
Linking Scientific and Information Visualization with
Interactive 3D Scatterplots

Robert Kosara Gerald N. Sahling Helwig Hauser

VRVis Research Center
Vienna, Austria

http://www.VRVis.at/vis/
Kosara@VRVis.at, niki.sahling@paradigma.net, Hauser@VRVis.at

ABSTRACT

3D scatterplots are an extension of the ubiquitous 2D scatterplots that is conceptually simple, but so far proved hard to
use in practice. But by combining them with a state-of-the-art volume rendering engine, multiple views, and interaction
between these views, 3D scatterplots become usable and, in fact, useful. 3D scatterplots can not only show abstract data
dimensions, but also the physical layout of points, and thus provide a link between feature space and the actual object.
Brushing reveals connections between parts and features that otherwise are hard to find. This link also works not only
from feature space to the spatial display, but also vice versa, which gives the user more freedom in exploring the data.

Keywords
Information Visualization, Scientific Visualization, Scatterplots

1 Introduction

Scatterplots are a very ubiquitous method for visualiza-
tion, and are used in many applications. A scatterplot
consists of one point on a plane for each data point. The
position of the point depends on the two dimensions that
are displayed in the plot, which define the two axes for
the plane. A scatterplot can not only show abstract data
dimensions very effectively, but also provide a crude im-
age of an object if fed with the right data (i.e., point co-
ordinates).

Scientific visualization (SciVis) is concerned with the
display of data that relates to real-world objects, e.g.,
medical data sets, or flows of gases. Information visual-
ization (InfoVis), on the other hand, deals with data that
is abstract and much harder to depict. Typical InfoVis
data are bank transactions, telecom connection data, etc.

However, there are many applications where data is
used that cannot be classified so easily, e.g., flow data
with many data dimensions. In such cases, it is beneficial
to combine methods from both fields, so that the data can
be handled more easily.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

WSCG SHORT Communication papers proceedings
WSCG2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

In this paper, 3D scatterplots are presented as a new
way to link scientific and information visualization. This
is done by using a software volume renderer for display,
and combining it with InfoVis interaction methods such
as linking an brushing. The challenges in working with
3D data in this context are also discussed.

2 Related Work

2D scatterplots are a very old and well-known visual-
ization method for unstructured data. They depict each
data point in a data set as a single point (or small object)
on a plane whose coordinates correspond to two of the
data dimensions. If the data set has more dimensions,
only two of them are used, resulting in a projection of
the data points onto the plane. Additional dimensions
can be shown by drawing glyphs, for example, or using
color or size as additional visual attributes.

An extension of scatterplots are prosection views [6],
which allow the user to select a range of values on one or
more axes that is not shown. Only the points that lie in
this range are projected. Another extension is the scatter-
plot matrix [3], which consists of many scatterplots that
show all combinations of two dimensions from the data
space. They are put into a matrix so that all plots with the
same Y axis are in one row, and all plots with the same
X axis are in the same column.

Two-dimensional projections (like they are done in
scatterplots of high-dimensional data and prosection
views) can also be extended to three-dimensional ones,
e.g., in nVision’sworlds within worldsapproach [5].

3D Scatterplots have already been proposed, even us-
ing volume rendering [2]. But the resolution of the data

Figure 1: The Voxelplot mapping process. Data is read
into the system, mapped into visualization space, and
rendered by RTVR. The user can interact with different
parts of the system.

there (20x50x50) is very coarse, and because the data
bins are displayed in a very fuzzy way, structures in the
data are very hard to see – the impression of a “data
cloud” is created that may look interesting but is not nec-
essarily a good depiction of the data. And because there
is only one view on the data, interaction and the combi-
nation of different information is also quite limited.

Using multiple, linked views is one of the key ideas
to combining scientific and information visualization
views. One very good example for this is WEAVE [7],
which allows the user to see different views like scatter-
plots, histograms, and a 3D rendering of an object and
to brush in the 2D displays. Other work has done sim-
ilar things in flow visualization [4], where the user can
find out which parts of an object are described by which
feature. Also in this case, linking back from the spa-
tial display to feature space is not possible. InfoVis has
also been used successfully for supporting the user with
transfer function specification [10].

Voxelplot uses RTVR [11], which is a very fast Java
library for interactive direct volume rendering. It orga-
nizes its data in such a way that as few points as pos-
sible have to be drawn (which is similar to a splatting
approach). The image is composed using the shear-warp
algorithm. RTVR can define objects in the data, whose
features can be different, and which can be drawn in dif-
ferent ways. The latter is called two-level volume render-
ing (2lVR [8]), and is especially useful for focus+context
visualization in 3D data sets.

3 Voxelplot

Voxelplot is an implementation of 3D scatterplots based
on RTVR. Each data point is mapped to one voxel in
three-dimensional visualization space depending on its

value on the selected axes (hence the namevoxelplot).
Working with data in Voxelplot consists of several

steps (Figure 1) that are outlined below and described
in more detail in the following sections.

1. Data load.The user selects the data source and the
data dimensions to be loaded (to preserve memory,
dimensions that are not needed are not loaded). The
data is then transferred into a memory cache.

2. Visualization Mapping. From the source data
space, only the dimensions to be displayed for each
view are selected and mapped into visualization
space (i.e., visual feature space). The user can in-
fluence the way in which this is done by choosing
the dimensions and selecting the mapping as well
as adjusting its parameters.

3. Rendering. The result of the mapping process is
put into renderlists, which is the internal data for-
mat of RTVR. RTVR then renders the image and
presents it to the user.

4. Interaction. The user can interact with RTVR di-
rectly (changing the viewpoint, zooming, etc.) or
with Voxelplot (brushing, changing the mapping,
etc.). The interactions of the different subsystems
work together seamlessly.

3.1 Data Load

As data source, we mostly use database tables. Each row
in the table is a data point, each column is a data dimen-
sion. In addition to the data dimensions, results from
clustering algorithms, degree of interest values, etc., are
also treated as first-order data and can be used as axes.

The data is put into a cache that can be swapped onto
disk for dealing with large data using a mechanism pro-
vided by RTVR.

3.2 Visualization Mapping

After data load, the original data is mapped into visu-
alization space (this is done separately for each view).
The dimensions to be displayed have to be selected and
assigned to visual features: one of three position axes,
color, or opacity.

The mapping step is important because the data also
has to fit into the feature space that is usually much
smaller than the original one. This leads to the prob-
lem that important parts of the data might not get enough
space to be usable. Therefore, different mapping func-
tions can be used to spread the data over the available
space.

For each dimension, the user has to select the mapping
function (Figure 3), which consists of three parts:

Window The user can select a range of the data to be
mapped, instead of the whole data domain. This
makes it possible to eliminate outliers or to concen-
trate on certain parts of the data.

Figure 2: A histogram showing the effect of the map-
ping: the upper histogram is the distribution of the origi-
nal data, the lower shows the effect of the mapping with
a square root function. Feedback is immediate.

Gap All data values outside the defined window are
mapped to values in visualization space that sig-
nify “above” or “below”. These must be separated
from the points that display mapped values, which
is done by a gap.

Function type The most important part is of course the
function type. It gives the user control over how
the values are presented, and which parts receive
more or less space. In Voxelplot, the user can se-
lect between linear, logarithmic, exponential, n-th
power and n-th root mappings. Logarithmic and
root functions give more room to the smaller part
of the mapped range, while exponential and power
functions compress the range and give more room
to the higher values.

The selection of the function and the definition of the
window is aided by a histogram preview (Figure 2) that
shows the effect of the current mapping to the histogram
of the dimension. This is done for each dimension sepa-
rately.

In addition to the points that represent the actual data
points, three axes are included in the 3D data. They have
different colors (red, green, blue) so that they can be
differentiated. Labelling of the axes is provided on the
lower right of the user interface (Figure 4). Labels were
not included in the volumetric display for several rea-
sons. First, the size of the displayed volume does not al-
low enough space for labelling, which would have taken
away valuable space and would have been very small.
Second, the labels would have been unreadable (because
they would be turned and tilted away from the user) most
of the time, anyway. View-aligned labels would be a way
out of this problem, but were not implemented in this
prototype.

A special problem is posed by categorical dimensions,

Figure 3: The mapping function. It consists of the data
window that specifies the values to be mapped; the gap
that separates unmapped values from mapped ones in vi-
sualization space; and the actual type of the function in-
side the window.

i.e., dimensions that only have a small number of differ-
ent values. Typical examples for such dimensions are
product categories, age groups, etc. Such dimensions
must be shown properly so that the impression of cat-
egories is retained (and not smoothed or interpolated,
which would distort this impression). But when such
data creates very thin slices of data in the display, the
structure of that data is hard to see. Therefore, categor-
ical dimensions are best mapped to color, which is also
the best use of color (because of the few colors humans
can actually differentiate).

3.3 Rendering

The result of the mapping process is the input for RTVR,
which is the volume renderer used. RTVR renders the
data with a combination of splatting and shear-warp fac-
torization.

One drawback of RTVR is the lack of depth cues other
than transparency (which is the main depth cue in vol-
ume rendering). This is less problematic in the visual-
ization of medical data, where objects can be seen whose
three-dimensional shape is quite easily understandable.
But in the case of InfoVis data with little structure, it is
impossible to get an impression of depth from a static im-
age. When the image can be rotated, however, the depth
impression is very good (see Section 3.4). A color map-
ping that is redundant with one of the axes also helps in
depth perception.

3.4 Interaction

In Voxelplot, there are two different kinds of interac-
tion. The first are viewing interactions, which are mostly
done directly with RTVR. The second are changes in the
mapped dimensions, the mapping, brushing, etc., which
are done with a separate control panel.

Voxelplot displays four 3D scatterplots at the same
time (Figure 4), with the option to enlarge one of them to

Figure 4: The whole Voxelplot application user interface. The red border marks the current view, its coordinate labels
are shown in the lower right.

one large scatterplot. One plot is the current one, which
the user interactions done with the interaction panel (on
the right) apply to.

RTVR can handle objects in the volume data, which
can be individually switched on and off, their param-
eters changed, rendered with different techniques (for
two-level volume rendering), etc. Voxelplot provides
mechanisms for combining several scatterplots in one
RTVR view (where each plot is one object), changing
their transparency individually, and deleting them. This
way, direct comparisons can be made between different
plots.

View Interactions

Constrained Viewing. RTVR provides basic interac-
tions that are needed for any kind of interactive volume
rendering. The user can rotate the object in three di-
rections and also zoom into it. This is done with the
mouse directly over the display, and feedback is imme-
diate. Being able to rotate the object quickly is important
for the user to get a 3D mental map of the object, because
the impression of 3D is much stronger with motion as a
depth cue1.

1To get an impression of this, please also see the accompanying
movie, available at http://www.vrvis.at/vis/research/voxelplot/vp.avi .

Voxelplot provides some additional viewing interac-
tions that are simple but useful for the work with InfoVis
data. The movements in the view can be constrained, so
that only one component of the movement actually has
an effect. This makes it easier to precisely turn the ob-
ject so that a certain view is achieved.

The viewpoint can also be reset to be orthogonal to any
of the axes in the view. This makes it possible to quickly
return to the initial view, and also to get a first impression
by looking at the three 2D projections. Because naviga-
tion in three dimensions is inherently difficult, these two
enhancements are a great help to the user.

In addition, an animated rotation over 90 degrees or-
thogonal to any of the axes is also possible. This is use-
ful when brushing a complex shape, where the user can
“shoot” different parts with a beam brush (Section 3.4),
one at a time.
View Linking. All views are linked, which means that
brushing of data takes effect in all views at the same
time. From the user’s point of view, this is useful, be-
cause brushing is usually used to find out which struc-
tures in one set of dimensions translate to which points in
another. But this is also the more logical modus operandi
because of the way brushing is implemented: the brush
defines a DOI (degree of interest) function on the data,
which necessarily affects all views.

Figure 5: Brush Types. Top: Selecting high pressure in
a catalytic converter dataset with a range slider in one
dimension. Bottom: The result of two beam brushes
through a dataset that represents a part of a CT scan of a
head.

Transparency. The transparency of all voxels in a plot
can be changed at the same time. This is useful when
looking at data where the points are very dense (so that
the effect of volume rendering can be really used), and
when looking at plots with a categorical axis (see Sec-
tion 5).

Brushing

In any of the scatterplots, the user can mark points, which
are then labelled as interesting. This operation is called
brushing in InfoVis, and is a very powerful tool. Brushed
points are not only marked in their view, but the respec-
tive data points are marked in the original data, and the
brushing information is passed to all other views (this
is called linking). This way, the user can see the connec-
tions between the different dimensions, and which points
in the different plots are the same data point in another
view.

Different from systems like WEAVE, brushing can be
done in any view, thus making interaction more flexible.
By being able to brush the physical structure of the ob-

ject, different hypothesis can be tested than when only
the features can be brushed.

Brushing in 3D is more difficult than in 2D, because
the user cannot just draw a rectangle around the inter-
esting points. We therefore implemented two brushing
techniques that are described in the following (see also
Figure 5).
Range Brush.With a range slider[1], the user can spec-
ify a data range with respect to one data attribute by se-
lecting a minimum and a maximum value with a slider
widget. Multiple range sliders, defined on different axes,
form a multi-dimensional brush, which creates a hyper-
box.
Beam Brush.A more direct selection mechanism is the
beam brush, which brushes all points that are inside a
cylinder that lies perpendicular to the viewing plane, and
whose radius the user can select. A typical selection with
the beam brush works like this: the user turns the view,
so that most points to be brushed lie behind each other,
brushes a beam through the volume, turns the object to
see which points were brushed (Figure 5b), and then uses
further brushing operations with composite brushes (see
below) to refine the selection. This is a very fast and
intuitive operation that can be used to brush even very
complex shapes easily.

Simple brushes alone are not sufficient, especially
when brushing in three dimensions. We therefore also
added composite brushes and other techniques that are
described below.
Composite Brushes.Combining brushes is an impor-
tant operation to be able to brush more complex shapes,
and brush exactly the points one wants to select. The
user can combine the effects of all brush types with each
other, and can choose from three combination operators:
OR, AND, and SUB (the latter subtract the new selection
from the existing one). This set is simple to use and the
user is able to select any subset of items. For example
a beam brush and the interactive rotation combined with
conjunctive combination of the brush forms a fast and
intuitive process of selection for complicated shapes.
Focus+Context Visualization. Brushed data is dis-
played as usual (with the full color, opacity, etc.), while
non-brushed data is semitransparent and gray. Non-
brushed data is displayed and not just left out, so that
it can serve as context for the brushed data – in InfoVis,
this is called focus+context visualization (F+C).
Smooth Brushing. Conventionally, the boundary of a
brush is a sharp edge, but this is not always appropri-
ate. Often, data points cannot easily be classified to be
of either full or no interest at all, but lie somewhere in
between. Smooth Brushing [4] takes this into account
by assigning an interest value that can not only have the
value 0 or 1, but also any value between these extremes.
Voxelplot can specify such fuzzy interest functions and
the combination operators also work with them.

The result of brushing is the degree of interest (DOI)
function, which assigns a value between 0 (not brushed)
to 1 (brushed with 100% importance) to every data point.
This function can be exported to the original data source

and used in other applications, and is of course commu-
nicated to the other views. The definition of the DOI
must be done on the original data points rather than on
voxels to be able to also brush the respective voxels in
views that show different dimensions.

4 Example: Catalytic Converter

The results of a simulation of the gas flow in a catalytic
converter were visualized using Voxelplot. The data set
consists of 9600 data points and 15 dimensions, among
them the 3D coordinates of each data point, a velocity
vector, pressure, turbulent kinetic energy (tkenergy), etc.

Generally, there are three questions the user wants
to answer in scientific visualization:Where are data of
a certain characteristic?, What other features do these
data have?, and What characteristics are present in a
certain part of the object?The first and last question
lead from information to scientific visualization, and
vice versa, while the second question can be answered
with InfoVis alone.

Selecting low pressure areas in parameter space (Fig-
ure 6a) show where in the object these areas are (Fig-
ure 6b). From there, the analysis can be refined, e.g.
by brushing one of the touched structures that are obvi-
ously present in the parameter space. When this is done,
it turns out that they correspond to different parts of the
catalytic converter (Figure 6c/d and e/f).

Because the structures are complex, they are brushed
with combinations of beam brushes that add and subtract
parts until the selection corresponds exactly to the struc-
ture under investigation.

We need to be able to brush from feature space to the
spatial view as well as the other way to be sure that our
analysis is correct. Only brushing a structure in feature
space and seeing a part of the converter being brushed
in the spatial view leaves the possibility that there are
points in this part that are not part of the brushed struc-
ture in feature space (and that just were not visible be-
tween the brushed points). So to verify that the feature
space structure indeed exactly corresponds to the part of
the converter, it is necessary to brush in the spatial view
and look for brushed points outside the structure that was
originally brushed.

This analysis brought the structure of the multi-block
simulation to light, where different parts of the catalytic
converter are treated differently, and also the grids differ.
The gaps between the features of adjacent parts of the
grid suggest that a higher resolution could be useful, and
more care should be taken at the interface between the
parts to make the transitions smoother.

The results are difficult to characterize, because the
discovered structures are complex. But this demonstrates
how powerful the method is – even highly complex struc-
tures that are only discriminable in 3D can be found and
separated.

5 Assessing Voxelplot

Even though there is a clear connection between volume
and information visualization, there are of course differ-
ences. These differences must be taken into account to
provide a useful visualization, and also make this pro-
gram interesting.

In volume visualization, one usually looks at data
from real objects, and these objects are visible in the
data. The perception of 3D space works quite well when
clearly defined objects are present, and not just single
points that appear to be more or less randomly placed. In
most areas, the user also knows what to expect from the
visualization: medical data sets – even though there are
variations between people, and diseases can change the
shape and appearance of organs – are well understood,
and the same is true for quality assurance of machine
parts, aluminium foam, etc.

InfoVis data, on the other hand, can have any shape,
and may not have any recognizable shape at all. Scat-
tered single points are also not perceived as objects, and
therefore much harder to see in the data. And even if
there is a shape, the user does not know what to expect,
since there is no a priori mental image of the data.

For this reason, interaction and depth cues are even
more important for InfoVis data than for most volume
data. But also the connection between the physical ob-
ject and the more abstract dimensions is a big help, be-
cause users generally have an idea of the features they
can expect in different parts of the object (like a catalytic
converter).

As a depth cue, color can be used which changes from
blue (which appears to be in the back) to red (appears
closer to the viewer). The effect is small but noticeable,
and even provides a cue to the depth order (i.e., which
voxel is closer than which other voxel) even when the
object is rotated.

But there is also another aspect to the problem of pos-
sibly very scattered points: Single points might be any-
where, maybe in gaps between clusters of points or in
areas where there is nothing else. Such points can be of
great interest, but are very hard to see, especially on a
dark background. Voxelplot therefore has a function that
puts a halo [9] around each voxel, thus enlarging it and
making it much harder to miss. This function also cre-
ates a stronger impression of objects being present in the
data (because holes are closed). To avoid mistakes, this
halo is white and thus easy to distinguish from the data
points themselves.

Another difference between the data presented in this
paper and more common volume data is its dimension-
ality. Medical data sets are usually three-dimensional, as
are CT data from many other applications. While render-
ing of such data is now quite well understood, work with
higher dimensional data is quite another issue. Volume
rendering is also optimized for different interactions than
might be needed for higher dimensional data, like a fast
switch between dimensions (which can involve heavy
pre-processing) or several, concurrent views.

a) Selecting the low pressure areas in parameter space b) ... shows where the pressure is low in the physical object.

c) The lower part of the “spoon” ... d) ... represents the converter monolith.

e) The inlet of the converter ... f) ... maps to the structure that is above and in front of the “spoon”.

Figure 6: Examples of segmenting the catalytic converter data set in parameter space. The axes in parameter space are:
pressure (red axis and color), velocity (green), tkenergy (blue)

Categorical data is not easy to deal with in scatter-
plots – 2D or 3D. In 3D, when there is only one axis with
categorical data on it in the display, it effectively creates
separate planes with 2D scatterplots, which can be use-
ful independently of the rest. Comparing between these
planes is possible in two ways. One can look at them
from an oblique angle, and get a quick picture of the dif-
ferences. And one can change the global transparency of
the plot, and look at several planes at the same time, like
a stack of layered slides (looking at them orthogonally
to the categorical axis). By moving a range brush along
that axis, one can switch back and forth between the lay-
ers (which act as context), and look at different planes to
see differences and similarities.

In volume rendering, the source data are voxels, where
they come from is secondary. In the case of Voxelplot,
many values might fall into one voxel. The question
is then, what features the voxel should represent: the
mean of all the data points, the maximum, minimum,
how many data points fall into this voxel, etc.

As a conclusion from all these points, it is clear that
there are a few challenges when combining scientific and
information visualization. But both sides can gain signif-
icantly from the knowledge and experience that has been
collected in the other field, and from the techniques and
concepts that have been developed.

6 Conclusions, Future Work

We have shown that information and scientific visual-
ization can be integrated seamlessly and very flexibly
through the use of a common method: interactive 3D
scatterplots.

The combination of methods and ideas from these
two different fields also makes efficient work with high-
dimensional data possible and useful to engineers. 3D
scatterplots can also deal with data sets that are usually
considered large in Information Visualization (over one
million data points).

Undoubtedly, this work is only a first step, and a lot
of work remains to be done. Perhaps the most impor-
tant now is to provide more depth cues to the user, like
perspective projection, fog, and stereo viewing.

Acknowledgements

This work was done in the scope of the basic research
on visualization (http://www.VRVis.at/vis/)
at the VRVis Research Center in Vienna, Austria
(http://www.VRVis.at/), which is funded by the
Austrian research program Kplus. The example dataset
is courtesy of AVL List GmbH, Graz, Austria.

References

[1] Christopher Ahlberg and Ben Shneiderman. Visual
information seeking: Tight coupling of dynamic

query filters with starfield displays. InHuman Fac-
tors in Computing Systems. Conference Proceed-
ings CHI’94, pages 313–317. ACM, 1994.

[2] Barry G. Becker. Volume rendering for relational
data. InIEEE Symposium on Information Visual-
ization (InfoVis ’97), pages 87–91. IEEE, 1997.

[3] William S. Cleveland. The Elements of Graphing
Data. Wadsworth Inc, 1985.

[4] Helmut Doleisch and Helwig Hauser. Smooth
brushing for focus+context visualization of simu-
lation data in 3D. In10th International Conference
in Central Europe on Computer Graphics, Visual-
ization, and Computer Vision (WSCG 2002), pages
147–155, 2002.

[5] Steven Feiner and Clifford Beshers. Worlds within
worlds: metaphors for exploringn-dimensional
virtual worlds. In ACM, editor,Third Annual Sym-
posium on User Interface Software and Technology
(UIST), pages 76–83. ACM Press, October 1990.

[6] George W. Furnas and Andreas Buja. Prosection
views: dimensional inference through sections and
projections. with a discussion by John F. Elder IV,
Shingo Oue and Daniel B. Carr and a rejoinder by
the authors.Journal of Computational and Graph-
ical Statistics, 3(4):323–385, December 1994.

[7] D. L. Gresh, B. E. Rogowitz, R. L. Winslow, D. F.
Scollan, and C. K. Yung. WEAVE: A system for vi-
sually linking 3-D and statistical visualizations, ap-
plied to cardiac simulation and measurement data.
In Proceedings Visualization 2000, pages 489–492.
IEEE, October 2000.

[8] Helwig Hauser, Lukas Mroz, Gian-Italo Bischi,
and Eduard Gr̈oller. Two-level volume rendering.
In IEEE Transactions on Visualization and Com-
puter Graphics, volume 7(3), pages 242–252. IEEE
Computer Society, 2001.

[9] Victoria Interrante and Chester Grosch. Strategies
for effectively visualizing 3d flow with volume lic.
In Proceedings of Visualization 1997, pages 421–
424. IEEE Computer Society Press, 1997.

[10] Joe Kniss, Gordon Kindlmann, and Charles
Hansen. Interactive volume rendering using multi-
dimensional transfer functions and direct manipu-
lation widgets. InProceedings IEEE Visualization
2001 (Vis’01), pages 255–262. IEEE Computer So-
ciety Press, 2001.

[11] Lukas Mroz and Helwig Hauser. RTVR - a flexible
java library for interactive volume rendering. In
IEEE Visualization ’01 (VIS ’01), pages 279–286.
IEEE, 2001.

