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Abstract: This paper introduces a method for the fast generation of sparse 3D point clouds 
from multiple oriented images. We use a plane sweeping scheme to compute the 3D location 
of edge features. A two step approach is used to find a set of tentative hypotheses, which are 
then refined in an optimization pass. A robust image-based similarity measure is used to 
verify the 3D hypotheses and identify false positives. We performed experiments on a 
synthetic data set and on several real datasets. 

1. Introduction  
The computation of 3D structure from multiple images is one of the most important tasks in 
computer vision. In literature many different approaches have been described. Originally the 
various image matching methods were formulated for a stereo image pair. Recent methods 
[1], incorporate multiple images to achieve a more robust matching result. Correlation-based 
dense stereo matching methods are usually restricted to small baseline set-ups or in the case 
of video-based stereo to image sequences with large overlap. 

A new method for dense multi-view matching was proposed by [2]. This PDE-based approach 
is useful for the reconstruction of widely separated views of an object. Dense image matching 
methods provide a disparity map for the scene, i.e. for every pixel a disparity vector d(x, y) is 
given. The disparity is often constrained by a smoothness criterion and the ordering 
constraint. These approaches produce a dense 3D reconstruction, i.e. a 3D coordinate for 
every image pixel. Another branch are the various voxel coloring methods [3]. Those methods 
produce a volumetric model of the scene and also work for scenes where the ordering 
constraint is violated. All the above mentioned reconstruction approaches have the drawback 
of processing times in the order of minutes. 

For model-based reconstruction a sparse 3D point cloud is sufficient for the extraction of 3D 
lines and fitting planes or other 3D primitives. The sparse 3D data also yield robust seed 
points for a subsequent dense reconstruction.  



  
 
 
 
We present a method inspired by Jung et al. [4] which computes sparse 3D point clouds from 
multiple oriented images. While the original method is used for reconstructing buildings from 
aerial images we apply the method for close range scenes. 

Due to the more challenging nature of close range scenes, for example the significantly higher 
depth range, we also incorporate an image-based similarity measure to verify the resulting 3D 
hypotheses.  

We apply a plane sweeping scheme to generate 3D hypotheses and verify the hypotheses 
using purely geometric criteria. In section 2 we outline our approach, in section 3 we present 
experimental results for synthetic and real image data as well. Section 4 concludes the paper 
with an outlook on future work. 

2. Our Method 

 

Figure 1: Four cameras view an object (light gray). A key camera (dark gray) is chosen and 
from this camera rays (shown as fat vector) are intersected with the sweeping plane (fat line). 
The resulting 3D point is projected into all other cameras. The sweep plane is illustrated as 
dashed line. 

A plane sweeping method is used to traverse the volume for which the reconstruction is 
searched. Figure 1 shows the top view of the setup. Multiple cameras (visualized as triangles) 
view an object (light gray). One camera is chosen as key camera from which rays are 
intersected with the 3D sweeping plane. The resulting 3D point is projected into all other 
slave-cameras. A proximity or similarity criterion is now used to detect tentative 3D 
hypotheses. In the case of voxel coloring this is the color consistency. In our case it is a 
combination of proximity and gradient direction. A good hypothesis is characterized by a low 
re-projection error, i.e. the 2D location of the projected 3D point is close to a feature point in 
all or many of the slave-cameras. We use edgels as feature points, since edgels can be 
extracted with sub-pixel accuracy with Canny's method [5].  

Every edgel in the key image now defines ray. This ray is intersected with the sweeping 
plane. In order to accept a hypothesis the re-projection of the 3D intersection point must lie 
close to an edgel in most of the slave-images. We chose distance thresholds in the range of 



  
 
 
 
0.4…1 pixel. All hypotheses resulting from this sweeping process are subsequently refined 
and a significant number of false positives is eliminated by enforcing a simple gradient 
direction constraint. The remaining hypotheses are verified using a fast image-based 
similarity measure inspired by Lowe's SIFT-features [6]. The similarity measure is based on a 
histogram comparison and therefore suitable for fast outlier detection. 

2.1. Hypothesis refinement 
In the sweeping stage we select hypotheses only with the proximity criterion. In the original 
paper of Jung et al. [4] the proximity criterion is evaluated using a quad-tree for the nearest 
neighbor search. The quad-tree approach however has a computational complexity of 
O(log(n)), where n is the number of points in the set, per nearest neighbor query. A more 
efficient method is the use of distance transforms [7] of the edge points.  

The distance transform allows distance queries for 2D point sets in O(1). In our case the 
distance transform is computed for the edgel locations. Using Chamfer filtering [7] a distance 
image is derived from the input point set. The distance transforms are calculated for the edgel 
points of every slave image. The determination of the re-projection error of a 3D hypothesis 
using the distance transform can then be achieved in O(1). Since the 2D coordinates of the re-
projection are non-integers we perform the image access operation in the distance transform 
images with bi-cubic interpolation. An experiment where the distance transform approach was 
compared with a KD-tree-based nearest neighbor search showed that an average distance 
error of less than 0.3 pixel can be achieved. This shows that it is justified to use the much 
faster distance transforms to generate an initial set of 3D hypotheses. 

2.2. Hypothesis Selection 
Given the 3D hypotheses that survived the sweeping process, a subsequent refinement 
optimizes the 3D position and rejects hypotheses that violate the epipolar constraint and a 
simple gradient direction constraint. For the refinement KD-trees are computed for the edgel 
sets, since the KD-trees allow accurate nearest neighbor queries and access to additionally 
stored features such as the gradient vectors. 

 

  



  
 
 
 

Figure 2: Section of an image where the edge 
directions are shown as arrows and the length 
of the arrows corresponds to the gradient 
magnitude. 

Figure 3: Geometry of edgels and epipolar line: 
the edgel is represented by its gradient direction 
g and the tangent vector t. Edgels where the 
tangent vector t is nearly parallel (the enclosed 
angle ϕ is below a threshold) to the epipolar line 
l are not used for the reconstruction. 

 

With the epipolar constraint we reject candidates that result from edgels with a gradient 
direction nearly orthogonal to the direction of the epipolar line. Figure 2 shows a section of an 
image overlaid with arrows for the gradient directions. Edgels where the gradient direction is 
nearly orthogonal to the epipolar line (shown in red) are not used for the computation of 3D 
hypotheses. This strategy avoids ambiguous hypothesis for edgels where the tangent direction 
(which is orthogonal to the gradient) is nearly parallel to the epipolar line vector. 

Another criterion is formed by using the gradient direction g (see Figure 2): the enclosed 
angle between the gradient direction of the edgel in the key-image and the candidate edgels in 
the slave images must not exceed a certain threshold. This ensures that all edgels have the 
same light-to-dark or dark-to-light transition, given that no severe rotation between the 
images is present. 



  
 
 
 

  

Figure 4: Search space for the refinement of the 
3D hypothesis (in light gray) between three 
instances of the sweep plane (p1, p2, p3). An 
exemplary score function is depicted in the bottom 
part: only hypotheses that have a minimum within 
the search boundaries are accepted. This holds 
only for the minimum m2 computed for sweep the 
plane instance p2; m1 and m3 lie on the boundaries 
of the refinement search range of the sweep plane 
instances p1 and p3 and are therefore rejected. 

Figure 5: Evaluation of the re-projection 
error in the 2D edgel sets: The projection 
of the 3D hypothesis (shown as ring) 
moves along the epipolar line l. The re-
projection error is the perpendicular 
distance dt to the tangent of the closest 
edgel (i.e. the edgel with minimal de from 
the projected hypothesis). 

 

Hypotheses that survive the epipolar test are then refined by a fine search in the space around 
the sweep plane location. Figure 4 shows the refinement search space between three instances 
of the sweep plane (p1, p2, p3). The 3D hypothesis (shown as black dot) is shifted along the 
sweeping direction and projected into all images to evaluate the re-projection error. A 
possible re-projection error function is shown in the bottom part of Figure 4. Only those 
hypotheses that have a minimum within the search bounds are kept, if the minimum is on the 
boundaries of the search range, the hypothesis is discarded.  

Figure 5 shows the evaluation of the re-projection error: The goal is to minimize the 
perpendicular distance dt from the tangent of the edgel to the projected 3D hypothesis. We 
evaluate dt only for the edgel with the smallest Euclidean distance de to the projected 3D 
hypothesis. During the refined search a large amount of the 3D hypotheses is discarded due to 
non-fulfillment of one of the above criteria.  

However, since the search range for terrestrial modeling is significantly higher as for the 
aerial modeling in the original approach, a large number of false positives is still present after 



  
 
 
 
the refinement step. In order to detect and remove these false positive matches, a fast image-
based similarity measure is applied. 

2.3. Image-based Outlier Removal 
The similarity measure that is used to eliminate false positive is inspired by Lowe's SIFT-
features [6]. This is a scale invariant descriptor which is originally computed for interest 
points. We want to compute the descriptor for the two rectified image regions that are divided 
along the edgel tangent direction. Since the SIFT-descriptor is not invariant against rotation 
we need to compute it on rectified frames.  

 

Figure 6: Computing a rectified frame: the tangent direction is used to compute a frame that is 
aligned parallel to the x-axis. 

Figure 6 shows the rectification approach: On the left side is the original image with an edgel 
(white dot), its associated tangent direction (white line) and the two attached image regions 
(shown in different hatching). We use the tangent direction to compute a rectified frame, i.e. 
we apply an affine transform to align the tangent parallel to the x-axis. The separation of the 
image area around a candidate edgel is necessary, since edgels often lie on depth 
discontinuities. Due to these depth discontinuities one of the two image regions that are 
divided by the edgel tangent may be occluded. Therefore only one side can be used for 
reliable similarity comparison. 

We first calculate the edge orientation ϕ and magnitude m at each pixel inside the rectified 
frame I: 
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An orientation histogram is used as a region descriptor, the magnitude and the distance of the 
pixels from the origin are used as a weight. More formally the histogram is calculated as 
shown in Equation 3: 
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where H(θ) is the value for bin θ (θ ∈ [0°,1° … 360°]) and ϕ denotes angle values in a 
neighborhood N inside the Frame, wϕ is the weight of ϕ and δ(θ, ϕ) is the Kronecker delta 
function. 

The angles ϕ are quantized in accordance with the histogram bins θ. The weight wϕ is 
computed from the magnitude of ϕ and a function decreasing with increasing radius r from 
the origin (x0, y0). We use a Gaussian weighting function thus: 

 wϕ (x, y) = m(x, y) * g(r), with 2
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Figure 7: Histogram of edge orientations for the image region in Figure 2. 

Figure 7 shows a histogram computed from edge orientations. Since the descriptors are 
histograms we use a probabilistic distance measure to describe the similarity. Distance 
measures for histogram comparison are the L1 and L2 norm, the Bhattacharyya distance, and 
the Matusita distance. The Earth Movers distance is a more complex method for histogram 
comparison and is computed by solving the so called transportation problem. It was  proposed 
for image indexing by Rubner [8]. Huet and Hancock [9] give a comparison of the 
performance of this measures for histogram comparison. Following the conclusions of Rubner 
we chose the Bhattacharyya distance which is defined as: 
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We compute the Bhattacharyya distance separately for the two image regions between the 
key-image and the slave images.  The 3D hypothesis with a distance below a given threshold 
is finally accepted, if more hypotheses are lying on the same 3D ray, only the one with the 
smallest distance is accepted. 

3. Experiments 
Several experiments were carried out on one synthetic scene and three real data sets. Figures 
8, 9 and 10 show the images and the resulting 3d point clouds for each scene. All scenes 
consists of five images and the threshold for the re-projection error is set to 0.5 pixel. The size 
of the support region for the image-based verification of the refined hypotheses was set to 
15×15 pixel. 



  
 
 
 
The interior camera parameters are determined by an offline camera calibration and the 
exterior camera orientation parameters of the images are determined by automatic multi-
image matching followed by an estimation of the relative orientation of the sequence of 
images and a final bundle adjustment. The depth range for the sweeping is ten times the 
average baseline between the cameras. Only a small number of false positives is still present 
after the image-based verification. 

Table 1 lists the number of initial hypotheses (those fulfilling the proximity criterion), the 
number of hypotheses surviving the refinement step and the number of final 3D points after 
image-based verification. The last column lists the execution times on a 2GHz AMD Athlon 
XP. 

Scene name # of initial 
hypothesis 

# of remaining 
hypothesis after 

refinement 

# of final 3D 
points 

Execution time 

Synthetic scene 112371 27652 8183 47 sec. 
Statue 222340 138564 47353 238 sec. 

Courtyard scene 243210 116372 28486 176 sec. 
Aerial image 

scene 515134 246803 122094 756 sec. 

Table 1: Experimental results 

For the accuracy analysis we used the synthetic scene, which consists of twelve planes. As a 
measure for the reconstruction error we determined the distances of the 3D hypothesis to the 
nearest plane. The errors are normalized by the depth range used in the sweeping process (Ten 
times the average baseline between the cameras). For the 8183 points the mean error is 
0.0293% of the depth range, with a standard deviation of 6.86*10-3. In real scenes the 
accuracy of the reconstructed points strongly depends on the accuracy of the image 
orientation.  

 

 

  

 

Figure 8: Top row: Three of the five images used of the synthetic turntable scene of a 
house (image size= 1000×750). Bottom row: Three views of resulting 3D point cloud. 

 

 



  
 
 
 

   

 

Figure 9: Top row: Three of the five statue images (image size = 2032×1352). Bottom 
row: Three views of the resulting 3D point cloud. 

 

 

 

 

Figure 10: Top row: Three of the five images used of the courtyard  scene (image size= 
2160×1440). Bottom row: Three views of resulting 3D point cloud. 

 

4. Conclusions and Future Work 
We presented a method for the fast computation of sparse 3D point sets from multiple 
oriented images. The main contribution is the introduction of distance transforms for the 
accurate measurement of the re-projection error and the image-based outlier detection. This 
combination of feature-based constraints and an image-based similarity criterion allows a 
robust and efficient generation and verification of 3D hypotheses. We also want to investigate 



  
 
 
 
the influence of the size of the support region on the performance of the image-based 
similarity measure. So far we are only using gray-scale images, but the use of color images 
seems promising. The integration of color features could be implemented by expanding the 
orientation histogram to a more complex feature vector.  

5. Acknowledgments 
This work has been done in the VRVis research center, Graz and Vienna/Austria 
(http://www.vrvis.at), which is partly funded by the Austrian government research program 
Kplus. The authors also acknowledge the support of Manfred Klopschitz who provided the 
framework for the accuracy analysis. 

 

References: 
 
[1] S. Kang, R. Szeliski, J. Chai: Handling occlusions in dense multiview stereo, IEEE 

Conference on Computer Vision and Pattern Recognition, Kauai/Hawaii, December 
2001. 

 
[2] C.Strecha, T. Tuytelaars. L. van Gool: Dense Matching of Multiple Wide-Baseline 

Views, International Conference on Computer Vision, Nice/France, 2003. 
 
[3]  K. Kutulakos, S. Seitz: A Theory of Shape by Space Carving, International Journal of 

Computer Vision, Vol. 38, pp 199-218, 2000. 
 
[4]  F. Jung, V. Tollu, N. Paparoditis, Extracting 3D edgels hypotheses from multiple 

calibrated images: A step towards the reconstruction of curved and straight object 
boundary lines, ISPRS Journal of Photogrammetric Computer Vision, Vol. B, pp. 100-
104, 2002. 

 
[5] J. Canny, A Computational Approach to Edge Detection, IEEE Transactions on Pattern 

Analysis and Machine Intelligence, Vol. 8, pp. 679-698, 1986. 
 
[6] D. Lowe, Object Recognition from Local Scale-Invariant Features, International 

Conference on Computer Vision, Corfu/Greece, pp. 1150-1157, 1999. 
 
[7] G. Borgefors, Chamfering: A Fast Method for Obtaining Approximations of the 

Euclidean Distance in N Dimensions, Scandinavian Conference on Image Analysis, 
Copenhagen/Denmark, pp. 250-255, 1983. 

 
[8] Y. Rubner, C. Tomasi, L. Guibas, A Metric for Distributions with Applications to 

Image Databases, International Conference on Computer Vision, Bombay/India, pp. 59-
66, 1998. 

 
[9] B. Huet, E. Hancock, Cartographic indexing into a database of remotely sensed images, 

WACV, pp. 8-14, 1996. 


