ there is a hyperplane with normal vector x′ and
distance α to the origin such that x · x′ = α and y · x′ > α for all y ∈ S∆. If
for each boundary point x of S∆ there is a hyperplane such that x · x′ = α and
y · x′ ≥ α for all y ∈ S∆ then S∆ is digital convex.
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Fig. 7. Parabolic objects - level 5.

This theorem finds its analogous result due to Tietze in the context of continuous
convexity.

Unfortunately, Tietze’s theorem, which says that the condition x ·x′ = α and
y ·x′ ≥ α should be verified only locally when deriving continuous convexity, does
not hold in the digital world. For this reason, a test for digital convexity cannot
be done in a time proportional to the number of neighbors and boundary points,
as was shown by a counter example given in Eckhardt [16]. However, if the set
S∆ is simply connected and all the boundary points fulfill the interior point
condition, i.e., each point x ∈ ∂S∆ has at least two 8-neighbor points belonging
to S∆ and these points are all connected in the 4-neighborhood topology, then
the result of Tietze’s theorem holds true.

A simpler way to proceed is to use the concept of extreme vertices of boxes
on the boundary. A vertex is said to be an extreme vertex if none of the adjacent
boxes belongs to the object. In the case of a quadtree there are three neighboring
boxes; for octrees there are seven boxes. The convex hull of all extreme vertices
is constructed to obtain an enclosure of the object. Obviously, the convex hull
also contains the original set S.

Then we can apply our distance algorithms for convex sets and obtain lower
bounds for the distances. This approach also opens the way to dynamic algo-
rithms for moving objects. It is well known that rotational motions of octrees
lead to an unwanted wrapping-effect, which can be avoided by using the convex
hulls of the objects [25].

3.5 Accurate Distance Algorithms for Convex and Non-Convex
Polyhedra

Generally, distance algorithms focus on objects represented by convex polyhe-
dra, which are defined as the convex hull of points in three-dimensional space.
Although these approaches can be applied for convex polytopes (bounded poly-
hedra) in three-dimensional space, a wider class of objects is permitted since it
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is also possible to treat conveniently non-convex shapes as a union of convex
polytopes.

There are two main classes of distance algorithms for convex polyhedral
models. In the first class algorithms are based on Voronoi regions, like the Lin-
Canny (LC) algorithm [24] and its software implementations, such as I-Collide
[10], V-Clip [27], or SWIFT++ [17]. Another class is the simplex-based Gilbert-
Johnson-Keerthi (GJK) algorithm [19] and its various extensions, including non-
convex objects [29] and proximity queries with collision detection [4].

One drawback of the original LC algorithm is that it does not readily handle
penetrating polyhedra; a second is its lack of robustness when applied to models
in degenerate configurations. The GJK-like algorithms are more robust than LC;
they can also handle penetration cases. Nonetheless, with GJK-like algorithms,
computations generally require more floating-point operations. The collision de-
tection library Q-Collide [9] was spawned from I-Collide, which replaces LC with
the GJK algorithm for low-level collision detection. A numerical comparison of
some derivations of GJK and LC algorithms was done in [20].

Although the GJK algorithm is widely used in robotics, there has been no
verification of the computed results. For this reason, we have implemented an
interval version of the GJK distance algorithm for tracking the distance between
convex polyhedra which is adapted to sensor-based input data [15].

We are also interested in simple accurate algorithms to calculate the dis-
tance between two objects, such as points, collections of axis-aligned boxes,
(non-)convex polyhedra or NURBS-surfaces with interval vertices. Accurate fi-
nite precision algorithms have been developed based on suitable projections and
using controlled rounding and the exact scalar product whereby a verified en-
closure of the solution is ensured [12].

If the end-effector or the sensor is taken to be a single moving point, an
efficient distance algorithm, which does not rely on convex properties and thus
is applicable to non-convex polyhedral surfaces has been developed [13]. Under
the same assumption the problem has been solved for the more difficult case of
NURBS-defined solids based on subdivision techniques and using an algorithm
for the solution of nonlinear polynomial systems proposed by Sherbrooke and
Patrikalakis [30]. The extension of this algorithm introduces interval arithmetic,
the interval version of the convex hull algorithm, and a modified Simplex algo-
rithm. The new solver allows a verification of obtained results [14] using new
criteria to guarantee the existence of zeros within the calculated inclusions [18].

Our algorithm to compute the distance between a point and a non-convex
polyhedron does not require decomposing the polyhedron into convex parts or
iteration and yields the result with high accuracy [13]. It is possible to derive
the explicit absolute or relative errors in a real distance point and the distance
value to the (non-)convex polyhedron as well as the computed approximations
of these values.
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3.6 An Accurate Distance Algorithm between a Point and a
(Non-)Convex Polyhedron

Given a point y outside a non-degenerated polyhedron P bounded by ∂P :=
{Si, i = 1, . . . , m; vj , j = 1, . . . , n} with m facets and n vertices.
In the following, the vertices belonging to the facet Si are denoted by sik,
k = 1, . . . , ti, ti > 2, given in counter-clockwise order, and by [sik, si(k+1)],
the edges of the facet Si; k = 1, . . . , ti, si(ti+1) := si1.

P

[sik, si(k+1)]

y

Si

vj = sik

x

Fig. 8. A point y and a non-convex polyhedron P .

We are searching for the shortest straight line segment [y, x] between point y,
which is any point outside of polyhedron P , and this polyhedron with x ∈ ∂P .
At the beginning, before starting the distance algorithm, we calculate the cor-
rectly rounded cross product

ni2 = (si2 − si1) × (si3 − si2) = si2 × si3 + si1 × si2 − si1 × si3

with x×y := (x2 ·y3−x3 ·y2, x3 ·y1−x1 ·y3, x1 ·y2−x2 ·y1) for x = (x1, x2, x3),
y = (y1, y2, y3), and a normal vector ni = ni2/

√

ni2 · ni2) for all i = 1, . . . , m.
Then Ei denotes the plane described by

Ei : x · ni − si1 · ni = 0.

For all scalar product computations the algorithm uses the exact scalar product
followed by rounding (to nearest):

A: We calculate the distances between point y and each plane Ei

li := y · ni − si1 · ni.

We store the sign of li, i = 1, ..., m for future use. There is at least one li > 0
therefore the set I := {i | li > 0} is not empty, and we can form the set J of
all j ∈ {1, . . . , n} with ∃i∈Ivj ∈ Si and the set K of all pairs (s, r) with

∃i∈I∃k[vs, vr] = [vik, vi(k+1)], s, r ∈ {1, . . . , n}.
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Then, for all i ∈ I, the projections onto Ei can be accurately calculated:

xi := y − li · ni.

Next, we have to decide whether xi is in Si. For that purpose we calculate the
number of intersections of the ray xi + t′(m − xi), t′ ≥ 0, suitable m ∈ Ei,
with edges [sik, si(k+1)], k = 1, . . . , ti, avoiding vertices, by solving a system
of two equations with two variables. These equations result from setting the
first derivatives of the function

f(t′, t′′) = ‖sik + t′′(si(k+1) − sik) − xi − t′(m − xi)‖
2

in the variables t′′ and t′ to zero. If xi belongs to the polygonal surface Si, i.e.
if the number of intersections is odd, we remove all edges from K belonging
to Si and calculate for the remaining (s, r) ∈ K the scalar products

wsi := (y − xi) · (vs − xi) and wri := (y − xi) · (vr − xi)

and, if wsi ≤ 0 and wri ≤ 0, we redefine K := K\{(s, r)}. Then we set a
distance-point x := xi and the distance d := li or update them (if there are
points with the same distance, the result of the algorithm will be a list of
them), and stop the algorithm if K = ∅.

B: If K 6= ∅ after step A, then we have to decide for all edges with (s, r) ∈ K,
whether the projection of y to the line

u(t) := vs + t (vr − vs)

meets a point with parameter 0 ≤ t ≤ 1. To do so, we form the accurately
calculated scalar products

κ := (y − vs) · (vr − vs) and µ := (vr − vs) · (vr − vs).

If κ < 0 or κ > µ, then the projection ray does not meet the section between
vs and vr. Otherwise, the projection point on [vs, vr] is given by

xsr := vs +
κ

µ
(vr − vs)

and the square of the distance by

d2
sr :=

((vr − vs) × (y − vr)) · ((vr − vs) × (y − vr))

vr · vr − vr · vs − vs · vr + vs · vs

.

We replace J by J\{s, r}. Using the projection point xsr we calculate for all
j ∈ J the scalar products

wjsr := (y − xsr) · (vj − xsr)

and if wjsr ≤ 0 we set J := J\{j}.
If the projection point is the nearest distance point, we update x with xsr

and d with
√

d2
sr. We stop the algorithm if J = ∅.
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C: If J 6= ∅ after step B, we compare the distance values of the paths joining
point y and each vertex-point xj , j ∈ J , with the distance found so far and
update d and x if necessary.

The accurate distance algorithm works in linear time O(Cn) with an order-
constant C depending on the number of successful projections onto facets and
edges. Furthermore, it can be used to determine the local distance between a
point and any polyhedral surface described by its vertices and oriented facets.

3.7 Error Discussion

Let εl ≤ 2−52 be the rounding error in the floating-point number space S :=
(B, l, em, eM) characterized by its base B, mantissa length l and [em, eM ] the
smallest and largest allowable exponents. Then, for the error estimation of a
calculated distance point x = (x1, x2, x3) and the distance value d = ‖y −x‖ in
the cases discussed in steps A, B and C it can be shown [12] that the results in
Table 1 are valid.

Table 1. Absolute or relative errors in the distance point and value

Step: Error estimations

A: xv = Xv + δ1,v(11.032‖y‖ + 10.032σi)εl

d = D + 4.27δ′1(‖y‖ + σi)εl (a point to a surface)

B: xv = Xv + δ2,v(2.505‖y‖ + 14.515σi)εl

d = D(1 + 3.003δ′2εl) (a point to an edge)

C: xv = Xv , d = D(1 + 1.76δ′3εl) (a point to a point)

v = 1, 2, 3, σi := maxk ‖sik‖, |δj,v| ≤ 1, |δ′j | ≤ 1, j = 1, 2, 3,
D = ‖y − X‖, X ∈ ∂P the real distance point

3.8 Example

The algorithm was implemented in C++ using the library Profil/BIAS [23].
Figure 9 shows the ASCII input file of a non-convex polyhedron. The input file
consists of two parts: the fourteen vertex points of the polyhedron in a Cartesian
coordinate system as geometric information and their positions on its nine faces
as topological information. The corresponding program layout for the point y

lying outside of the polyhedron in the origin of the Cartesian coordinate system
is shown on the opposite side of the figure.

4 Reliable Intersection Algorithms

In the previous section accurate distance algorithms widely used for path plan-
ning in robotics were described. In computer graphics, it is important to know
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polyhedron

-1.0 6.0 0.0

-4.0 0.0 0.0

0.0 -4.0 0.0

4.0 0.0 0.0

1.0 6.0 0.0

1.0 -1.0 0.0

-1.0 -1.0 0.0

-1.0 6.0 -2.0

-4.0 0.0 -2.0

0.0 -4.0 -2.0

4.0 0.0 -2.0

1.0 6.0 -2.0

1.0 -1.0 -2.0

-1.0 -1.0 -2.0

E

1 2 3 4 5 6 7

14 13 12 11 10 9 8

9 2 1 8

10 3 2 9

11 4 3 10

12 5 4 11

13 6 5 12

14 7 6 13

8 1 7 14

Fig. 9. Distance computation: the input file and program layout.

not only whether two objects intersect, but also where they intersect. Direct
ray-tracing of parametric surfaces, rendering and voxelization of implicit curves,
surfaces and volumes, as well as the computation of intersection curves are com-
mon tasks.

4.1 On Bounding Volumes and Subdivision

If a direct solution to the problem is not possible (which is generally the case),
the application of a divide-and-conquer strategy is a widespread approach. A
common technique for reducing the computational complexity of intersection
problems is to subdivide the complex object into simpler objects and to sim-
plify the shape using bounding volumes. Divide-and-conquer approaches to solve
object-object intersection problems find by definition all possible intersections,
but due to the piecewise enclosure of the solution information on the overall
topology of the intersection gets lost. Postprocessing steps like connectivity de-
termination and sorting are necessary to restore this information. Solutions for
this problem can be found in classical literature on computational geometry and
e.g. in [2]. Classical bounding volumes are simple solids, such as axis-aligned
or -oriented bounding boxes, parallelepipeds, polyhedra or spheres. In general
they are computed using range analysis methods based on sampling, exploiting
convex hull properties of control points, evaluation of derivatives, or applying
affine or interval arithmetic. Bounding volumes should be a reliable enclosure of
the object, which is not the case if sampling techniques are used to construct
the bounding volume. The direct application of interval or affine arithmetic to
compute a bounding volume produces reliable bounds, but these bounds overes-
timate the object because functional dependencies are not taken into account, or
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are lost during conversion from affine forms to intervals. Axis-aligned bounding
boxes are easy to compute and intersect easily with other axis-aligned bounding
boxes or rays; thus, they are well-suited for rapidly providing an insight into
the structure of an environment with obstacles and targets. However, in most
cases they significantly overestimate curves and surface patches. Therefore, in
subdivision-based algorithms many more steps are necessary to reach precision
than when using the much better fitting parallelepipeds. On the other hand,
an intersection test for two parallelepipeds, for instance, is very complex and
time-consuming. Furthermore, all classical bounding volumes are solids, i.e. they
provide information only on the location of the whole object. Yet, especially for
intersection algorithms for parametric objects, in order to accelerate the compu-
tation it would be interesting to be able to derive information on the location of
the intersection of the enclosed objects in parameter space from the intersection
of two bounding volumes. To summarize, the ideal bounding volume provides
a tight and reliable enclosure of the object, is easily calculated, and intersects
easily with other, similar bounding volumes.

4.2 Linear Interval Estimations

To overcome problems connected with classical bounding volumes, another form
of enclosing objects satisfying the requirements for the ideal bounding volume
listed above has been introduced for parametric and implicit objects: Linear
Interval Estimations [7, 8] are defined as the linear approximation of the rep-
resentation of the enclosed object combined with an interval estimation of the
approximation error. An LIE is just a thick (hyper)plane, that can be under-
stood as a continuous linear set of axis parallel bounding boxes. Furthermore, the
representation of an LIE corresponds to the representation of the object. This
means in the parametric case that the LIE can be parameterized in such a way
that its parameterization corresponds to the parameterization of the enclosed
object. Each point of the object is enclosed by an ”interval point” (an interval
box) of the LIE with the same parameters. In the case of the intersection of two
LIEs this construction allows direct conclusions on the location of intersections
of the two enclosed objects in object and parameter space. This characteristic
of LIEs is the most significant difference to other common bounding volumes.

But LIEs are also easy to compute and usually provide much tighter en-
closures than common solid bounding volumes. If reliable methods are used to
compute the LIE, it also provides a reliable enclosure of the patch. Furthermore,
the diameter of the interval part of the LIE contains information about the flat-
ness of the patch and its extension has been proven to be a good termination
criterion for subdivision-based algorithms. The linear structure of the LIE re-
duces the intersection problem of parametric or implicit objects to the solution
of (constrained) linear equation systems, which can, in general, be solved much
more easily than the original problem.
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4.3 Parametric LIEs

Parametric objects are widely used in computer graphics and computer aided
geometric design. Bézier, B-Spline, and NURBS curves, surfaces and volumes
are standard representations used for effective and exact modeling and repre-
sentation of smooth objects. A general parametric object S over a rectangular
parameter domain can be defined as follows:

S :

{�
=

∏m
i=1 Ii ∈ IIRm → IRn

x 7→ f(x) := (f1(x), ...., fn(x))T

}

The corresponding linear interval estimation enclosing the object described above
must fulfill the following requirements:

Definition 2. A linear map �:
�
∗ ∈ IIRm → IRn,

�(x∗) :=�+

m
∑

i=1

x∗

i vi, x∗ = (x∗

1, ..., x
∗

m) ∈
m
∏

i=1

I∗i =
�
∗ ∈ IIRm (2)

with �∈ IIRn, vi ∈ IRn, i = 1, ..., n is called a linear interval estimation (LIE)
of the parametric object f (x) ∈ IRn; x ∈

�
∈ IIRm iff there exists a valid

reparameterization

φ :

{ �
→
�
∗

x 7→ φ(x) := x∗

of �so that for all x ∈
�
holds f(x) ∈�(φ(x)) =�(x∗).

Fig. 10. Sketch of the construction
of LIEs.

Fig. 11. Discrete representation of an LIE
based on affine arithmetic.
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Computation. The general recipe for constructing parametric LIEs is quite
simple (see also Figure 10 and 11):

1. Compute a linear approximation of the object.
2. Estimate and enclose the approximation error with an interval vector.
3. Reparameterize the linear approximation so that it corresponds to the pa-

rameterization of the object.

Two different methods of computing LIEs have been proposed [7]. One is
based on first order Taylor models and is straight forward:

Theorem 2. Let (T,�) be a first order Taylor model of the function f(x), x ∈
�
.

Then
�(x) = T (x) +�

is an LIE of f .

�(x) can be written in the form �+
∑m

i=1 xi

∂

∂xi

f(x0) with �:= f(x0) −

∑m
i=1 x0

i

∂

∂xi

f(x0) +�, which already corresponds to the parameterization of

the object. Thus, in this case, a reparameterization of the LIE is not necessary.

The second method exploits the intrinsic structure of affine arithmetic:

Theorem 3. Let f :
�
∈ IIRm → IRn be C0 over

�
and

�
:=

∏m
k=1 Ik with

rad(Ik) > 0, k = 1, ..., m. x̃k := xk
0 + xk

1εk; εk ∈ [−1, 1] denote the affine forms
corresponding to Ik, k = 1, ..., m and x̃ = (x̃1, ...., x̃m)T .

f(x̃) = f̃ (ε1, ...., εm, γ1, ..., γl) = f0 +

m
∑

k=1

fkεk +

l
∑

i=1

riγi

with εk, γi ∈ [−1, 1] and fk, ri ∈ IRn for all k = 1, ..., m, i = 1, ..., l, de-
notes the evaluation of f with x̃. Furthermore let be �:= f0 +�with �:=
[

−
∑l

i=1 |r
i|,

∑l
i=1 |r

i|
]

and |ri| := (|ri
1|, ..., |r

i
n|)

T , i = 1, ..., l. Then

�ε(ε1, ..., εm) :=�+

m
∑

k=1

fkεk; εk ∈ [−1, 1], k = 1, ..., m (3)

is an LIE of f .

The evaluation of the function describing our object with respect to the affine
forms representing the parameter domain, is equivalent to the computation of a
point symmetric polytope enclosing our object. The term

f0 +

m
∑

k=1

fkεk (4)
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describes a subset of the polytope that is a linear approximation of the input
object with respect to the input error symbols and therefore also with respect to
the original parameters. The sum

∑l
i=1 riγi describes for each point of (4) an en-

closure of approximation and rounding errors introduced during the evaluation,
that is estimated in the theorem by the interval vector �.

Formula (3) describes the combination of (4) with the error estimation �
which is after Definition 2 a LIE of f with respect to the input error symbols
εk, k = 1, ..., m and the parameter domain [−1, 1]m. To reestablish the direct con-
nection between the parameterization of the original object and the parametriza-
tion of the corresponding LIE a reparameterization of �ε is necessary. The map
φ describes the correspondence between the two parameterizations:

φ :

{�
:=

∏m
k=1[ak, bk] → [−1, 1]m

x 7→ φ(x) := (α1x1 − β1, ..., αmxm − βm) = (ε1, ..., εm)

with αk := 2
bk−ak

and βk := bk+ak

bk−ak

, k = 1, ..., m. Finally�(x) :=�ε(φ
−1(ε1, ..., εm))

describes the parametrization of the LIE with respect to the same parameters
and parameter domain of the enclosed object.

Intersection. All intersection problems for LIEs with boxes, rays or other LIEs
can be described as a system of constrained linear interval equations of the form
Ax =�, where A is a thin matrix,�is an interval vector and x is the vector of
unknown parameters constrained by their predefined domains:

Let be f(x) ∈ IRn; x ∈
�
∈ IIRm and g(y) ∈ IRn; y ∈�∈ IIRk two parametric

objects in n-space with their respective LIEs�(x) = �0 +
∑m

i=1 xif i and�(y) =
�
0 +

∑k
j=1 yjgj . The intersection of �and�can be described as the solution of

the system of linear equations

m
∑

i=1

xif i −
k

∑

j=1

yjgj =�0 − �0

with the constraints x ∈
�

and y ∈ �. A detailed discussion about how an
enclosure of a linear system of interval equations can be computed is found
in a number of books and articles (see, for example, [3, 28]). In addition to
an enclosure of the solution in object space, an enclosure of the solution in
parameter space is also needed for effective parameter domain pruning during a
subdivision procedure. If interval arithmetic is applied, these enclosures can be
generated partly as a byproduct of the intersection algorithms; additional steps
might be necessary to compute tight solutions for all parameters.

We are proposing an effective algorithm for computing the intersection of two
LIEs of surface patches in 3-space. Its goal is to compute an interval line that
encloses the intersection of two LIEs as narrowly as possible as well as to locate

the parameter domains
�̃
⊆
�

and ˜̃�⊆ �defined in Theorem 4, which enclose
the parameter values of the interval intersection line as narrowly as possible.
The derivation of the algorithm follows a geometric approach similar to the
intersection of two parallelograms in space:
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1. For each parallelogram compute the intersection points of the four border
lines with the carrying plane of the other parallelogram.

2. Intersect all four line segments formed by the intersection points of parallel
lines (see Figure 12).

Fig. 12. Intersection of two parallelograms in space

Let be

�1(u, v) =�+ uy1 + vy2; (u, v) ∈ Iu × Iv =
�

(5)

�2(s, t) =�+ sw1 + tw2; (s, t) ∈ Js × Jt =� (6)

two LIEs in IR3. Equating (5) and (6) yields

(y1 y2 − w1 − w2)









u
v
s
t









= r; r ∈�:=�−�. (7)

Under the assumption that each triple of vectors of y1, y2, w1, w2 is linearly
independent, the solution set of this underdetermined system is either the empty
set, an interval point, or an interval line enclosing the intersection of�1 and �2.

Following the geometric approach, the four line segments containing the in-
tersection can be computed in the following way: For each line segment assume
that one parameter of (s, t, u, v) is fixed and apply Cramer’s rule to the cor-
responding 3 × 3 sub-matrix to solve the system for the two parameters that
belong to the other LIE. For example, if we consider t the fixed parameter, (7)
changes to

(y1 y2 − w1)





u
v
s



 = r + tw2; r ∈�:=�−�. (8)
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Applied to all parameters this yields the following equations:

S1(u) = 1
α
(K + β u) U1(s) = 1

β
(−K + α s)

S2(v) = 1
γ
(L − β v) U2(t) = 1

δ
(M − α t)

T1(u) = 1
α
(M − δ u) V1(s) = 1

β
(L − γ s)

T2(v) = 1
γ
(N + δ v) V2(t) = 1

δ
(−N + γ t)

where
α := |y2 − w1 − w2| K := |y2 � − w2|
β := |y1 y2 − w2| L := |y1 � − w2|
γ := |y1 − w1 − w2| M := |y2 − w1 �|
δ := |y1 y2 − w1| N := |y1 − w1 �|

The equations above can be combined to the four intersection lines�i, i = 1, 2
and
�

j , j = 1, 2 parameterized using the same parameters as the LIEs.

�
1(u) :=

(

S1(u)
T1(u)

)

; u ∈ Iu
�
2(v) :=

(

S2(v)
T2(v)

)

; v ∈ Iv

�
1(s) :=

(

U1(s)
V1(s)

)

; s ∈ Js

�
2(t) :=

(

U2(t)
V2(t)

)

; t ∈ Jt

(9)

Notice that computing K, L, M and N during the first expansion of the de-
terminant according to the elements of�= (R1, R2, R3)

T avoids overestimation.
In this case, each interval Ri, i = 1, ..., 3 appears only once in the expression,
and the result is an exact enclosure. Furthermore, all occurring matrices are thin
and assumed to be regular, which implies that the enclosure of the solution and
the solution are identical [28]. Thus, �i, i = 1, 2 and

�
j , j = 1, 2 are optimal

enclosures of the non-constrained problem.

The following theorem clarifies how an enclosure of the intersecting line seg-
ment and interval enclosures of the intersection in the parameter domains can
be computed:

Theorem 4. Let �1 and �2 be the LIEs defined by equations (5) and (6), and�
1,
�
2,
�

1,
�

2 the interval lines defined by equations (9). If each triple of the vec-
tors y1, y2, w1, w2 is linearly independent, an enclosure of the intersection of
�1 and �2 is provided by each of the interval line segments �1(u), u ∈ Ĩu,
�
2(v), v ∈ Ĩv,

�
1(s) s ∈ ˜̃Js and

�
2(t) t ∈ ˜̃J t, where

�̃:=�1(Iu) ∩�2(Iv) ∩�
�̃
:=
�

1(J̃s) ∩
�

2(J̃t) ∩
�

˜̃�:=�1(Ĩu) ∩�2(Ĩv) ∩ �̃

The LIEs do not intersect if at least one of the parameter domains �̃,
�̃
or ˜̃�is

empty.
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Fig. 13. The parallelograms of Fig-
ure 12 after the first reduction
step,...

Fig. 14. ... after the second reduc-
tion,...

Fig. 15. ... and after the third re-
duction.

Notice that the computed intervals are very good enclosures of the solution
but might still be slightly overestimated due to the computation of intermediate
axis-aligned enclosures. Figures 13 – 15 illustrate the three pruning steps.

Special cases occur if two or more of the determinants α, β, γ, and δ dis-
appear (zeros appear always in pairs), which is equivalent to the LIEs having
parallel edges. In the proposed algorithm special cases are handled with two
different approaches depending on their type:

1. if two determinants are zero, for α = 0 set g1(u) := �, for γ = 0 set
g2(v) :=�, for β = 0 set h1(s) :=

�
, and for δ = 0 set h2(t) :=

�
,

2. if more than two determinants are zero, compute an axis-aligned bounding
box.

The complete algorithm is described in Figure 16.

Application of the algorithm The algorithm has been implemented in C++
using the Profil/BIAS package [23] and a modification of the affine arithmetic
package by van Iwaarden. The algorithm is part of the new subdivision algorithm
for surface patches described in [7]. (The reader is referred to the publication
for details.) The results can be summarized as follows: The use of LIEs allows
the subdivision algorithm to be optimized in almost all steps (effective bounding
volumes, easy and fast intersection, parameter domain pruning, adaptive sub-
division, termination criterion, and so forth). The number of subdivisions and
intersection tests, as well as computation time have been reduced dramatically
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Algorithm: IntersectionTest

Input: A pair of surfaces AB with corresponding LIEs LIE(A) and LIE(B).
Output: Explicit: TRUE, if A and B intersect; FALSE, if not. Implicit: If the test is
positive, the algorithm also returns the pruned parameter spaces of A and B. Value
of the intersection flag AB.inters

Boolean IntersectionTest(Surface pair AB, LIE(A), LIE(B)){
Compute α, β, γ, δ,K, L, M, N

If (α = β = γ = δ = 0) // special case 2: LIEs parallel or equal
If axis parallel bounding boxes intersect

AB.inters = true; Return true; // Surfaces might intersect.
else

AB.inters = false; Return false; // Surfaces do not intersect.

Compute �̃; // see theorem 4 and special cases 1

If (�̃= ∅)
AB.inters = false; Return false; // Surfaces do not intersect.

Compute
�̃
; // see theorem 4 and special cases 1

If (̃
�
= ∅)

AB.inters = false; Return false; // Surfaces do not intersect.

Compute
˜̃�; // see theorem 4 and special cases 1

If (
˜̃�= ∅)

AB.inters = false; Return false; // Surfaces do not intersect.

A.domain =
�̃

//
�̃
defines the reduced parameter space of patch A

B.domain =
˜̃� //

˜̃�defines the reduced parameter space of patch B
Return true; //Surfaces might intersect.

}

Fig. 16. Intersection algorithm for two LIEs enclosing surface patches in 3-space

compared to subdivisions that use axis-aligned bounding volumes. For two sim-
ple quadric patches in almost rectangular position to one another, both defined
on the parameter domain [−2, 2]2, computing the intersection with precision of
0.01 needed 0.01 seconds applying the LIE algorithm, but 2.61 seconds to reach
the same precision and reliability with a pure subdivision. The ILIE algorithm
described in Section 4.4 needed just 58 subdivisions to enclose the results with
interval line segments of a diameter less than 0.01, whereas a reliable enclosure
with boxes required almost 100,000 subdivisions. This example demonstrates an-
other important side-effect of the reduction of subdivisions: the amount of data
needed to represent the result is much smaller. Final results are enclosed by
the interval lines in parameter space and by the corresponding interval surface
curves in object space. Tests also show that, applied in a subdivision algorithm
for surface-surface intersection, the proposed algorithm is on average about 25%
faster and needs 15% fewer subdivisions than the ILSS algorithm included in the
Profil/BIAS package. Particularly remarkable was the observation, that, espe-
cially for the two simple surface patches described above, the ILSS algorithm was
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about 50% slower while requiring the same number of subdivisions. An example
is given in Figure 17.

Fig. 17. Intersection of a Dini surface and an astroidal. The boxes left and right show
the corresponding parameter domains with the intersection in parameter space.

4.4 Implicit LIEs

Implicit equations are a powerful tool for the representation of curves, surfaces
and volumes in computer graphics. Besides the description of mathematical,
physical, geological, and other scientific phenomena, implicit surfaces and vol-
umes are mainly used in CSG-Systems to design complex objects by adding,
subtracting, and inverting smooth surfaces.

An implicitly defined object in IRn is produced by an equation of the form
f(x) = 0, x ∈ IRn, where f can be either a polynomial or any other real
valued function. The implicit representation has the advantage that it allows
rapid determination of whether a point lies inside (f(x) < 0), outside (f(x) >
0) or on (f(x) = 0) the object. Despite the many other positive features of
implicit descriptions of objects, there is one main drawback: The points building
the object are defined as zero-set of f - an equation which is in general not
explicitly resolvable. The computation of an approximation of this zero-set for
visualization and collision detection has been the topic of many publications
over the last two decades; finding solutions that are fast and guaranteed reliable
is one of the subjects of recent research [26, 31, 32]. Existing solutions for the
3D case compute a polygonization or voxelization, or determine single points on
the surface. Algorithms are based on simple space subdivision, marching cubes,
particle systems, ray tracing and stochastic differential equations. Implicit Linear
Interval Estimations (ILIEs) can be used to accelerate those algorithms that are
based on subdivision and/or incidence tests.
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Definition 3. Let F : f(x) = 0, x = (x1, ..., xn)T ∈
IRn be the implicit definition of an object in IRn and

L(x) :=
n

∑

i=1

aixi + J (10)

with J ∈ IIR and ai ∈ IR, i = 1, ..., n.

The interval hyperplane segment inside the axis-

aligned box
�
∈ IIRn

L := {x ∈
�
| 0 ∈ L(x)}

is called the Implicit Linear Interval Estimation
(ILIE) of F on

�
, iff for all x ∈ (F∩

�
) holds 0 ∈ L(x).
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Fig. 18. ILIEs enclosing
a curve.

Computation The computation of ILIEs follows roughly the same strategy as
in the parametric case. The general recipe for generating ILIEs can be described
as follows:

1. Compute any linear approximation lf (x) of f(x) on a cell
�
.

2. Estimate the approximation error with an interval J .
3. Combine both to obtain an ILIE LF : 0 ∈ lf (x) + J of F .

Again the linearization can be done using, for example, affine arithmetic or
Taylor models. The characteristics of ILIEs are also similar to those of parametric
LIEs: They are a kind of thick linearization of the object and the diameter of the
interval part can be used as criterion for flatness. Furthermore, if affine arithmetic
is used for the computation, low additional computational costs are required
compared to a cell/object evaluation, singularities are not a problem and the
ILIEs provide a tight enclosure due to implied Tchebycheff approximation.

Application of ILIEs to enumeration algorithms. A classic enumeration
algorithm for implicit objects works in the following way:

– Define an initial cell (an axis-aligned box) where the object has to be de-
tected.

– Test whether this box interferes with the object.
– If it does, subdivide and test sub-cells until the termination criterion is ful-

filled.
– If it does not, the object does not intersect the cell; stop.

In this algorithm, the cell-object interference test is the most expensive and
important part. ILIEs can help to optimize the whole process in the following
ways (for a detailed description see [8]):

– The cell-object incidence test and the computation of the corresponding ILIE
can be done in (almost) one step.
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– The diameter of the interval part of the ILIE can be used as termination
criterion.

– ILIEs allow cell pruning. An ILIE encloses the object in many cases much
more tightly than the corresponding cell. An axis-aligned cell can be easily
reduced to those parts containing the ILIE and the enclosed object using
interval/affine arithmetic. (Iterated) cell pruning applied on each computed
sub-cell reduces the number of necessary subdivisions significantly.

– Unnecessary cell-object tests can be reduced doing a pre-test with the ILIE
of the mother cell.

– Cell pruning also allows highly effective adaptive subdivision strategies.

Implementation and experiments. Up to now ILIEs have only been im-
plemented using affine arithmetic based a modification of the affine arithmetic
package of van Iwaarden. To prove the usability of ILIEs they have been applied
for reliable plotting of implicit curves [6] and the enumeration of implicit surfaces
[8] (see also Figure 19). The results can be summarized as follows:

The introduction of ILIEs allowed a complete redefinition of classic enu-
meration algorithms. In many cases ILIEs provide much better enclosures than
axis-aligned cells. The results are much better adapted to the topology of the
object. The number of necessary subdivisions decreased substantially. The num-
ber of necessary ILIEs to represent a result with certain precision is radically
less using ILIEs than using axis-aligned cells. Thus, if the subdivision is used as
a basis for polygonization, many fewer polygons are necessary; if it is used as
basis for collision detection, many fewer interference tests are necessary; and, if
it is used as a basis for ray tracing, it enables the performance of rapid ray/plane
tests with unique results. Figure 19 shows two examples where ILIEs have been
applied to curve plotting and surface enumeration. For a detailed discussion and
more examples the reader is referred to the two papers mentioned above.

5 Conclusion

In this paper we have discussed the impact of the exact scalar product, common
interval arithmetic and its refinements, for example, affine arithmetic and Taylor
models. These techniques provide a complete framework for modeling geomet-
ric structures with different levels of detail and accuracy. Octrees are adequate
data types when only accurate rough bounds for distances are needed. The ex-
act scalar product is crucial to derive tight a priori error bounds for distance
computation between convex polyhedra. Certain classic distance algorithms can
be enhanced by introducing standard interval arithmetic. Linear Interval Es-
timations are a natural and intuitive generalization directly connected to the
representation of the enclosed object. LIEs provide tight and reliable bounds
for parametric and implicit objects and are easy to compute and to intersect.
The proposed methods allow the development of adaptive algorithms and the
reduction of the number of necessary subdivision steps in bounding volumes,
intersection and enumeration algorithms in robotics, geometric modeling and
computer graphics.
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Fig. 19. The figure on the left shows the plot of a trigonometric implicit curve created
using ILIEs. The figure on the right shows an enclosure of a Barth Decic built of
ILIEs. The surface is algebraic degree 10. Notice, that in both examples singularities
are properly enclosed by bounding volumes.
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wandten Mathematik 164 (2001)

17. Ehmann, St. A., Lin, Ming C.: Accurate and Fast Proximity Queries between
Polyhedra Using Surface Decomposition. (Proc. of Eurographics 2001) Computer
Graphics Forum 20(3) (2001)

18. Fausten, D., Luther, W.: Verified solutions of systems of nonlinear polynomial equa-
tions. In Walter Krämer, Jürgen Wolff v. Gudenberg (eds.), Scientific Computing,
Validated Numerics, Interval Methods. Kluwer (2001) 141–152

19. Gilbert, E. G., Johnson, D. W., Keerthi, S. S.: A fast procedure for computing
the distance between complex objects in three-dimensional space. IEEE Journal of
Robotics and Automation, Vol. 4 (1988) 193–203

20. Gilbert E. G., Ong, Chong Jin: Fast Versions of the Gilbert-Johnson-Keethi Dis-
tance Algorithm: Additional Results and Comparisons. IEEE Trans. Robotics and
Automation, Vol. 17, No. 4 (2001) 531–539

21. Guibas, L. J., Salesin, D., Stolfi, J.: Epsilon Geometry: Building Robust Algorithms
from Imprecise Computations. Symposium on Computational Geometry (1989)
208–217

22. van Iwaarden, R., Stolfi, J.: Affine arithmetic software (1997)
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