
Tangible Image Query

Krešimir Matković1, Thomas Psik2, Ina Wagner2, and Werner Purgathofer3

1 VRVis Research Center in Vienna, Austria,
http://www.vrvis.at, Matkovic@VRVis.at

2 Institute for Design and Assessment of Technology,
Vienna University of Technology, Austria,

http://www.media.tuwien.ac.at, {psik, iwagner}@pop.tuwien.ac.at.at
3 Institute of Computer Graphics and Algorithms,

Vienna University of Technology, Austria,
http://www.cg.tuwien.ac.at, wp@cg.tuwien.ac.at

Abstract. This paper introduces a tangible user interface for browsing
and retrieving images from an image database. The basis for the query to
the image database is a color layout sketch, which is used by the under-
lying query algorithm to find the best matches. The users are provided
with colored cubes of various sizes and colors. The users can place and
arrange the colored cubes on a small table to create a color layout sketch.
Multiple users can use this interface to collaborate in an image query. To
evaluate the benefits of the interface, it is compared to a traditional GUI
application in which the users use a mouse to paint a color layout sketch.
The tangible interface appears to be easier to use and better accepted
by people who belive they are unable to draw or paint or who do not
want to use computer.

1 Introduction

The explosion of digital technology in the last decade led to an enormous amount of
digital images. Conventional ways of data retrieval became just insufficient for large
amounts of visual material. Popular thumbnail views are useless, if we have thousands
or tens of thousands of images. Another approach, key wording, simple does not work
for most of us. It is easy to keyword a few images, but it is illusory to expect that average
users will keyword their whole collection of images. Eakins and Graham [1] claim that
some professional agencies need up to 40 minutes to keyword a single image. It is
clear that common users confronted with hundreds and thousands of images cannot
do such precise key wording. Content based image retrieval, which has been a subject
of extensive research in the last decade, tries to offer a solution for retrieving images
from large databases.

The original and still often used idea is the query by example method. This means
that the user supplies an image, and the system tries to find similar images. In this
case the central problem is the definition of similarity. As humans themselves can not
always agree on what is similar and what is not (or what is more similar) the results of
image retrieval are often unexpected and sometimes disappointing. Figure 1 shows an
example where such a system was used to search for images similar to the bird image.
If the user understands that the system tries to find images with similar color layout,



Fig. 1. Query by Example can be disappointing if the user does not understand the
underlying algorithm. Here the system searches for a similar color-layout, and not for
birds.

and not content (bird in this case), results are much more satisfactory. On the other
hand if the user expects birds she/he might be really disappointed.

The next step in image retrieval was not to search only for overall similarity, but
rather to find images containing a specific pattern. A company logo is a good exam-
ple. Imagine a company searching for images containing their logo. The logo can be
anywhere in the image, it can be taken under various lighting conditions, it can be
distorted due to the perspective projection and so on. Clearly this is not a trivial task.
Furthermore, if one tries to find all images containing a bird, for example, the whole
search becomes practically impossible.

There are numerous systems capable of various kinds of image queries available.
IBM’s QBIC System [2] was one of the first systems, and it can be tested online at [3, 4].
The VIR Image engine [5] from Virage, Inc. and the Photobook Project [6] developed
in the MIT Media Lab are two also well known examples. The work of Jacobs at al.
[7] is especially well known in the computer graphics community. All of these as well
as [8–10], represent the query by example approach. There are systems like Blobworld
[11, 12] or ICONA [13, 14] which represent another group of systems, they go beyond
simple query by example, and try to find similar shapes, textures, and other features.

Some systems offer a possibility for the user to sketch the query image. The basic
idea is that a user might remember how the image looked like (but cannot remember
the image’s name), so the user sketches the image, and the system finds matching im-
ages from the database. Another possible scenario of use comes from the designers’ and
architects’ perspective. In the concept design phase of a project it is common practice
to browse through image collections in order to be inspired, to see some unexpected
connection between images. Visual image query can be used for such a browsing. The



drawback of the method described above (see Figure 1) suddenly becomes an advan-
tage. Asking for a parrot, and getting a flower can be either: frustrating or inspiring,
depending on the user and the context.

This work is based on such a system, and a new kind of user interface for sketching
images is introduced. Instead of using a mouse to draw, users are provided with small
cubes of various sizes and colors, and they try to sketch an image using the color cubes.
Cubes are placed on a semitransparent glass surface. Besides the cubes, users may use
any colored objects. This kind of ”sketching” using currently available artifacts is par-
ticularly common among designers and architects. We implemented the method, built
a prototype and tested it with users. Finally we compared the results with conventional
sketching using a mouse.

2 Underlying algorithm

Although the underlying system is arbitrary, and the method can be combined with
any query by example method, we needed one method for our implementation. The
system is based on the visual image query by Matkovic et al. [15]. The underlying
algorithm will be briefly described. Just like most of the image query methods, the
method uses descriptors calculated for each image. These descriptors are created in the
database during a preprocessing phase. When the user performs a query, a descriptor
is created for the query image and compared to the stored descriptors. Various query
systems differ in the way how descriptors (sometimes called signatures) are created. The
Visual Image Query (the system he have used) calculates descriptors using 1000 quasi-
randomly distributed rectangles of various sizes in the image. The rectangles partly
overlap. The sizes of the rectangle are chosen according to the contrast sensitivity
function of the human eye. Figure 2 illustrates the distribution at the first 100, 250,
500, and 1000 rectangles. For each rectangle the average color is computed, and all
1000 Luv color triples are stored in the signature. The signature contains only color
information for each rectangle, and the system can not distinguish if, e.g., an orange
spot in the middle is a flower or a fish. The only information known is that there is an
orange spot in the middle. The exact shape of the spot is also not known. It is sampled
using the rectangles, and can never be precisely reconstructed. The comparison of two
descriptors is done in the Luv color space, i.e. for all 1000 triples the luv-difference is
computed and a weighted sum, according to the contrast sensitivity function, of these
differences is taken as distance function of the two images.

This method was selected since it is particularly convenient for the comparison of
user sketches. The sketch is not precise, and actually, only the color layout matters.
However, in order to make it suitable for the new interface, and in order to compare it
with conventional input, the original algorithm had to be changed slightly.

2.1 Changes to the original algorithm

In the original algorithm the descriptor consists of 1000 Luv triples. Comparing two
descriptors means computing the Luv difference for 1000 triples. In order to speed
up the process, the algorithm was modified slightly. 1000 rectangles are placed in the
image, and the average color of each rectangle is computed. This average color is then
rounded to the 64 color set. Now, the descriptor consists of 1000 indexes (in the 64
color set) instead of 1000 Luv triples. The difference between two descriptors can be
computed faster using a matrix of predefined differences between all 64 available colors.



Fig. 2. Top: Rectangle distribution for the first 100, 250, 500 and 1000 rectangles in
the algorithm we have used.Bottom: The user draws three separate areas, and only the
corresponding rectangles are used for this query.

In the original algorithm either the whole image or one selected area was compared.
This had to be changed to allow multiple areas. Only these parts of the image where
the user sketched something will be used in the comparison. In this way the user
does not need to sketch the background, but only significant places she/he remembers.
Furthermore, the query starts automatically when the user does not change the sketch
for a second, and results are displayed. Figure 2 illustrates an example of a simple
sketch and the subset of rectangles used in this case. Of course, the support for the
new interface had to be added as well.

2.2 Sketching the query image

Tests with the original system using conventional mouse input, showed that there are
two groups of users. The first group of users, forming a majority, are the users who
claim they cannot draw (or paint, or sketch). It was not easy to encourage them to try
the system. They were just saying ”I can not draw”. Although we explained that they
do not need to draw an exact reproduction, but just a red spot here, and a blue spot
there... just a color layout sketch, it was still not easy to get sketches from them.

The second group of users were users who can draw. The problem with them was
that they were not satisfied with the sketch, they wanted to have it perfect.

Some systems are offering tools for drawing circles, rectangles, and other primitives.
If such a system is used for color layout search results are even more disappointing.
Imagine a user drawing a yellow circle, and the system responding with flower images,
or even yellow triangles. Of course, the system was not recognizing the shape, but only
the color. This is misleading for the users in most cases.

It was clear that conventional sketching is a good solution only for a very limited
number of users. Another kind of interface is needed, an interface that is very suitable
for sketching, but which is not suitable for drawing. In this way, users who cannot
draw will not be disappointed with their drawing results. It is impossible to draw with
that interface anyhow, and for the same reason the users who can draw will not try



to draw perfectly. Such an interface is introduced in this paper, and this is the main
contribution.

3 New sketching interface

The whole setup consists of a table with a semi-transparent white glass plate. There
is a set of color cubes, and the users can arrange them on the table in order to make
a sketch. A simple web cam is mounted under the plate, which is used to retrieve the
color layout sketch. This sketch image is then used as a query image. Figure 3 shows
a part of the setup with the table used for sketching. It was common practice during
our experiments that users ”draw” together. They stood around the table, and instead
of the others instructing one user what to do (which was common with the mouse),
the group could draw together. The collaboration is another important quality of the
cubes interface. Furthermore, not only the cubes can be used to sketch. As soon as
a bowl of fruits was placed next to the table, some users used oranges and apples as
sketch tools.

Fig. 3. Students experimenting with the new interface.

4 Vision based color sketch

The Crayon project [16] provides a good overview of the current state of vision based
interaction. In the project the researchers use a camera for hand tracking and explored
the field of color calibration and machine learning. Our approach is related to their
work in the respect that we also extract color information from a live video stream.



Various problems that are related to color vision had to be faced. First tests showed
that for certain colors (especially cyan and gray) that were desirable, no stable cali-
bration was possible. This is because web cams provide compressed video information
and use optical sensors that are optimized to capture images of faces. The main usage
of this kind of camera are video meetings, so the red part of the visual spectrum is
covered quite well, but blue and contrast are not of high concern.

4.1 Hardware setup

To reduce the problems that come with computer vision, like changing ambient light
and dynamic in- camera adaption, a setup where these external interferences are re-
duced was created. The camera was mounted underneath a semi transparent surface,
on which the colored cubes were placed. Also a light source was installed underneath
this surface to ensure proper lighting conditions. The setup was surrounded by a non
transparent casing leaving only the surface visible to the users and exposed to the am-
bient light in the room. It was possible to achieve good results with a static calibration
of the color detector with this setup. The output of the query was displayed by using
a projector to create a large screen right in front of the image sketching surface.

The need for such a special hardware setup might be considered to be a drawback of
the system. Not everyone has the possibility to allow extra space in the office for such
an installation. In such a case a simplified system consisting of a web cam pointing
down on the desktop (the real desktop), and a set of colorful cubes, game stones,
pieces of paper, or similar things can be used to test the system. Of course, the system
is more single user oriented in such a reduced setup, but it suffices for test purposes.
Furthermore, the use of flatbed scanners for this purpose was briefly exploited with
advantages like better color and contrast but also drawbacks like increased response
times and reduced interactivity.

4.2 The steps of the color sketch retrieval

Two approaches were implemented to create our test setups. In the first implementation
the color segmentation was applied at the vision part of the system. First an image is
grabbed from the web cam, then a color segmentation is performed and finally a color
indexed image is sent to the search engine. The color segmentation was implemented
using the HSV (hue, saturation, value) color space. For each color (white, yellow,
orange, red, green, blue, magenta, black) ranges for the HSV values are specified.
Using a simple filter, regions in the grabbed image that have color values within these
ranges are copied to a color index image. The color index range is from 1 to 8. Zero is
being used to indicate that none of the colors was detected. This indexed color image
is then sent over the network to the search algorithm.

In the second implementation background subtraction was used to filter out the
parts of the video stream that have been changed or added by the users. This approach
sends a full color image (with reduced size) and an alpha channel (specifying the regions
that are not background) to the search engine.

A ”change” parameter is extracted from the live stream as well, measuring how
much the image has changed between two updates. A high value indicates that the
users are currently changing the sketch or just moving the hands within the observed
area (for example to point out certain regions and compare them with the results).
During this period of vivid interaction no update is sent to the search algorithm, not



even the color segmentation or background subtraction is evaluated. Such intermediate
results would confuse the users and also distract their concentration from the task of
creating or changing a sketch. When the ”change” parameter drops below a certain
value the image segmentation is activated. If the difference between the resulting sketch
and the previous query to the search algorithm is above a certain value (indicating that
the vivid change in the video stream was not just moving the hand but also moving
some objects), the new sketch is sent to the search algorithm. This makes it possible
to create fast update rates, as no unnecessary video images and queries are evaluated.

Both image segmentation approaches have their advantages. The color segmenta-
tion provides better results in respect of removing the background and not used areas.
Because the background subtraction algorithm dynamically updates the reference im-
age it is more stable to ambient light changes. Also the background subtraction allows
the use of more than 8 colors, because the colors are not mapped to one of the indexed
colors of the cubes. At the same time the network traffic increases as more data has to
be sent to the search engine.

Selection of colors for the tangible interface The original implementation
using the mouse as an interface allowed the users to create a sketch with about 50
different colors. Users memorizes only main colors mostly based on the hue value. They
tend to use only a basic set of colors when they try to reproduce an image. Therefore
to help the users to focus on a basic color sketch, only basic colors where provided in
form of colored cubes for the tangible interface. White and black as representatives
for the grey spectrum and red, green, blue as the basic colors. As yellow, orange and
magenta are also well memorized colors those were provided, too. Early tests with a
web cam showed that cyan as a mixture of green and blue is badly captured by web
cams. Therefore no cyan cubes were provided for the tests. Feedback from the users
proved that cyan is not an important color.

5 Comparing mouse and tangible interface

As discussed in [17] a user interface can be evaluated with the terms: degree of indirec-
tion, degree of integration, degree of compatibility. Although the original publication
focuses on widgets, it can also be adopted for tangible user interfaces. The object that
the interface operates on can be interpreted in two ways. On the one hand the users
manipulate the color layout sketch, on the other hand they do that because they want
to change the results of the color layout query.

The degree of indirection is a measure of the spatial and temporal offsets generated
by an interface. The spatial offset is the distance between the input part of the interface
and the object it operates on. The temporal offset is the time difference between the
physical action on the interface and the response of the object. The temporal offset is
quite the same for both interfaces, as the sketching of the color layout is performed
in real time with both interfaces, without any time delay. And after a specific time
without manipulation both interfaces send the created sketch to the search algorithm.
The spatial offset is slightly better with the mouse interface as the drawing area and
the display of the results are on the same screen and the tangible interface needs two
separate areas, one to sketch the color layout and one to present the results.

The degree of compatibility measures the similarity between the physical actions
of the users on the interface and the response of the object. The tangible user interface



provides a higher degree of compatibility as the users directly manipulate the color
layout sketch with the colored cubes. The interface is a very direct approach without
abstract mapping between input and effect on the query. With the mouse interface the
users have to draw by selecting a color from the palette and then move the mouse to
create a colored area in the sketching window.

The degree of integration measures the ratio between the degrees of freedom (DOF)
provided by the logical part of the instrument and the DOFs captured by the input
device. The term degree of integration was introduced in integral tasks [18]. The degree
of freedom can be evaluated in two dimensions: the color dimension and the layout (2D)
dimension. The mouse interface provides only a 2D interface. Therefore an indirect color
selection method has to be incorporated. The tangible interface in our current setup
allows direct access to all three dimensions (color and 2D), but as one of our test users
stated, the cubes can also be stacked to create a three dimensional structure. So the
tangible interface has four dimensions that can be operated on. These do not match
with the needed three dimensions, but can be resolved if colored objects are used that
cannot be stacked, like half-spheres instead of cubes.

6 Results

We have tested the system with a large number of users. The application was presented
at various workshops, including a ”Beginner’s day” at the university and a workshop
that was part of the review of the ATELIER project. Some of the workshops were
publicly accessible, therefore different types of users tested the system. The users had
different drawing and computer usage skills. The general feedback from the testers was
very positive. The tangible interface is very attractive and easy to use.

In addition he have interviewed selected special users, that work with pictures in
their profession. A collection of approximately one thousand images was presented to
the users. They observed a slideshow, and they were asked to remember a few images
that had an impact on them. Afterwards they tried to draw a sketch in order to retrieve
the memorized images. First they made a sketch with the mouse, and then using the
new color cube interface. Results and impressions of users were compared at the end.

Figure 4 shows a sketch of a sitting person, and result images (she was looking for
the second best guess by the system). Most of the users tried to ”draw” the picture with
the mouse, and the tangible interface helped them to understand that a sketch is better
for the search than a ”redraw” of the image they searched for. The results that were
presented by the search algorithm often did not fit their expectations when drawing
with the mouse (and trying to draw structures). The color they found was missing were
mostly brown and grey, but this could correlate with the picture selection. Investigating
the multi user aspect of the tangible user interface was also interesting, as some of the
users complained about it, when other destroyed their work by changing the sketch
without asking.

The general response was very good, and most of the users liked the tangible
interface better than conventional one. As we had some test users with visual arts
background, we noted that they were very pleased with the surprising component of the
tool. E.g., a user searched for a sun-set that was instantly within the top 15, but mixed
with images of red flowers and a firework. These results were far from disappointing,
and the flowers and firework images fitted well in the users expectations.



Fig. 4. Sketch done by a painter looking for the portrait of the sitting person.

7 Conclusion

As many available examples prove the color layout search is an interesting approach
to image query. Our work presents a new tangible user interface that allows creating
color layout sketches in an easy and straight forward manner. Rather than improving
the query algorithm itself, we tried to find a new interface which suits the existing
algorithms better. The algorithm needs a certain level of abstraction, which is often
hard to achieve using a traditional mouse-interface. The new color cube interface makes
it impossible to draw precisely, and therefore helps the users achieve the needed level
of abstraction.

Still many of the problems of the underlying methods persist. Tangible user inter-
faces enrich the possibility of collaboration and multi user input, with all the problems
that come with it. For example there is no method of helping the users with synchro-
nization, as all users that use the interface, actually shared this interface physically.
They have to sort out conflicts between them without (computational) help, for ex-
ample: someone adding his ideas to the sketch without asking. The method of color
layout image retrieval also has its flaws. Most of the users cannot clearly identify the
distinction between shape and color layout. A good example is the search for a sunset.
A red shape placed in the middle of the image is a good approach, but images where
the sun is not close to the center will not be found, even if it is a picture of a sunset,
and images of a red flower in the center of the image will be found instead.

We observed that the use of a tangible user interface helps the users to create color
layouts rather than shapes. More over the interface can be used in a more vivid way.
It allows direct access to the sketch rather than the indirect method of using a mouse.

The color cubes interface fits very well with the underlying visual image query, and
helps the users to cope with the limitations of the query algorithm. In this way the
usability of the whole system is significantly enhanced.



8 Future work

We want to integrate this interface into a framework, where designers are adding images
to a repository. These pictures are indexed (with words) and therefore we will be able
to do a filtering based on these keywords, also. This will lead to an image query system
that combines the unsharp search based on color layout, as described in this article,
and image search by keyword. In combining these two approaches we hope to encourage
the users of the framework to make use of this interface even more. We want to test
whether the combination of indexing by words and a color based image search will
result in a better interface or not. The surprise element of results will surely decrease
(in case the indexing is done properly), but also the results could fit better to the
expectations of the users.

Improvements on the color layout search engine will also be investigated. As we will
have access to a repository with over 10.000 images, we can than test the scalability of
the algorithm and probably introduce new aspects in respect of clustering the database
and improving the response to the query.

The vision system as described in this paper was realized using a consumer web
cam. If a high quality camera can be used, surely the detection of the color sketch
would improve as the color dynamic will increase.

9 Acknowledgments

The authors would like to thank our co-researchers from the Atelier Project, in particular Andreas

Rumpfhuber. This work was partly sponsored by the European Commission - IST programme - Fu-

ture and Emerging Technologies - Proactive Initiative - The Disappearing Computer II - through the

ATELIER project (EU IST-2001-33064). Parts of this work were carried out at the VRVis Research

Center in Vienna (http://www.VRVis.at/), Austria, which is funded by an Austrian governmental

research program called Kplus.

References

1. Eakins, J.P., Graham, M.E.: Content-based image retrieval, a report to the jisc
technology applications programme 1999. (Technical report)

2. Petkovic, D., Niblack, W., Flickner, M., Steele, D., Lee, D., Yin, J., Hafner, J.,
Tung, F., Treat, H., Dow, R., Gee, M., Vo, M., Vo, P., Holt, B., Hethorn, J., Weiss,
K., Elliott, P., Bird, C.: Recent applications of ibm’s query by image content (qbic).
In: Proceedings of the 1996 ACM symposium on Applied Computing, ACM Press
(1996) 2–6

3. IRS: (Image Retrieval Service (IRS) of the EVlib,
http://visinfo.zib.de/irs)

4. QBIC: (The State Hermitage Museum, St. Petersburg, Russia, QBIC Color and
Layout Search,
http://www.hermitagemuseum.org/fcgi-bin/db2www/qbicsearch.mac/qbic?sellang=english)

5. Gupta, A.: The virage image search engine: an open framework for image man-
agement. In: Storage and Retrieval for Image and Video Databases IV, SPIE
proceedings series. Volume 2670. (1996) 76–87

6. Pentland, A., Picard, R., Sclaroff, S.: Photobook: Content-based manipulation of
image databases. In: SPIE Storage and Retrieval for Image and Video Databases
II, number 2185, Feb. 1994, San Jose, CA. (1994)



7. Jacobs, C.E., Finkelstein, A., Salesin, D.H.: Fast multiresolution image query-
ing. In: Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques, ACM Press (1995) 277–286

8. Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D.,
Equitz, W.: Efficient and effective querying by image content. Journal of Intelligent
Information Systems 3 (1994) 231–262

9. Kelly, P.M., Cannon, M.: Query by image example: The candid approach, los
alamos national laboratory white paper (1995)

10. Vailaya, A., Zhong, Y., Jain, A.: A hierarchical system for efficient image retrieval,.
In: Procedeengs of International Conference on Pattern Recognition (August 1996).
(1996)

11. Belongie, S., Carson, C., Greenspan, H., Malik, J.: Color- and texture-based image
segmentation using EM and its application to content-based image retrieval. In:
Proceedings of the Sixth International Conference on Computer Vision. (1998)

12. Carson, C., Thomas, M., Belongie, S., Hellerstein, J.M., Malik, J.: Blobworld:
A system for region-based image indexing and retrieval. In: Third International
Conference on Visual Information Systems, Springer (1999)

13. Boujemaa, N., Fauqueur, J., Ferecatu, M., Fleuret, F., Gouet, V., Saux, B.L.,
Sahbi, H.: Ikona for interactive specific and generic image retrieval. In: Proceedings
of International workshop on Multimedia Content-Based Indexing and Retrieval
(MMCBIR’2001), Rocquencourt, France. (2001)

14. Fauqueur, J., Boujemaa, N.: Logical query composition from local visual feature
thesaurus. In: Proceedings of Third International Workshop on Content-Based
Multimedia Indexing (CBMI’03). (2003)

15. Matkovic, K., Neumann, L., Siglaer, J., Kompast, M., Purgathofer, W.: Visual
image query. In: Proceedings of Smart Graphics 2002. (2002)

16. Fails, J.A., Olsen, D.R.: A design tool for camera-based interaction. In: Proceed-
ings of the ACM CHI 2003 Conference on Human Factors in Computing Systems,
Association for Computer Machinery (2003) 449–456

17. Beaudouin-Lafon, M.: Instrumental interaction: An interaction model for designing
post- wimp user interfaces. In: Proceedings of the ACM CHI 2000 Conference
on Human Factors in Computing Systems, Association for Computer Machinery
(2000) 446–453

18. Jacob, I., Oliver, J.: Evaluation of techniques for specifying 3d rotations with a
2d input device. In: Proceedings of HCI’95 Conference, People and Computers X.
(1995) 63–76


