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ABSTRACT  
 
Nowadays, many cultural heritage applications require a 3D reconstruction of complex real world objects. Due to the complexity of 
real world objects, 3D reconstruction is often very time consuming and involves in general much manual effort. Therefore we report 
in this paper on a novel automatic 3D reconstruction approach to create virtual models of real world objects from a set of images with 
high redundancy. The power of our approach can be derived from the fact that we utilize the given redundancy to solve one of the 
main problems in photogrammetry, namely the correspondence problem. On the other hand we focus on minimizing the human 
interaction during the modeling process. The reconstruction pipeline starts with an image acquisition step, which consists of taking 
handheld images of the object with a calibrated digital consumer camera with short baselines. The rest of the workflow is represented 
by four consecutive steps: automatic orientation, multiple image segmentation, dense matching and multiview texturing. We 
demonstrate the accuracy, robustness and effectiveness of our proposed approach on several different real world objects.  
 

1 INTRODUCTION 
 
The preservation of complex cultural objects is an important 
application area of imagebased modeling. A full 3D 
reconstruction of a complex cultural object, like a statue, 
represents a permanent record of the real world object in their 
original position. The main interests for such a 3D 
reconstruction are the detection of erosion through 
environmental elements and the documentation of a restoration 
process. Another attractive application is the visualization of 
reconstructed 3D models in a virtual reality environment to 
make unique cultural objects accessible for a wide audience.  
As introduced in ElHakim et. al. (6) the general requirements 
for the 3D reconstruction of real world objects are: high 
geometric accuracy, capturing all details, photorealism, full 
automation, low cost, portability and flexibility in applications. 
Our research aims to fulfil these requirements and to reconstruct 
a complex cultural object more accurate and convenient than 
current available computer vision techniques. Furthermore we 
focus on minimizing human interaction during the modeling 
process.  
The images are captured directly on site with a high quality 
digital consumer camera using short baselines, resulting in high 
overlap. The key idea of our approach is to take advantage of 
the high redundancy to solve one the main problems in 
photogrammetry and computer vision, namely the 
correspondence problem. Essentially, the reconstruction 
pipeline can be separated into four main steps. The first step is 
represented by the automatic orientation procedure to obtain the 
relative orientation of each image pair. The next step consists of 
a multiple image segmentation task to separate the relevant 
parts of the scene belonging to the real world object from the 
background. The last two steps comprise the dense matching 
and the texturing of the 3D model, considering the visibility, 
viewing angle and the base of the projection.  
The remainder of the paper is organized as follows. In section 2, 
an overview of related work concerning 3D reconstruction of 
complex cultural objects is provided. Our proposed 3D 
reconstruction approach is presented in section 3. Some results 
to demonstrate the usability of our approach are presented in 
section 4. The paper concludes with a short discussion and some 
aspects of future work.  
 
 

2 RELATED WORK 
 
The automatic reconstruction of complex cultural objects is still 

an active research field within the photogrammetric community. 
There are two classes of modeling techniques for acquiring 3D 
information of cultural sites. The first technique, known as 
rangebased modeling, is based on laser scanners. A very well 
known approach in this field is The Digital Michelangelo 
Project proposed by M. Levoy et.al. (14).  
In this paper we focus on imagebased modeling, which 
represents the 3D reconstruction of real world objects from a 
dense set of photographs. A comparative evaluation of image-
based and range-based methods can be found in ElHakim and 
Beraldin (5).  
Imagebased modeling techniques utilize in general widely 
available hardware and a developed system can be normally 
used for a wide range of different objects and scenes. 
Furthermore such algorithms produce realistic models with an 
increasing level of automation. Over the past few years, a 
number of research teams have been addressed the use of these 
techniques to generate 3D models of complex cultural objects. 
One of the most popular approaches is the automated 
reconstruction of the Great Budha of Bamiyan, Afghanistan 
proposed by Gruen et.al. (9). The work is based on the use of 
three types of imagery in parallel: internet images, tourist 
images and metric images. The 3D reconstruction is performed 
with automatic and manual procedures utilizing the mentioned 
three types of data-sets. Another project of this research team is 
the 3D reconstruction and visualization of a Buddhistic Tower 
from Bayon Temple in Angkor, Cambodia proposed by Gruen 
et. al. (10).  
The methods mentioned so far deal with several area-based 
matching techniques to recover the 3D information. A complete 
different image-based 3D modelling technique is shape form 
silhouette, which recovers the shape of the objects from their 
contours. A practical system to generate 3D models from its 
profiles was introduced by Wong and Cipolla (21). This 
approach uses only the silhouettes of a sculpture for both 
motion estimation and model reconstruction, and no corner 
detection nor matching is necessary.  
 
 

3 3D RECONSTRUCTION OF COMPLEX CULTURAL 
OBJECTS 

 
In this section we will report the incorporated steps of our novel 
automatic 3D reconstruction approach and present the 
underlying data structures and algorithms. As stated the input 
images are captured with a calibrated high quality digital 
consumer camera with a 11.4 megapixels CMOS sensor. The 
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image acquisition process consists of taking hand-held pictures 
with short baselines resulting in high overlap. The process of 
camera calibration, which is not the topic of the paper, is a well 
studied problem in photogrammetry and determines the internal 
parameters of a camera. Our method is based on work described 
by Heikkil¨a (12).  
The remainder of the reconstruction pipeline works as follows. 
An automatic orientation procedure to obtain the relative 
orientation of each image pair is performed. A reliable 
calculation of the relative orientation is based on an accurate 
point of interest (POI) extraction followed by an affine invariant 
matching approach. The reconstruction of complex objects, like 
statues require a segmentation process to separate the relevant 
parts of the scene belonging to the statue from the background. 
This segmentation procedure consists of two consecutive steps. 
The first step involves some human assistance and is dedicated 
to identify the foreground or background in at least one image. 
Based on this initial segmentation an automatic segmentation 
propagation procedure is performed, which results in a 
segmentation of the whole image sequence. This 2D 
segmentation masks are important to reduce the outlier rate in 
the following dense matching procedure and to obtain a 
meaningful 3D reconstruction. Consequently, in our matching 
procedure we concentrate on combining the available silhouette 
information with an area based dense matching approach. 
Another important aspect to fulfil our 3D reconstruction 
requirements is a high quality texture of the 3D model, 
considering the visibility, viewing angle and the base of the 
projection. All these requirements are incorporated in our 
automatic texture generation method. The overall reconstruction 
pipeline is illustrated in Figure 1. 
  

 
 
Figure 1: Overall reconstruction pipeline. The dark grey shaded 
tasks are interactive whereas the light grey shaded procedures 

are fully automatic. 
 
All mentioned procedures of our 3D reconstruction pipeline will 
be explained in more detail in the following subsections.  
 
3.1 Automatic Orientation  
 
The first step in our 3D reconstruction approach consists of an 
accurate automatic orientation procedure to obtain the relative 
orientation of the whole set of images. One of the basic 
problems in the field of photogrammetry is the correspondence 
problem, which is to identify 2D points in two images that are 
projections of the same 3D point in the world. From 

corresponding points within the image sequences the relative 
orientation and the 3D positions of the corresponding points can 
be estimated.  
Basically our orientation algorithm can be separated into four 
consecutive steps: extraction of tie points, matching of extracted 
tie points, estimation of unknown orientation parameters and 
refinement of obtained orientation parameters.  
The tie point extraction is based on a state of the art point-of-
interest detector proposed by Harris (11). Additionally each 
extracted tie point is provided with a feature vector, which 
consists of gradient information in a close neighbourhood. 
These feature vectors are utilized to detect corresponding points 
between image pairs. Another constraint is introduced by the 
well known epipolar geometry. Since the automatically matched 
correspondences can still contain a few outliers a robust 
estimation method called RANSAC (7) is initiated. In order to 
obtain the orientation of the whole image sequence, it is 
necessary to determine the scale factor. This task is 
accomplished by utilizing corresponding points in at last three 
images. The last step consists of a block bundle adjustment to 
refine the obtained orientation parameters. Figure 2 shows an 
oriented image sequence, illustrating the statue of St. Barbara, 
together with the obtained 3D tie points. 
  

 
 

Figure 2: Illustration of an oriented image sequence together 
with the obtained 3D tie points. The image sequence consists of 

47 images and approximately 5500 3D tie points which are 
shown as colored dots. 

 
3.2 Multiple Image Segmentation  
 
A detailed 3D reconstruction of complex real world objects 
requires many images, which in turn requires to segment many 
images which is a tedious and time consuming process. This 
section is dedicated to explain our multiple image segmentation 
task for minimizing the expenditure of time to achieve a robust 
and accurate foreground segmentation for 3D reconstruction. 
Such a foreground/background segmentation can simplify the 
correspondence problem dramatically and therefore, dense 3D 
reconstruction results of complex objects can be clearly 
improved. A more detailed description of the approach can be 
found in (19).  
However, the multiple image segmentation procedure requires 
as input an initial segmentation of at least one image, which can 
be obtained by utilizing intelligent scissors introduced by 
Mortenson and Barrett (16) or other interactive segmentation 
techniques. Here we focus on the propagation of this initial 
segmentation through all images of the sequence. The 
propagation task itself is mainly based on a region based 
matching algorithm. Thus we segment the image into a certain 
number of regions. All these regions are classified into three 
different sets (foreground, background and uncertain regions), 
illustrated in Figure 3. The final contour can be extracted from 
these three sets. For dividing the image into regions we employ 
a mean-shift image segmentation proposed by Comaniciu and 
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Meer (3). Additionally, to improve the robustness of the 
propagation procedure, our algorithm requires the relative 
orientation of the images to be known. 
  

 
 

Figure 3: Set of regions including foreground regions (F), 
background regions (B) and uncertain regions (U) and the 

highlighted true contour. Furthermore an illustration of start 
point (S) and end point (E) to automatically apply intelligent 

scissors. 
 
The workflow of our proposed segmentation method can be 
roughly seen as the composition of the following consecutive 
subtasks:  
1. Extract an area of interest, which is called initial contour 

ring, with an inner boundary and an outer boundary.  
2. Utilize information acquired from the contour ring and from 

the corresponding points to identify foreground and back-
ground regions with high confidence.  

3. Perform a region based matching algorithm based on mean-
shift information to separate the remaining regions in the 
contour ring in foreground regions, background regions and 
uncertain regions.  

4. Extract true contour segments from adjacent foreground and 
background regions and utilize intelligent scissors to close 
uncertain contour segments.  

This procedure is repeated until all images of the sequence are 
processed.  
Essentially we label all mean-shift regions which are directly 
connected to the inner boundary of the ring to foreground and 
those connected to outer boundary as background. A similar 
procedure is performed for the information which is provided 
by the corresponding points. The core of our multiple image 
segmentation approach is represented by the extended region 
matching algorithm for the remaining regions. Therefore 
matching between two regions ri of the previous image and rj of 
the current image is assigned with a similarity measure Si,j . The 
similarity measure Si,j is based on the mean-shift parameters and 
the known relative orientation. The final distance function for 
two regions is formulated as: 
  

d(ri, rj )=ω1 ∗
 
SLUV +ω2 ∗

 
SEpi +ω3 ∗

 
SCorr 

 
where SLUV is represented by the LUV values of the mean-shift 
region, SEpi encodes the distance of the epipolar line from 
region ri to the center of gravity of region rj and SCorr is 
composed from the distance of the nearest corresponding point 
to region ri respectively to region rj . ω1...ω3 are weights to 
control the influence of the different similarity measures. By 
evaluating the introduced distance function for each remaining 
region against a user defined threshold, we distinguish between 
foreground regions, background regions and uncertain regions. 
For the uncertain regions the intelligent scissors algorithm is 
applied. If the segmentation result is not satisfactory, a user has 
the possibility to correct a miss-segmentation, by a manual 
assignment of critical mean-shift regions or by an assisted 
intelligent scissors algorithm. Figure 4 shows the intermediate 
results of the multiple image segmentation approach illustrated 
on the statue of St. Barbara.  
 

3.3 Dense 3D Reconstruction  
 
The set of images with known calibration and orientation is 
used to generate a 3D model of the object in a fully automated 
manner. Since the goal is the creation of proper 3D models, 
usual stereo methods generating only 2.5D heightfields are not 
sufficient. Alternatively, true multi-view reconstruction 
approaches such as space carving (13) or variational approaches 
(23) can be utilized. In order to increase robustness and speed of 
3D reconstruction, we employ a two phase scheme to obtain a 
proper 3D model.  
In the first pass a fast reconstruction method suitable for small-
baseline settings is applied for every view. We utilize a plane-
sweep approach (2, 22) to create the set of heightfields using up 
to 5 images simultaneously for matching (one key image in the 
middle and one or two neighboring reference images on each 
side). For each depth value, the reference images are projected 
onto the key image plane located at the given depth and a 
correlation measure with respect to the key image is calculated. 
Occlusion handling is addressed by the best half-sequence 
strategy. The set of slices filled with correlation values comprise 
a data structure similar to the disparity space image. A final 
matching algorithm (e.g. scanline optimization (18)) establishes 
the dense depth map from the disparity space image. Plane-
sweep matching requires typically about 1.5 minutes for each 
reference image.  
Figure 5(a)–(c) illustrate the results of plane-sweep matching. 
The range images are displayed as point clouds with color taken 
from the reference view. Obviously there are still mismatches 
and outliers in the generated heightfields. Removing these 
artefacts is postponed to the second phase of 3D reconstruction. 
Just merging the individual point clouds yields to the result 
shown in Figure 5(d), which is not suitable for further 
processing.  
Silhouette information obtained from the previous segmentation 
step is used to restrict the heightfield to the foreground region of 
interest.  
The next phase merges the individual heightfields into a final 
proper 3D model. We utilize a robust volumetric approach (4, 
20) to combine the set of heightfields into a consistent 3D 
representation of the object. A prerequisite of this step is the 
specification of the 3D bounding box of the region to be 
reconstructed by the user.  
Volumetric range image integration converts the range images 
into approximated volumetric distance fields and performs a 
robust averaging of these volumes. The final surface model can 
be extracted as the zero level of the averaged distance field. In 
order to reduce the memory requirements in this phase, we 
utilize a compact representation of the distance fields as 
described in (4). In spite of dealing with volumetric data 
structures, volumetric range image integration is surprisingly 
efficient. This step takes usually only a few minutes on standard 
hardware.  
The extracted surface has usually a very high mesh complexity 
depending on the voxel resolution specified by the user. In order 
to reduce the mesh complexity any mesh simplification tool can 
be applied (e.g. (8)). 
 
3.4 Texturing Complex 3D Objects  
 
Since our goal is the generation of a photo-realistic model, an 
image (texture) has to be generated which can be mapped to the 
surface of the model. A perfect mapping between the 
triangulated surface and planar texture image should preserve 
angles and distances. Such a parameterization preserves 
obviously the areas of the triangles and is therefore optimally 
suited for texture mapping. Unfortunately general manifolds 
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cannot be flattened without distortion. The deformation is 
roughly proportional to the amount of curvature the mesh 
exhibits. 
The distortions caused by the parameterization can however be 
reduced by cutting the model into several smaller segments. 
This introduces discontinuities of the mapping along the seams. 
The visible effect of those errors can be alleviated by placing 
the cuts in regions of high curvature. In the final model such 
spots often involve brightness differences and therefore the 
additional discontinuity caused by the seam is masked by the 
change of illumination.  
Once the number and shape of all regions has been determined, 
it is possible to find a mapping, which assigns each vertex a 
point in a plane. This function is often called a 2D-
parameterization. Afterwards the different mapped pieces are 
packed into one image and textured. This is done by calculating 
the corresponding three dimensional point for every pixel which 
is projected into all available images. By applying an 
appropriate heuristic it is possible to estimate the real value and 
find a good approximation.  
The algorithm employed in this work uses the approach of Levy 
(15) which is based on conformal maps to obtain the mapping 
of the three dimensional model to the two dimensional domain. 
The basic idea is to enforce the CauchyRiemann equation by 
minimizing it at the vertices of all triangles. The problem of 
combining different candidate pixels to approximate the real 
color property of a surface is discussed by Ofek et al. (17). They 
demonstrate that one valuable approach to this problem is to 
take the median of all possible values, thus eliminating 
highlights and reflection artefacts.  
Bornik et al. (1)applied this method already successfully, but 
reconstructed textures only for planar (but not arbitrarily 
shaped) models. One additional feature our texturing process 
introduces is the noise and occlusion suppression quality. 
Considering the distance between the surface, the angle between 

surface normal and viewing direction of the camera and the 
general shape of the surface, one candidate color can be 
computed per image. The set of all resulting colors can then be 
further processed to obtain a good approximation. Once the 
visibility between the camera and the pixel is calculated, we can 
encounter three cases:  
1. The point is not visible in this camera.  
2. The point is visible in this camera, but was affected by some 

nonmodeled occlusion.  
3. The point is visible in this camera.  
In the first case the image can simply be discarded because it is 
obvious that it can not provide any information about the true 
pixel values. The last case also does not make any problems 
because it clearly has some valuable informations about the 
correct color we should use for the original pixel. The second 
case is the most difficult one to deal with because it can not 
automatically be discovered that there was an obstacle 
occluding the model. A very simple approach to solve this 
problem would be to assume that only very few such occlusions 
occurred (maybe this can be guaranteed by taking the images 
carefully) and calculate the average of all possible candidates. 
Thus the noise and the effect of outliers caused by obstacles 
would be reduced.  
A more sophisticated approach combines all available 
information from the other images and create a heuristic that 
can be applied to calculate a robust approximation for the true 
texture. To make this possible we have to assume that there are 
at least some other images which have a valid visibility. 
Provided that we have some redundancy in the images and the 
point is visible in some of them, then we assume that only a 
minority of them have some obstacle in between which is not 
included in the model. We separate the candidates from the 
various input images into two categories in a next step. One 
category contains all gray-scale entries, the other the colored 
ones.  

 

 
          (a)                                 (b)                            (c)                               (d)                               (e) 
  
Figure 4: Intermediate results of the multiple image segmentation algorithm illustrating one image of the St. Barbara image sequence. 
(b) Closeup from (a) showing labelled foreground (green) and background (blue) regions in the contour ring after incorporating prior 

information. (d) Closeup from (c) illustrating labelled foreground (green), background (blue) and uncertain regions (red) after 
applying extended region matching. (e) Statue of St. Barbara with the final segmentation overlayed. 

 
                 (a)                              (b)                                   (c)                                 (d)                                 (e)  
Figure 5: Three result heightfields of planesweep matching displayed as colored point set (a)–(c). Sole merging of the resulting point 
sets yield to the model displayed in (d). Robust volumetric integration of all generated heightfield results in the final model shown in 

(e). 
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This is done, because gray-scale entries are dealt with 
differently than colored ones. The distinction is made by 
converting the RGB color into the HSV color space. There the 
saturation is compared to some low threshold. This separation is 
also useful because colored outliers in otherwise grayscaled 
textures can easily be detected. Depending on which category 
has more members, an approximation is calculated based solely 
on the members of that category. This decision is repeated for 
the candidates of each texel. 
 
 

4 RESULTS 
 
Here we apply our approach to a variety of data-sets to 
demonstrate the usability and robustness of our method. In all of 
the experiments, the image resolution was 4064x2704 pixels. In 
order to reduce the mesh complexity a standard mesh 
simplification algorithm is performed, thus that all reported 
results consists of about 100.000 triangles.  
In a first evaluation we used an image sequence consisting of 47 
images of a statue of St. Barbara. The statue is 55cm tall with a 
diameter of approximately 13cm at the pedestal. Figure 6 
illustrate our obtained reconstruction result of the statue of St. 
Barbara from different viewpoints.  
Figure 7 shows a more complex data-set consisting of 45 
images of the emperor Kaiser Karl VI. The statue of Emperor 
Karl VI. is  
2.3 metres high and is located in the middle of the Great Hall of 
the Austrian National Library in Vienna.  
 
 

5 CONCLUSION AND FUTURE WORK 
 
A multi-stage approach for detailed and accurate 3D 
reconstruction of complex cultural objects was presented. Our 
approach takes advantage of the redundant scene information, 
which is typically provided by image sequences, captured with 
short baselines. Furthermore we focus on minimizing the human 
interaction during the modeling process. The reconstruction 
pipeline consists of four consecutive steps, which are known as 
automatic orientation, multiple image segmentation, dense 
matching and multiview texturing. Additionally, the presented 
method is demonstrated on different real world scenes to 
emphasize the feasibility of our implemented approach.  
Though the results are very promising, there are several 
improvements that can be made to our approach. In order to 
improve the reconstruction quality it is necessary to deal with 
occluded parts of the object. Such occluded parts are usually 
leading to holes and introducing undesirable artefacts in the 
resulting models. Therefore we are currently working on a hole-
filling strategy for reconstructed 3D surfaces. Moreover an 
efficient inpainting approach to enhance the texture quality have 
to be developed as well. Further we will concentrate on 
improving the performance of the developed algorithms.  
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                 (a)                                                 (b)                                      (c)                       (d)                                      (e)  
 
Figure 6: Dense 3D reconstruction of the statue of St. Barbara. The statue is 55cm tall with a diameter of approximately 13cm at the 

pedestal. (a) One original image of the statue of St. Barbara. (b) Generated Texture Map. (c)-(d) Different viewpoints of the 
reconstructed 3D model. (e) Close-up with overlayed wireframe to illustrate the geometric details. 

 

 
                  (a)                                                    (b)                                                       (c)                                           (d)  

 
Figure 7: Illustration of all results achieved with our 3D reconstruction approach and demonstrated on the emperor Kaiser Karl VI 
located in Austrian National Library in Vienna. The statue of Emperor Karl VI. is 2.3 metres high and the dataset consists of 45 

images. (a) One original image of the dataset. (b) Obtained camera positions and colored 3D tie points. (c)-(d) Two viewpoints of the 
reconstructed 3D model. 
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