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Parallel Sets: Interactive Exploration and
Visual Analysis of Categorical Data
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Abstract— Categorical data dimensions appear in many
real-world data sets, but few visualization methods exist
that properly deal with them.

Parallel Sets are a new method for the visualization
and interactive exploration of categorical data that shows
data frequencies instead of the individual data points. The
method is based on the axis layout of parallel coordinates,
with boxes representing the categories and parallelograms
between the axes showing the relations between categories.

In addition to the visual representation, we designed
a rich set of interactions. Parallel Sets allow the user to
interactively remap the data to new categorizations, and
thus to consider more data dimensions during exploration
and analysis than usually possible. At the same time, a
meta-level, semantic representation of the data is built.
Common procedures, like building the cross product of
two or more dimensions, can be performed automatically,
thus complementing the interactive visualization.

We demonstrate Parallel Sets by analyzing a large CRM
data set, as well as investigating housing data of two US
states.

Index Terms— Information Visualization, Interaction,
Nominal Data, Categorical Data, Multivariate Data.

I. INTRODUCTION

CATEGORICAL dimensions play a very important
role in the analysis of many real-world data sets.

Numerical attributes often can only be understood in
the context of categorizations, and users working with
data often examine different classes before even look-
ing at numbers. While numerical dimensions are well
understood in both statistics and visualization, the cate-
gorization of products, customers, etc. provides a special
challenge for visualization.

Categorical dimensions are generally data dimensions
that only contain a small number of different values,
which often have special meanings. Categories usually
do not have an inherent order (e.g., bank account types,
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Fig. 1. Snapshot of an interactive visual analysis session using
Parallel Sets. A large and complex CRM data set (Section IV) is
analyzed and multi-dimensional relations within the data are revealed.
The two meta-level categorizations shown in the top half of the
visualization (family type and washing agent) are the result of an
interactive process integrating multiple (simpler) data dimensions into
new ones. The colored parallelograms and the histograms shown
support the visual analysis of complex relations within this data,
leading to insights such as the correlation between having no children,
preferring liquid washing agents, and living in larger cities.

ethnic groups), which means that the mapping to numer-
ical values is arbitrary, and also the differences between
these values are not meaningful.

Dimensions with many categories also are often orga-
nized hierarchically: customer surveys contain sections
with related questions, split one piece of information
between several questions (e.g., education), or ask the
same question several times for cross-checking; bank
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accounts are classified in several ways that will often
involve hierarchical categorizations, etc. Using these
hierarchies for visualization is extremely helpful for the
user, because they provide a natural way of aggregating
and abstracting data. The visualization application has
to know about those hierarchies in order to make use of
them, of course, requiring additional data about the data
set, or meta data. Interaction is also required, because
the user will want to switch back and forth between a
detailed investigation and a more general overview by
means of these hierarchies.

Most existing work has focused on the visualization
of numerical data, treating categories as a special case
with only a few values. The approach presented in
this paper had to be radically different in order to
accomodate the special properties of categorical data and
large categorical data sets in practice.

An implicit assumption in many visualization systems
is also that the user will perform a whole analysis in one,
uninterrupted session, and will never return to the same
kind of analysis or the same data set. Our experience
has shown that this is not the case, however. Users
often deal with similar data sets and similar tasks, which
consequently require them to go through the same or
similar sets of actions for each new data set. Also, the
analysis of a typical real-world data set requires many
sessions, potentially spread out over a long time period.
The user needs to be able to save results to continue
where he or she left off as seamlessly as possible.

We present a new approach to information visu-
alization, called Parallel Sets [1] (Figure 1), which
was developed specifically for categorical data. This
paper presents additional features as well as a new
case study to demonstrate the method. Parallel Sets
support interactive visual exploration and analysis [2]
by combining a new visual metaphor with an advanced
interaction scheme and automated procedures. Parallel
Sets adopt the advantages of two older and well-proven
visualization techniques: the flexible layout of Parallel
Coordinates [3] (Figure 2b), treating all dimensions as
visually independent – in contrast to recursive space-
subdivision approaches like Mosaic Displays –, and dis-
playing frequencies as representatives for the categories
(Figure 2c) – as opposed to the usual one-by-one items-
based visualization of data.

The following sections present the related work and
the idea of Parallel Sets in terms of the visual metaphor
and interaction scheme. The workflow is explained,
which is essential to performing interactive visual anal-
ysis of heterogeneous and high-dimensional data. It is
important to stress the fact that the interaction scheme is

(a) (b)
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Fig. 2. Visualizing categorical data with traditional techniques
such as a scatterplot (a) and parallel coordinates (b) do not yield
useful visual representations, because usually only a small number of
different values are given per categorical dimension. Traditional Venn
diagrams (c, d) are based on the concept of showing data frequencies
and therefore work well for categorical data. Lining categories up next
to each other leads to the basic idea of Parallel Sets.

an integral part of Parallel Sets, and necessary to exploit
the full potential of the approach. We demonstrate the
use of Parallel Sets to reveal interesting information in
a large customer relationship management (CRM) data
set, as well as housing data of two US states.

II. RELATED WORK

Parallel Coordinates [3] (Figure 3a) are a popular
visualization technique, in which the graphical axes are
not arranged orthogonally, but they are placed side by
side. An n-dimensional data point is represented by
a polyline, which intersects the parallel axes at points
which represent the values of the individual data dimen-
sions along the respective axes. This view is capable of
displaying high-dimensional data (up to about 10-15 axes
in practice), because the axes are visually independent
of each other.

Initially, parallel coordinates were designed to display
continuous variables [3], but recent approaches have tried
to integrate categorical variables into this visualization as
well. Rosario et al. [4] suggest transforming categories
to numbers by techniques similar to Multiple Correspon-
dence Analysis (MCA). By this, the space on each axis
is used more efficiently, because the spacing becomes
meaningful (similar categories are positioned close to
each other). A simpler approach is proposed by Teoh
and Ma [5]: for each category, an interval is constructed
on the continuous axes to make more polylines visible.
By this, the space is used to give the user an impression
of how many data items are visualized. Using alpha
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(a) (b) (c)

Fig. 3. Three different visualization techniques displaying the same
data: (a) the categories are represented by points on continuous
axes in parallel coordinates, (b) Parallel Sets show the frequencies
of categories and relations, and (c) a Mosaic Display provides a
compressed view of the data (the hatched parts represent the same
subset).

blending, the Information Mural [6] also gives an im-
pression of the number of values per category, but is
still hard to read and imprecise for truly categorical
data. One problem remains for all parallel coordinates
techniques: the visualization implements a continuous
design model, which does not match the discrete user
model of the data. This discrepancy between the user’s
mental model and the presented image is eliminated by
the use of frequency-based techniques: categories are
represented by visual entities that are scaled according
to their corresponding frequency.

There are several techniques that follow this approach:
the Mosaic Display [7], [8] (Figure 3c) is a recur-
sive space-subdivision technique (similar to Dimensional
Stacking [9]), in which the frequency values of cate-
gories are represented by particular areas (“tiles”) on
the screen – interactive mosaic plots [10], [11] pro-
vide an even better approach for visual exploration,
because they make use of the user’s domain knowledge;
Bargrams [12] and InfoZoom [13] are techniques that
display the dimensions row by row and the categories
are mapped to boxes whose widths are scaled according
to their frequencies. The drawbacks of these frequency-
based techniques are: (1) space-subdivision methods
introduce a ranking of the displayed dimensions and are
also limited in the number of dimensions that can be
displayed, and (2) for the latter kind of visualizations,
the relationships between dimensions are not shown
explicitly, but the vertical alignment encodes the relation
of different dimensions’ categories, which can make the
view difficult to understand when investigating multi-
dimensional relations within the data.

A technique that is related in terms of interaction
and application area are parallel coordinate trees [14].
By adding a tree-based navigation system, the data
(customer surveys, similar to the data presented in the
first part of the case study in this paper) can be analyzed

Fig. 4. The Parallel Sets prototype (showing the Titanic data set [15])
consists of four panels (clockwise from top left): the user panel
(showing user-defined dimensions), the main visualization panel, the
data panel (showing the source data), and the exclusion panel (for
filtering).

in meaningful terms.
The Parallel Sets technique combines the advantages

of frequency-based techniques (implementing a discrete
design model and displaying the frequencies of cat-
egories) and parallel coordinates (treating dimensions
independently).

III. PARALLEL SETS

Parallel Sets are not only a new visualization tech-
nique, but also an interaction framework. The visual
metaphor serves as a natural way of mapping categor-
ical variables to visual entities, which makes effective
interactive exploration and analysis possible.

A. Basic Idea

Classical approaches (Section II) do not optimally deal
with categorical data: either the frequency information is
not visible or a ranking is imposed on the visual mapping
transformation [16], influencing perception of the data
(Figure 3).

Parallel Sets share the layout with parallel coordinates,
but the point intersections are replaced with sets of boxes
that represent the categories (Figure 3b). These boxes are
scaled according to the frequencies of the correspond-
ing categories (Section III-C) and are initially ordered
according to meta information (Sections III-D and III-
E). Using the frequency information means utilizing an
aggregation [17] of a large categorical data set, reducing
the amount of data to be displayed, and providing an
image of the data that more closely resembles the way
users think of large, categorical data sets.

This reduction also means that update rates of the
visual representation only depend on the number of
categories in the data, but not on the overall number
of data points. Not only is the number of categories in
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Class Sex

female male

first 145 44.6% 180 55.4% 325

30.8% 6.6% 10.4% 8.2% 14.8%

second 106 37.2% 179 62.8% 285

22.6% 4.8% 10.4% 8.1% 12.9%

third 196 27.8% 510 72.2% 706

41.7% 8.9% 29.5% 23.2% 32.1%

crew 23 2.6% 862 97.4% 885

4.9% 1.1% 49.8% 39.1% 40.2%

470 1731 2201

21.4% 78.6% 100%

- -

- -

fij is the number of all data points which are cate-
gorized according to the ith row and the jth column
(145 females travelled first class on the Titanic).

- -

- -

rij = fij/fi+ is the individual row frequency of the
same data subset, with fi+ =

∑m
j=1 fij being the

marginal row count for the ith row (almost 45% of
all first class passengers on the Titanic were female).

- -

- -

cij = fij/f+j is the individual column frequency,
whereas f+j =

∑m
i=1 fij is the marginal column

count for the j-th column (e.g., 30.8% of the female
passengers travelled first class).

- -

- -

pij = fij/f++ is the a priori probability of this data
subset, with f++ =

∑∑
fij being the number of

all data points (less than 7% of all passengers on the
Titanic were females in the first class).

Fig. 5. The crosstabulation of the Titanic data set shows the absolute, relative, and marginal frequencies for dimensions Class and Sex.

a data set significantly smaller than the number of data
points; categories are generally defined by the user, and
therefore grow slowly – if at all – with data set size. As
a consequence, Parallel Sets scale very well with data
set size.

Because the sets of categories are placed indepen-
dently side by side, the connections between categories
(representing the relative number of attribute combina-
tions) are also scaled according to their frequency values.

Parallel Sets are not restricted to categorical data,
however. By means of binning, a continuous variable
can be easily transformed into this kind of visualization
(Section III-F).

A categorical dimension is a meaningful classification
of the data, but rarely the only one. Hence, it is useful to
give the user the possibility to create new classifications
by combining existing dimensions. This process is user-
driven: the user utilizes his or her domain knowledge
to enrich the meta information about the data, and
can consequently use this new information for further
exploration and analysis.

Our prototype (Figure 4) shows the user not only the
data itself, but also all the dimensions and categories,
including hierarchies on both levels. A separate panel is
used for creating new dimensions from existing ones, by
simply clicking on categories or brushing value ranges
in the visualization. The user can remove data values
from the display (e.g., unknown values) by dragging the
corresponding category to the data exclusion panel.

B. Statistical Basics

The information that is provided by the visualization
is obtained by a crosstabulation [18]. Statistical exam-
inations deal with categorical data quite frequently and
usually analysts look at frequency (contingency) tables
to get a first overview. Figure 5 shows an example of a
two-way table: what is displayed by Parallel Sets is the
information obtained by multi-way tables.

In each cell of the crosstabulation, the top left val-
ues show the occurrences fij (absolute numbers), the
bottom right numbers show the absolute frequencies
(probabilities) pij = fij/f++ (where f++ =

∑ ∑
fij),

and the remaining two values show the individual row
frequencies rij = fij/fi+ and column frequencies cij =
fij/f+j (where fi+ and f+j are the marginal row and
column frequencies, respectively). The crosstabulation,
which is calculated for each attribute combination of
the displayed dimensions, builds the basis for the visual
metaphor: each category is scaled according to the corre-
sponding marginal frequency fi+ and f+j respectively,
and the connection between each pair of categories is
scaled according to the absolute frequency fij . The
visualization of actual data records is replaced by that
of frequency information, which gives the user insight
into the distribution of the data records.

C. Visual Metaphor

The basic building block of Parallel Sets is a box that
represents the size of a category on one axis relative to
all the data samples. Parallelograms connect categories
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to show how many data points are in any of the combi-
nations between two or more categories. Color is used to
differentiate the categories and to make the connections
between them easier to see.

At any point in time, there is one selected dimension –
the active dimension. This dimension defines the color-
coding of the connections: each category of the active
dimension gets one color from a predefined set of
equally-spaced, iso-luminant colors which differentiate
the connections well [19], and all connections obtain
the color of the respective active category. Then a
visual ordering of the displayed dimension is introduced:
starting at the active dimension, neighboring dimensions
split the connections into sub-connections according to
their number of categories. This is analogous to imagin-
ing a subset with a particular attribute (e.g., first-class
passengers) and subdividing it according to a second
feature (e.g., gender), then a third feature, and so on.

In this flexible display only the absolute frequen-
cies are visualized, but there is room to offer more
information: the user can vertically resize the boxes
(representing the categories) and inside this additional
space histograms can provide a more detailed view of the
data. Aside from the absolute frequencies, the individual
row and column frequencies of the contingency table
(Figure 5) can be integrated into the visualization by
the use of histograms [20] for the selected dimensions.
In statistical terms, these relative frequencies are con-
ditional probabilities. Because comparing conditional
probabilities can be misleading (similar to Simpson’s
paradox [21]), the relative frequencies have to be stan-
dardized. One way is displaying the deviations of con-
ditional probabilities from the a-posteriori probabilities
(∆Pi = P (Ai | Bj) − P (Ai)). If the deviation is zero,
then the particular category (with associated probability
Bj) is independent of all categories of the neighboring
dimension.

Figure 6 shows an example of dependent relations: one
can see the absolute distribution of the upper dimension
and additionally, how the particular frequencies change
if only data records of the lower left categorical attribute
are considered. For instance, the positive difference (9%)
means that data records of the associated category (crew
members) are more frequent in the considered category
(male passengers, 49% of all males were crew members)
than in the absolute distribution (40% of all passengers
were crew).

D. Interaction and Workflow

Parallel Sets implement several common interaction
schemes: selection and highlighting, interactive query-

Fig. 6. The level of dependence between the class and the sex
of passengers on the Titanic, shown for male passengers. The crew
was overrepresented in the male population on the ship, with all the
passenger classes being underrepresented.

ing, filtering, and reordering of dimensions and cate-
gories – thus also heeding Shneiderman’s visual infor-
mation seeking mantra: overview first, zoom and filter,
then details-on-demand [22] (Figure 7).

The interactive data exploration starts with an undi-
rected investigation of the available data variables. The
user chooses interesting data variables, adds them to
the visualization panel, and explores their relationships.
The visualization can easily become very complex if
the number of displayed categories increases to more
than just a few, so the user is able to create new
views by defining new dimensions. These dimensions are
typically more meaningful to the user or more suitable
for the analysis task at hand, and compress the relevant
information into one or just a few dimensions, while
leaving out unwanted detail. Later, the user may need
more detailed information about the relation between two
or more dimensions, and can then go back to the original
ones.

This high-level view of interactive visual analysis is
implemented by Parallel Sets. The investigation starts
with choosing interesting data variables: the data panel
offers the data dimensions and the user panel shows the
user-defined dimensions. The user can drag dimensions
from both panels, drop them in the visualization panel,
and create his or her own view of the data. The dy-
namic layout permits the reordering of dimensions with
immediate visual feedback which is useful to look at the
relationship of different dimensions more closely. Also,
the categories can be reordered along their respective
axis, as there may not be a natural ordering among
categorical values (Figure 7a,b). A function that we
found very useful is to let the program arrange the
categories by absolute or relative frequencies, since often
the first question is which category is the largest, and
how does it relate to the categories on another dimension.

Having added interesting dimensions to the visualiza-
tion (overview), the user can group selected categories
(zoom and filter: Figure 7c,d), by which he or she can
organize categories hierarchically. The user can also drag
uninteresting categories into the exclusion panel to filter
the data (Figure 7e,f), thus using the available screen
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7. Basic interaction elements in Parallel Sets: reordering
categories (a, b) helps to generate a more meaningful layout; grouping
categories (c, d) enables a hierarchical analysis/exploration; excluding
categories from the visualization (e, f) allows for interactive filtering;
and category highlighting (g, h) enables the selective investigation of
high-dimensional relations.

(a)

Ca1 Ca2 Ca3 Ca4

Cb1 Cb2

(b) Ca1 ∧ Cb1 Ca2 ∧ Cb1 ... remaining

Fig. 8. An example of dimension composition: the user is interested
in a classification into the following four categories: Ca1∧Cb1, Ca2∧
Cb1, Ca3∧Cb1, and remaining. The displayed interaction path in (a)
illustrates the sequence of selections (the dotted lines indicate that
the user finishes the current brush and starts a new category); the
resulting user-defined classification is displayed in (b).

space more effectively. Moving the mouse over a cate-
gory highlights it and its connections to other dimensions
(Figure 7g,h), supporting the user in understanding high-
dimensional relationships.

One fundamental interaction technique in the design
of Parallel Sets is dimension composition. The use
of this feature is to reduce the dimensionality of the
visualization – both screen space and human perception
limit the maximal dimensionality of the visual mapping –
and to build more practical and meaningful categoriza-
tions (Figure 8a). In contrast to data-driven approaches
(like PCA [23] or VHDR [24]), interactive dimension
composition enables the integration of the user’s domain
knowledge. A categorical dimension is a classification of
all data records according to a particular data attribute
(e.g., regarding the attribute age, a binning could classify
the data into ten years intervals). In general, the data
can be classified according to multiple aspects of the
data. Hence, during the exploration process, it is useful
to allow the user to build his or her own classifications of
the data and to also reuse this information during further
exploration and analysis. Figure 8 gives an example of
the process: a new classification is created by selection
activities. The path illustrates the sequence of selections;
firstly, the category Ca1 is selected, then the category
Cb1, and so on. These selections are recorded by the
user panel: for the first selection, a new dimension, an
active category (equal to the selected category), and
a default category (which contains all the remaining
data items) are created. All successive selections are
added to the current active category (by default, all
selected categories are combined by a conjunction). In
the example, after every two successive selections, the
user indicates to start a new category (not visible). The
result of the process is a new categorical dimension with
four categories that represents a new classification of
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the data. This dimension (representing part of the user’s
domain knowledge) can be dragged into the visualization
again and the user can continue working with just this
one dimension, because it contains all the information
the user considers to be relevant. Generally, two concepts
are utilized: the new categorization can either contain
all possible attribute combinations (specialization), or
contain a subset of these combinations (generalization).
The effect is that more data axes are combined into fewer
display axes, thus showing the relevant data, but keeping
the visual complexity low.

The final step is to have a closer look at interesting
relationships and to get detailed information. Details are
in fact filtered data records that are the output of the
visual analysis. Usually, once the user has found out
some interesting relations within the data, he or she
wants to get back to the original data items and to see
all the details, e.g., in a standard table view. Concerning
the investigation of relationships, Parallel Sets offers
two schemes: histograms and highlighting. Histograms
show statistical parameters to analyze relations in detail,
highlighting is realized as a mouse-over effect: all con-
nections that pass through the box under the cursor (i.e.,
relations that include the corresponding data attribute)
are emphasized by drawing them with higher saturation
and in front of all other connections. This way, multi-
dimensional relationships become visible as a starting
point for further exploration.

Zooming into a particular category is also possible,
which means for its axis, only this one category is
displayed, and thus a lot more room is available for its
connections to other axes. This is similar to the way
zooming/drill-down is handled in InfoZoom [13].

E. Hierarchical Meta Data

Meta data provides the program with information
about the data set. The most basic information are the
names of the different data dimensions, as well as labels
for each of the values.

The meta information is organized hierarchically,
which allows the definition of groups of dimensions
as well as categories that belong together (rightmost
part of Figure 4). This is useful in many applications,
e.g., customer surveys (questions that are related or
even redundant to check for validity), bank account data
(account types and groups of types), etc., or in cases
where the data model is such that one kind of information
is spread over several dimensions. In these applications,
it is often necessary to use dimension composition to
produce the data that is then used for the actual analysis.

The hierarchy also provides a means of storing know-
ledge, especially in the case of hierarchical categories.

This information is not shown in the visualization, but
the user can read it from the tree. It is also possible
to expand and collapse subtrees containing categories,
thereby automatically combining all the categories into
one. Thus, the amount of detail can be changed quickly,
and in terms the user is already working with.

Using dimension composition, the user can create
custom dimensions either to support a particular analysis
question, or to encode information that has been found.
Knowledge is accumulated this way, and stored directly
in the meta data.

F. Continuous Dimensions

Many data sets do not contain only nominal or only
continuous axes, but a mix of both. Parallel Sets can deal
with continuous axes and show them in a meaningful
way (Figure 9). In order to do this though, the non-
categorical axis is divided into bins, and thus trans-
formed into a categorical dimension. This is necessary
to maintain a consistent visual metaphor, and also for
performance reasons.

The user can select the number of categories the
numerical axis gets split into. Such a dimension is then
visualized as an axis with triangular shapes pointing at
the bins, instead of parallelograms (because all bins have
the same width). A histogram is of course available to
see the distribution of values on the axis.

In most cases, the user will be interested in certain
value intervals, which make up interesting groups of
data items (e.g., certain ranges in household income).
By selecting value ranges in terms of whole bins, a new
dimension can be created quickly that specifies these
groups. This new dimension then acts like any other
categorical dimension within the program.

Showing continuous axes as true parallel coordinate
dimensions would of course be the most useful display
of this data, and this will be included in a future
version of the program. Doing this, however, means
losing the elegant independence from the data set size,
and therefore requires some additional engineering to
maintain interactivity for large data sets.

G. Reducing Visual Clutter

When dimensions with many categories are visualized,
the many intersections between ribbons connecting cat-
egories can make the display very busy (Figure 11). A
second (“bundled”) mode can be used to alleviate this:
the connections for each category (except the active one)
are drawn in parallel (Figure 10), yielding a much tidier
display, but also making it harder to track connections
over more dimensions.
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(a) (b) (c)

Fig. 9. Categorization of numerical dimensions. Initially, the user panel is empty and the user can start defining intervals on the axis (a).
This interval is represented by the new dimension’s category in the tree view and also in the visualization (b). The user can then refine the
current category or create another one (c).

Fig. 10. Bundled mode. In bundled mode, the connections between
each pair of non-active categories are parallel (left); in standard mode,
the splitting up of connections is easier to see (right).

Also, it can happen that the connections between
categories become so oblique that it is difficult to vi-
sually compare the represented frequencies. If this is
the case, histograms can help, because they provide a
very comprehensible visualization for frequency data
that facilitates better comparison. In addition to the
mode explained in Section III-C, relative frequencies can
be displayed by this auxiliary plot: like in traditional
histograms, the bars directly represent the frequency
information.

All interactions are also animated, helping the user
understand the results of actions. This is especially
important when the display is abstract, since the user
does not have a good way of orientation within the

data. Animation also helps solve the problem of change
blindness [25], where users cannot tell how (or even if)
the display changed.

H. Interaction Support

While the user has to be able to work with the
categories and dimensions directly, we found that there
were several common interaction patterns that warranted
automated support [17].

Creating the complete set of combinations (cross prod-
uct) between two or more dimensions is one of these
tasks. For two dimensions with m and n categories,
respectively, the user has to click 2mn times. Our
prototype can perform this action for the user, creating
a new “user-defined” dimension, and naming the new
categories after all the original categories that they were
created from.

Folding a number of related binary dimensions into
one that represents all of them is another task that
is especially common in customer survey data. This
works differently than the cross product, because the
program has to understand which of the categories means
“yes”, and there can be overlaps between the generated
categories, requiring a hierarchical approach.

The user is also often interested in sorting the cate-
gories by either absolute size or according to the degree
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Fig. 11. Left: The meta information for the user-defined dimension household type; the categories are built out of available dimensions
(e.g., working childless adults is a Boolean combination of the categories two (number of adults) and unknown or none (number of children);
because the meta information is processed top-down, all unemployed persons are already classified by the above category. Right: the type
of household is shown in relation to the income and the user-defined favorite supermarket dimension: households with two adults (A2C and
A2) are more likely to have a higher income than ones with one adult; the choice of supermarket depends on the presence of children in the
household (HH Kinder is the number of children, and HH Erwachsene the number of adults in a household).

of independence. Our prototype can also perform this
task for the user.

While these tasks are computationally very simple,
they save a lot of work, and thus improve the usability
of the system considerably.

I. Performance

The analysis presented here was performed on stan-
dard consumer hardware, where the program runs at
interactive speed. The construction of the view is accom-
plished immediately, as long as the number of displayed
categories is limited to approximately twenty to thirty
(the delay is directly proportional to the number of
categories that have to be aggregated). Once the cat-
egorical data is transformed into the frequency infor-
mation, interactions such as reordering of dimensions
and categories, highlighting, and the animation between
rendering modes (Section III-G), and changing of the
active dimension happen without noticeable delay.

IV. CASE STUDY

To test the usefulness of Parallel Sets in a realistic
environments, we performed two case studies using our
research prototype.

A. Customer Survey Data

We cooperated with a large, multi-national company in
analyzing a customer relationship management (CRM)

data set. This data set consists of 99 dimensions and
contains information about 93,872 Austrian households.

The data contains information about people’s living
standards, shopping habits, pet care, etc. In addition
to being high-dimensional and categorical, this data set
also contains a considerable number of unknown values,
as well as groups of dimensions that can be organized
hierarchically.

The data fields directly reflect the layout of the ques-
tions on the survey forms, which are not particularly
well suited for analysis, though. For instance, the data
has separate dimensions for the number of adults in
the household (unknown, one, and two), the number of
children (unknown or none, one, two, three, and more),
and employment (unknown, unemployed, half-day, and
full-time). Combining these into one household type
(Figure 11) reduces three dimensions to one, and also
presents the data in a way that analysts are used to –
especially when comparing them to the so-called golden
household.

Supermarkets were grouped into five categories, thus
reducing 16 dimensions (one for each candidate for the
favorite supermarket) to one.

Income, Family Type, Supermarkets. Figure 11 shows
three dimensions that are of particular interest to ana-
lysts: household types, income, and favorite supermar-
kets. The histograms show the frequency distribution of
the market and income classes relative to the house-
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hold types. Because similar histograms mean similar
dependencies between the particular household types and
the neighboring dimension, the top histograms show
that households with children are equally distributed
compared to the types without children concerning their
favorite supermarkets (similar top histograms for the
categories labeled A1C and A2C). The histograms also
reveal that people living in households with children are
more likely to buy their goods in low and middle class
supermarkets in contrast to households without children.

Whether there are two adults living in the household,
or only a single parent, does not seem to make a
difference. What does make a difference is the total
income, which is of course generally higher when there
are two adults in the household, regardless of the number
of children (similar histograms for the categories A2C
and A2).

Detergents. Another question was wether there was a
preference for different types of detergents by different
types of households. This is particularly interesting when
planning cross-marketing campaigns, to bundle the right
“new” product with the detergent for a particular target
group. The favorite detergents are again grouped into a
small number of categories (powdery, liquid, compact,
normal).

Figure 1 shows the relations between household types,
washing agent types, residence, and income. The ab-
solute frequencies are represented by the connections
that are displayed using bundled mode (Section III-G).
Concerning the detergent types, the histograms for the
categories tabs and liquid are very similar and state: both
types are more frequently bought by households with no
children and by people that live in larger cities (similar
distributions of the top and bottom histogram for the left
and right type of washing agent). Also, the latter fact is
correlated with having a higher income. People buying
liquid washing agents or tabs are more likely to live in
urban areas and have a higher income (and education, not
shown) as compared to others living in the countryside.

The behavior found here can be explained by two fac-
tors: higher income in urban areas, and larger packaging
sizes for washing powders. People living in Austrian
cities are much more likely to have to carry their
groceries over a longer distance (to the car or home),
whereas people living in the countryside do all their
shopping by car, anyway. Lower income and higher use
of washing agents (children), combined with the relative
ease of transportation make washing powders much more
interesting to the rural population. Liquid washing agents
and tabs are available in smaller sizes and are also
more convenient to use – but more expensive. They are

Fig. 12. Comparing housing data from Minnesota (top) and North
Carolina (bottom). People in colder climates prefer gas as heating
fuel over electricity, and are also less fond of mobile homes. Houses
in the south have slightly fewer bedrooms on average, but the three
bedroom one family house is even more common than in the north.

thus more attractive to people living in cities with more
expendable income.

B. Housing Data

In a second example (Figure 12), we compare housing
data from two states of the US: North Carolina (NC)
and Minnesota (MN). This data was extracted from the
publicly available 1% sample of the 2000 census data
set [26].

A new dimension was defined to group the different
heating fuels into more useful categories: natural gas (no
matter if bottled, from a tank, or from a pipe), electricity,
oil/kerosene, wood, and others (including the original
other category as well as solar and wind). All unknown
values have been removed from the display to improve
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readability. And even though NC has about 70% more
households, the relative number of unknown values is
almost identical in the two states.

The different preferences for heating fuels are imme-
diately visible. While 39% of households in NC use
electricity for heating, only 9% do in MN. The difference
goes entirely to gas, even taking away 1% from oil, and
2% from other fuels.

Another difference that can be observed easily is
the much lower preference for mobile homes in MN
(5%) when compared to NC (15%). Mobile homes also
tend to be smaller in MN, with the majority having
two bedrooms, instead of the rather equal distribution
between two and three bedrooms in NC.

These differences can of course be explained with the
different climates in the two states, with heating being
much less expensive using gas, and also mobile homes
being less suited for long, cold winters. And even though
one family houses are by far the most popular in both
states (61% in NC, 69% in MN), the “classical” three
bedroom house has a much more pronounced majority
in NC than MN – at the cost of larger houses. The values
for two- and more apartment houses are very similar in
both states, and only represent a clear minority in both
cases.

The relative histograms in the lower part of the two
images show how over- or underrepresented different
heating fuels are for different housing sizes. It is easy to
see that mobile homes have more than their fair share of
electrical heating in NC, but are underrepresented in this
category in MN. The use of gas is practically completely
independent of the type of home in MN, while one-
family houses have a clear preference for this fuel in NC.
Wood (the right-most fuel category) is underrepresented
in mobile homes in NC, but not in MN. The remaining
categories share very similar patterns between the states.

V. LESSONS LEARNED, FUTURE WORK

Overall, the response to Parallel Sets has been very
positive. In addition to the case studies presented above,
we have demonstrated the program to a considerable
number of people from various application areas (fi-
nance, customer relations, communication, etc.), many of
which had little or no prior knowledge of visualization.
We found that the (potential) users of the program
were immediately able to pick out relationships, and ask
questions based on those findings.

While the basic interaction is very simple for users fa-
miliar with graphical user interfaces, the more advanced
concepts like dimension composition and the degree of
independence between axes was considerably less intu-
itive. Gaining new insights from using our tool certainly

requires an understanding of basic statistics, and also the
willingness to understand complex relationships. This is
not necessarily a shortcoming of Parallel Sets, but rather
a necessity when trying to find meaningful information in
complex data sets. The graphical nature of visualization
enables the user to experiment, and use prior knowledge
of the data to explore the meanings of these concepts.

When there are many categories, or categories of very
different size, it can be hard to see and compare them.
This problem also affects histograms, which need some
horizontal space. To alleviate this problem, the program
allows the user to trade vertical for horizontal space, by
changing the aspect ratios of all the category rectangles.
This helps, but only up to a certain level, and also
interferes with the ribbons that connect the dimensions.
A distortion-oriented technique for quickly zooming into
a set of categories appears to be a good solution, but has
not yet been implemented. Providing histograms as a
tooltip that does not depend on the size of the category
is another option that we want to explore.

More histograms and statistical information need to
be included. The current ones mostly served to make
the users want more information directly in the display,
showing different relationships and statistical measures
numerically: a typical question when pointing out a
relationship was ”How many people does this apply to?”.
A related issue is finding outliers, since currently big
trends are emphasized.

Navigating between and selecting dimensions is not
supported by visualization, and can be rather demanding
(especially in the case of high-dimensional data sets). We
are therefore working on support that will show the user
which dimensions may be interesting to look at more
closely. This support can be both purely visual (e.g.,
using histograms or value and relationship displays [27]),
or based on statistics and data mining.

VI. CONCLUSIONS

Categorical data plays a key role in many real-world
data sets, yet has not been adequately addressed in
visualization so far. By providing a visual metaphor
as well as a set of interactions that allow the user to
efficiently work with complex data, Parallel Sets fill an
important gap.

Parallel Sets not only display data, but allow the
user to create new dimensions and thus use his or her
knowledge effectively when working with data. The
extensive use of meta data leads to the visualization
being presented in the way the user already thinks about
the data, and thus makes efficient work possible.

By combining interaction with semiautomatic features,
and providing the ability to store and directly use find-
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ings by means of meta data, the user is able to quickly
and accurately analyze large and complex data sets.
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