
1

Interactive Visual Analysisof
Familiesof FunctionGraphs

Zoltán Konyha, Kre�simir Matković, DenisGra�canin,Mario Jelović andHelwig Hauser

Abstract— The analysis and exploration of multidimensional
and multi variate data is still one of the most challenging areas
in the �eld of visualization. In this paper, we describe an
approach to visual analysis of an especially challenging set
of problems that exhibit a complex internal data structur e.
We describe the interactive visual exploration and analysis of
data that includes several (usually large) families of function
graphs f i (x ; t). We describe analysis procedures and practical
aspectsof the interactive visual analysis speci�c to this type of
data (with emphasison the function graph characteristic of the
data). We adopted the well-proven approach of multiple, link ed
views with advanced interactive brushing to assessthe data.
Standard views such as histograms, scatterplots, and parallel
coordinatesareusedto jointly visualizedata. Wesupport iterati ve
visual analysisby providing meansto createcomplex, composite
brushesthat span multiple views and that are constructed using
differ ent combination schemes.We demonstratethat engineering
applications representa challenging but very applicable area for
visual analytics. As a casestudy, we describethe optimization of
a fuel injection systemsin Diesel enginesof passengercars.

Index Terms— visual exploration, composite brushing, link ed
views, time seriesdata, fuel injection system

I . INTRODUCTION

T HE developmentof effective visualizationandinteraction
techniquesrequirestheunderstandingof thepropertiesof

the dataand the typical tasksthe userswant to perform [1].
Unfortunately, this requirementis not always met, often be-
causeof insuf�cient collaborationandcommunicationbetween
visualizationexpertsandtheusers.Theusers'ultimategoal is
alwaysto �nd expectedphenomenato support(or reject)their
hypothesesor to discoverunexpectedresultsthatquestiontheir
assumptionsor the validity of the data acquisitionprocess.
That can lead to the generationof new hypotheses.

The challengesof dataanalysisandexplorationareassoci-
atedwith very largedatasets,increaseddimensionalityandthe
considerationof datasemantics,including features,focusand
context [2]. Therefore,a visualizationtool shouldbedesigned
in close collaborationwith potential users.Tool developers
must be aware of the users' actual requirements,the usual
tasksthey needto solve, the shortcomingsof their previously
usedtools, and their feedbackon new ideas.A part of that
processis adevelopmentof intuitiveandeffectivevisualization
and interactiontechniquesbasedon a commondata model.
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If designedwell, the same principles can be used across
several applicationdomains,from real-time data monitoring
to engineeringdesignapplications,including simulations.

Modernsimulationsoftwarecangeneratemassive amounts
of data that require suitable analysis techniquesto get an
insightinto thepracticalimplicationsof theresults.Simulation
is increasinglyusedto assessthe quality andpotentialof new
designsearly in the process(e.g.aircraftsandcars).Building
realprototypesis time-consumingandexpensive.Eventhough
measurementson test bed systemsare likely to remain an
important way to verify designsin the future, the use of
computationalsimulationin thedesignandproductionprocess
canhelpto minimizethecostsof thedevelopmentandshorten
the time-to-market for new products.

For example, in the automotive industry many different
aspectsof new designsare checked using simulation long
before a new car is manufactured.Examplesinclude mix-
ture formation and combustion, enginecooling and �lter re-
generation,air conditioningin the passengercabin and front
shielddeicing,andmany others.The increasingcomplexity of
automotive subsystems,e.g., the power train, the intake and
exhaustsystem,or the fuel injection subsystem,alsorequires
simulationfor optimization.Tuningof an injectionsystemfor
moderncarsis an exampleof a multi-parameteroptimization
process.The operationof the injection systemdepends,in a
very indirectway, on severalparameters.Therefore,optimiza-
tion by experienceand/orintuition is usuallynot possible.

In this paper, we presenta new approachto the interactive
visual exploration and analysisof measurementand simula-
tion data.This approachis generalenoughfor a numberof
applicationscenariosthat sharethe samecharacteristics(in-
cluding multi-parametertuning problems).A major challenge
(in general)is how to visually relate the multivariatedepen-
dentvariablesto their multidimensionalreferenceparameters
(independentvariables).We suggesta combinationof different
kinds of views with speci�c brushinginteractions,all adapted
to work well for the families of function graphsin order to
facilitatetheinteractive visualexplorationandanalysisof such
datasets.We have investigated the usability of our ideasin
two very differentsettings:theanalysisof roadtraf�c dataand
the optimization of a fuel injection system.The road traf�c
data set serves as an illustrative example for the introduced
conceptswhile the fuel injection systemdataset provides a
casestudy, describedin detail in SectionVI.

The remainderof the paperis organizedas follows. Sec-
tion II providesanoverview of relatedwork. SectionIII gives
a brief descriptionof the datamodelusedandthe exploration
procedures.Section IV describesour proposedtools and



2

methodsfor supportingthesetasks.SectionV introducesthe
typical tasks in the analysisof such data sets. Section VI
describesthe useof the developedapproachfor a real world
automotive enginedesigntask. SectionVII provides closing
remarksanddirectionsfor future work.

I I . RELATED WORK

Interactive visual explorationandanalysiscanbene�t from
previousresultsin many areas.We�rst addressvisualanalytics
and then provide an overview of visualizationtechniquesfor
high dimensionaldataand the linked views principle.

Thomasand Cook [1] de�ne visual analyticsas “ the sci-
enceof analytical reasoningfacilitated by interactive visual
interfaces.” It is a wide-ranging�eld of sciencethat involves
visualizationand interactionmethodscombinedwith analyti-
cal reasoning,datarepresentationand transformationas well
as productionand presentationof the results.Thereforeit is
dif�cult to �nd a previously publishedwork thatencompasses
all aspects.We are able to collect and generatedata at an
increasinglyfastrate,but capabilityof analyzingthecollected
data lags behind [3]. We focus on how usersgain insight
into data, �nd expectedand unexpectedfeaturesand make
decisionsusingvisual tools.

Traftonetal. [4] presentastudyof how experiencedweather
forecastersinterpretcomplex visualizationsto build their own
qualitative mentalmodelsof weatherconditionswhich in turn
are the basis of the weather report they produce. In their
experiments they show how the users perform convergent
thinking (assemblingevidence to supporta hypothesis)and
divergent thinking (thinking creatively to identify alternatives)
at various stagesof their work. Saraiyaet al. [5] evaluate
� ve visualizationtools to determinewhich one provides the
bestinsight into the speci�c data.Gonźalezet al. [6] describe
how an informationvisualizationsystemwasusedby admin-
istrative data analysts.Ahlberg et al. [7] introducea visual
informationseekingtechniquewhich focuseson rapid�ltering
andprogressive re�nement of searchparameters.

Thereare numerouspublicationsof having scienti�c visu-
alization (SciVis) techniquesapplied to the visualizationof
simulationdatawith an engineeringperspective. Larameeet
al. [8] provide a thoroughvisual analysisof the coolant�o w
through the cooling jacket of a car engineby using various
different�o w visualizationmethodsto revealdifferentaspects
of thesimulationdata.Konyhaet al. [9] propose3D iconsfor
the analysisof simulationdataof chainandbelt drives.

There are simulation data types that are more effectively
explored by even more abstract visualization methods. In
those casesthe user may be able to gain more insight if
informationvisualization(InfoVis) techniquesareusedinstead
of or together with SciVis methods.Matković et al. [10]
describea methodfor the analysisof a fuel injection system.
The simulation time seriesdata is reducedand describedby
a set of scalarswhich results in a highly abstractview of
the injection system.The casestudy illustratesin detail how
engineerscan use the interactive, linked InfoVis views to
exploreandanalyzesimulationdataof a fuel injectionsystem.

The body of literature about the visualization of high
dimensionaldatais vast.Following the terminologyof Wong

et al. [11] we focus on the visualizationof multidimensional
data.Keim [12] classi�es methodsfor visualizationof high
dimensionaldatainto four groups:geometricprojections,hier-
archicalmethods,iconic methodsandpixel-basedtechniques.
In our work we have consideredonly geometricprojections
so far. Geometricprojectionsincludetwo of the mostpopular
information visualization techniques:scatterplots[13], [14]
andparallelcoordinates[15], [16], [17], [18], [19].

Using multiple, interactively linked views of the samedata
set allows the user to productively combinethe information
he or she gathers from the different views. The Attribute
Explorer [20], [21] useslinked histogramsto simultaneously
representthe interactionbetweenattributesandallow the user
to narrow thefocusby de�ning limits oncertainattributes.The
In�uence Explorer [22] allows exploration of datacomputed
from a model using given setsof parametervaluesas input.
The user can selecta set of points in either the parameter
or the result spacesand see how this set correspondsto
points in other dimensionsin both spaces.Greshet al. [23]
presentan approachthat links 3D visualizationsto statistical
representationsto facilitate effective exploration of medical
data.Doleischet al. [24] usemultiple linked views, including
adaptedinformation visualization views in the analysis of
CFD simulation data. Piringer et al. [25] interlink 2D/3D
scatterplotsandhistogramswith smoothbrushing.Schafhitzel
et al. [26] link several texture-advected�o w visualizationson
slices with the 3D view of the vector �eld in an attempt
to overcomeocclusion problems.Matković et al. [27] use
Timebox-like [28] brushing to link the graph of a function
to a scatterplotdisplayof its parameterspace.More advanced
multiple view visualizationsystemscan be con�gured freely
to suit variousdatasets[29] andallow �e xible coordinationof
views [30]. As the numberof linked views andthe amountof
coordinationincreasesit may becomenecessaryto visualize
the visualization's structureandoperation[31].

I I I . DATA MODEL

Generallyspeaking,a data model consistsof a data def-
inition and a manipulation language(structuring and oper-
ational de�nitions) [32]. Data de�nitions that result from
an engineeringsimulation, a real-world sensordata set, or
intelligencedatamay be very similar. Consequently, the data
setsunderconsiderationsharesomecommoncharacteristics.
The datasetscontainvaluesfor m independentvariablesand
n dependentvariables.

The independentvariables x = [x1; : : : ; xm ] and their
valuesde�ne a subsetI of thedataset.A memberof I � < m

representsa speci�c setof valuesx i of independentvariables.
For eachx i , thecorrespondingsetof valuesof dependentvari-
ablesis provided.Therearetwo typesof dependentvariables,
regular and function graphs.While regular variableshave a
singularvalue for eachx i , function graphvariablesusetime
asanadditionalindependentvariableto provide a setof values
for eachx i . A functiongraphcanbevisualizedas2D plot that
shows how the value of a dependentvariable changesover
time. In other words, the regular variablesr = [r 1; : : : ; r n r ]
dependonly on x while the function graph variablesf =



3

Fig. 1. Left: the map of all sensorlocationsin the Minneapolisfreeway
system traf�c data. A schematicmap is underlayedto provide context
information. Eachred dot marks the location of one station (which usually
encompassesseveral sensors,detectors, one per lane). Right: road traf�c
occupancy family of function graphs.Data from somesensors(marked with
theblackrectangleon road35W in themap)is highlightedin red.Occupancy
is de�ned asa percentageof time a detectordetectsvehicles.It is measured
in ten minute intervals. An occupancy valueof 0.7 meansthat for seven out
of ten minutesa sensordetectedvehicles.

[f 1; : : : ; f n f ] dependon x and time t 2 < . For a speci�c
set of valuesx i of independentvariablesand �x ed time t j

we cande�ne the setof valuesof dependentvariablesasd =
[r 1(x i ); : : : ; r n r (x i ); f 1(x i ; t j ); : : : ; f n f (x i ; t j )], nr + nf = n.
Thedependentvariablesandtheir values(possibly, over time)
de�ne a subset D of the data set. For a given function
graphvariable,f j (x ; t), we de�ne a family of functiongraphs
as a set of function graphs for each possible value of x,
f f j (x i ; t)j8x i 2 I g.

Oncethe datasetis de�ned, the questionis how to analyze
the data.In our datamodel, the manipulationlanguageis an
explorationlanguagethatenablessearchandpatterndiscovery
without modifying thedataset.Fromthevisualanalyticspoint
of view, the goal is to discover, in an iterative manner, trends,
tendenciesand outliers in the data and to seehow patterns
in D map to the correspondingsubsetsin I and vice-versa.
In order to achieve that, dataexploration techniquesmust be
conceptuallysimple,easilycombinedandvisually intuitive.

The visualizationframework is basedon the describeddata
model and a set of visual operators(brushing techniques)
andviews (histograms,scatterplots,parallelcoordinates,etc.)
that are linked together. The design of interactive visual
analysis within this framework is basedon the following
principles.The analystcanselecta varying numberof views.
Within each view, the variablesof interest can be selected
and the correspondingvaluesdisplayed.The visual operators
are used to select a subsetof “interesting” values for the
speci�c variablesin the view. The selectionis immediately
displayedin all other views. Families of function graphsare
of specialimportancein providing a visual spacefor patterns.
Within a family of function graphs,we would like to select
function graphsbasedon their shapes.It is possibleto usea
combinationof function graph valuesto specify the desired
shapeof a function graph,i.e. the pattern.

We will usea real-world roadtraf�c measurementsdataset
to illustrate the conceptsdescribedin SectionsIV and V.
Thedatasetis providedby theTraf�c ManagementCenterof
MinnesotaDepartmentof Transportation[33] that maintains
an archive databaseof road traf�c measurementsfrom the

Fig. 2. Several occupancy function graphsof atypical shapehave been
selectedby the red line brush.We concludefrom very high occupancy values
that those function graphs indicate malfunctioning sensors.In the linked
map view (scatterplotview of sensorcoordinates)we can seethat thereare
two malfunctioningsensorsnext to eachother. In anotherlinked scatterplot
view weekdaysandroadnumbersaredisplayed.Eachcolumnrepresentsone
direction(for instance,south-bound)of a road.We canseethat thosesensors
areon road35E andthat they did not work for threedays.

freeway systemin theTwin Citiesmetropolitanarea.Thedata
set contains28 days of measurementsfrom approximately
4,000sensorsgroupedinto about1,000stationscovering ten
mainroads.Oppositedirectionsonaroad(e.g.north-boundvs.
south-bound)are treatedseparately, thus effectively creating
20 one-way roads.I consistsof the positionsof the sensors,
roadnumbersandweekdays.Thesensorsreporttraf�c volume
and occupancy, thus D consistsof two families of function
graphsin this dataset.

IV. TOOLS FOR ANALYSIS OF FAMILIES OF FUNCTION

GRAPHS

We have developed a tool basedon premisesdescribed
in Section III. The combinationof basic, highly interactive
views is suf�cient to carry out a wide rangeof sophisticated
analysistasks. Interactivity plays a crucial role in analysis.
Importantandnovel aspectsthatsupportinteractiveprocedures
aredescribedin the following.

We currently offer up to six linked views including his-
tograms,scatterplots,parallelcoordinatesandfunctiongraphs.
We do not make any assumptionsabout independentand
dependentvariablesin the sensethat we would restrict any
of the basicview to displayeitherof them.The inputsof the
views can be mappedto any attribute of the data set, both
independentand dependentvariables.The user can arrange
the views asdesired,canhave more thanone instanceof the
sameview typeshowing thesameor differentattributesets.It
is possibleto temporarilymaximizeoneview for moredetailed
examinations.Histograms,parallelcoordinatesandscatterplots
arestandard,well known views [34], thuswe do not describe
themherein detail. However, it is worth mentioningthat the
point size in scatterplotviews can optionally be proportional
to thenumberof dataitemsrepresentedby a singlepoint. The
more items a point representsthe larger it is. An exampleis
shown in Fig. 2: larger points indicate more sensorson the
road.Similarly, thesizesof pointshighlightedin the focusset
arealsoproportionalto thenumberof itemsbrushed(Fig. 11).
Thusthe ratio of brusheditemsversuscontext representedby
a point in the scatterplotis indicatedby point sizes.

The function graph view displays a family of function
graphsat once.If thenumberof functiongraphsin the family
is large then the display can becomevisually clutteredand
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Fig. 3. A snapshotfrom an interactive visual analysissessionof traf�c data in the Minneapolismetropolitanarea.The brushcreationorder is indicated
by red numbers.Here we look for locationsof high volume morning traf�c on a given road on weekdays.The userhasselectedthe road and weekdaysin
the scatterplot(brush1) and then removed low traf�c volume graphsintersectingbrush2 using SUB operation.The locationsare highlightedin the linked
map.The roadnumber(35WSB,i.e. 35W south-bound)is shown on mouse-over. We canseethat heavy morningtraf�c on south-bound35W mainly occurs
mainly north of the downtown, i.e., towardsit.

non-informative. In order to representthe characteristicsof
thefamily better, we can(optionally)renderthepixelsthrough
which moregraphspassthroughwith higher intensity.

In the following we will describegenericinteractionprin-
ciples and elaborateon the speci�c requirementsof brushing
and linking in variousviews.

A. GenericInteraction Features

If the basic views listed above are independentthen they
provide a limited insight into the dataset.However, if areas
of focus can be highlighted with applicablebrushing tech-
niquesand this focus areais linked to the other views, then
correlationsand dependenciesin the data can be revealed.
Our systemsupportsinteractive brushingand linking and the
numberof currentlybrusheddataitemsversustotal is always
indicated.The usercanperformbrushingin any of the views
and all the other views will also highlight the brusheditems
while the context is shown in a different,lesssaturatedcolor.
Whenever applicable,the view can be zoomedto show the
brushedregiononly. Thebrushescanberesizedanddraggedto
new locationswhich helpsin the interactive dataexploration.
A tabular displayof thecurrentlybrusheditemscanbeopened
whenthe userneedsdetailednumericinformation.

With simplebrushingandlinking it is usuallya problemto

locatethe matchingbrusheddataitems in different views. If
moredataitemsarebrushedin a view thenall corresponding
items are highlighted in other views, but we cannotvisually
identify thesameitem in thedifferentviews. We have applied
anoptionalcolor gradientalongthebrushandusedthis color
gradientin the linkedviews to establisha visual identi�cation
of the correlateddataitems.That aidsthe userin discovering
tendenciesin the data set. Fig. 9 provides an illustration of
the gradientbrush.

Another improvementis compositebrushing, a query tool
which is a result of logical operationsperformedon brushes.
Compositebrushingmakes it possibleto build queriesthat
specify several overlappingor intersectingrangesof criteria
in the sameor differentviews. We could have chosento offer
AND, OR andNOT operationsto compositebrushesandadd
a formulaeditorto allow controllingtheorderof operationsby
bracketing. In contrast,we usecompositebrushingsimilar as
in the SimVis system[35] by offering AND, OR and SUB
operationswhere the �rst operandis always the result of
the latestcomposition.This allows a simpli�ed, intuitive, and
moreiterative work�o w comparedto working with a formula
editor. Theuserde�nesthe�rst brush,then(optionally)selects
a Booleanoperation,adjuststhecompositionsetting(to either
AND, OR, or SUB) andthende�nes the next brushto adjust
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thecurrentselection.Following brushesandoperationswill be
applied to the result of prior brushesonly. Iteratively, every
new brushaltersthe currentselectionstatusaccordingto the
compositionrule in use.The processcontinuesin this way:
new brushesand operationsare applied to the latest state
only. Eachnew brushingoperationprovidesimmediatevisual
feedbackandtheusercaninteractively re�ne (usingAND and
SUB) or broaden(using OR) the currentselectionand steer
the informationdrill down. The usercanalso resizeor move
any existing brushin the chain to gain even more �e xibility .

Brushingandlinking is a powerful featurein understanding
how outputs dependon inputs and �nding input parameter
setswhen desiredpropertiesof outputsare known. Because
we treat all parametersin the samemanner, one can brush
in views of independentparametersandstudyhow dependent
parameterschangein otherviews, or performthe inversekind
of investigation to �nd suitableinputs for speci�ed resultsby
brushingin the views showing outputparameters.

Brushingconventional views is quite straightforward. The
usercanselecthistogrambins, rectangularareasin scatterplot
views or ranges of a parallel coordinatesaxes. We have
introduceda novel brushingtool in the function graphsview
and it will be describedin moredetail.

B. BrushingFunctionGraphs

We suggesttwo brushing methodsto meet the speci�c
requirementsof querieson familiesof function graphs.

A line brushis a simpleline segmentdrawn in the function
graphview. It selectsall functiongraphsthat intersectthe line
Fig. 2 shows an exampleof selectingseveral graphsthat have
high andconstantoccupancy value indicatingmalfunctioning
sensors.Linking themto the correspondingpoints in I in the
map, we identify those sensors.It is very easy to exclude
outliers in a family of function graphsor to isolate function
graphswith desiredcharacteristicswith just a few line brushes
(brush2 in Fig. 3). Additionally, it is very useful to provide
a polyline brushingopportunity, i.e., a brush in the form of
a polyline which selectsall function graphswhich intersect
any of the polyline segments.The line brush, togetherwith
theabove-mentionedcompositionfunctionality, assisttheuser
when looking for function graphswhoseapproximateshape
is known. A logical operationcan be de�ned individually
for each line brush which supportsvery complex queries.
An exampleof compositebrushingis provided in Fig. 5. A
complex combinationof line brushesis usedto include and
remove various function graph shapesin the focus set. We
have found compositionsof line brushesvery intuitive and
effective in brushingfunction graphs.

A rectangularbrush selectsall curves which passthrough
the rectangle.The timebox widget [28] is an analogy to
rectangularbrushing.We have enhancedthe original idea by
allowing the userto optionally limit the brushingto function
graphs that enter and leave the rectangularbrush at given
edges.Probably the most useful ones are those where the
function graphis requiredto enterandleave at the bottomor
on the top edgeof the rectangle.Thesefunction graphshave
a local maximumor minimum inside the rectangle,which is

oftena criterion in time seriesdataanalysis.This is especially
useful if the display of a family of function graphsis dense
and areasof maxima and minima are overlappedby other
function graphs.The rectangularbrushcanbe representedas
a compositionof line brushes.

V. ANALYSIS PROCEDURES

The shapesof function graphsdependon the independent
variablesx and in practicalcasesthe shapesusually exhibit
similarities for slight variationsin the variablevalues,albeit
this correlationmay be quite indirect. For example,complex
physical systemscanbe considered“black boxes” that return
outputfor an input parameterset,but their exactdependencies
on inputs are unknown. This can also happenif a systemis
simulatedusinga computer:theboundaryconditionscanhave
sodiverseeffectson theresultsthatin analysisof suchsystems
it is morefeasibleto reconstructthe black box by exploration
ratherthanby trying to deduceits internalsfrom a simulation
process.Analysisandexplorationof this classof datainvolves
several typesof procedures,including discovering trendsand
tendenciesor �nding outliers in D . For certain data sets,
similar analysisof I canalsobe of interest.However, in this
sectionwe focuson �nding patternsanddependenciesin the
union of I andD.

A. Black Box Reconstruction

We call the processof understandingthe in�uence of
independentvariableson dependentfunction graphvariables
black box reconstruction. To accomplish this, we usually
need to have an overview of the entire data set, following
the principles of Schneiderman's Visual Information Seek-
ing Mantra: overview �rst, zoom and �lter , then details-on-
demand[36]. We areinterestedin how functiongraphschange
as values of independentvariables are changed.We want
to �x values of some independentvariables to reduce the
focusareaandvaryotherindependentvariableswhile studying
the correspondingfunction graphs.This is an interactive and
iterative data exploration process:brushesare createdand
movedto areasof interest.Whenwe have built up anoverview
of the dependencieswe want to zoomin on detailsin both I
and D in order to discover more subtle correlationsin the
data.In caseof function graphsit is especiallyimportant to
provide context informationsothatchangesin shapearemore
obvious asvariousrangesof valuesarebrushed.

An exampleof blackbox reconstructionis shown in Fig. 4.
We are interestedin evening traf�c characteristicsentering
the Minneapolis area freeway system.The freeway system
has entrancesfrom North, South, East and West. We �rst
brush theseentry points in the map view with a logical OR
combinationof four brusheslabeled1 through 4. Then low
traf�c volume in the evening is excludedfrom the focus set
usinga line brushwith SUB operation(5). Finally, we create
a sixth, larger brushin the map using the AND operationto
restrict the focus set to one of the entries.By draggingthis
last brush to the other three entrieswe can quickly change
the focusandcomparetraf�c patternsof the four entrypoints,
while still beingaccuratewith respectto brushes1 to 4. After
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Fig. 4. Anothersnapshotof an iterative, interactive visualanalysisof theMinneapolistraf�c data.Thecreationorderof brushesis indicatedby rednumbers.
First, entriesinto the freeway systemareselectedusingthe union (OR) of four brushes(labeled1 to 4) in the top left map.Next, low volumeeveningtraf�c
is excludedfrom the focusby subtractinggraphswhich intersectbrush5. Using logical AND with brush6 in the mapview we canrestrict the investigation
to one speci�c entry. By draggingthis brush to other entrieswe can quickly changethe focus to one of the four entries.Therebya comparisonof traf�c
patternswith respectto the four entriesis possible.In this snapshotevening traf�c on the southentry is shown. The highlightedpoints in the lower middle
scatterplotandthe linked histogramsreveal that heavy traf�c directionis south-boundfrom Mondaysto Thursdays,but interestingly, shifts to north-boundon
FridaysandSaturdays(roadnumberanddirectionaredisplayedon mouse-over).

each interaction step all views are immediately updatedin
order to supportiterative analysis.

B. Analysisof Familiesof FunctionGraphs

In this typeof analysiswe(approximately)know thedesired
or expected shapeof function graphs and our goal is to
�nd combinationsof independentvariablesthatproducethose
shapes.We also want to exclude combinationsthat produce
undesirableor invalid function graphsand we want to �nd
out how the deviations from the desiredshapedependon the
independentvariables.This could be consideredan inverse
investigation comparedthe one in Section V-A. However,
this type of analysis requiresthat the we have an idea of
the operationof the black box so that we avoid erroneously
identifying dependenciesthat area merecoincidence.

The procedurerequiresfocus+context views of the graphs
where criteria can be de�ned to select graphs of speci�c
shapes.The desiredshapesof graphscan be characterized
by brushing. The typical procedureis to locate invalid or
undesiredfunction graphs�rst, as illustrated in Fig. 2. We
brush them in the function graph view and �nd the related
valuesof independentvariables,in this caselocationsof the
malfunctioning sensors.We will exclude these items from
further analysis.

Thedesiredpropertiesof a functiongraphcanbede�ned by
line brushes,asshown in Fig. 3. Herewe look for locationsof
highvolumemorningtraf�c onagivenroadonweekdays.This
can be accomplishedby selectingthe road and weekdaysin
thescatterplot(brush1) andthenremoving low traf�c volume
function graphsusingSUB operation(brush2). The locations
arehighlightedin the linked map.

C. MultidimensionalRelations

Another interestingaspectof the analysisis the correlation
betweenvariousfamiliesof functiongraphs.Wewantto inves-
tigatefeaturesof onefamily of function graphsdependingon
thepropertiesof a setof functiongraphsin anotherfamily, for
example,relationshipsbetweentraf�c volumeandoccupancy.
Thisanalysiswithin multidimensionaltimeseriesdatarequires
that familiesof function graphsaredisplayedsimultaneously
andtheusercaninteractively brushspeci�c groupsof function
graphsin onefamily andstudythe correspondingonesin the
other families. We may also want to narrow the searchby
specifying�lters on thefunctiongraph's independentvariables
x. Furthermore,we want to be able to de�ne criteria for
variousfamiliesof function graphs.

As an illustrative example let us consider the following
query on the traf�c data: we look for areaswhere traf�c is
strong,but still moving both in the morningand in the after-
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Fig. 5. We look for roadswheretraf�c is high bothin themorningandin the
afternoon.First we selectheavy morningtraf�c (1 AND 2), thenremove low
eveningtraf�c volume(SUB 3). Datafrom malfunctioningsensorsis removed
(SUB 4). Next we remove high occupancy function graphsby subtracting
brushes5, 6 and7. The desiredfunction graphshapesare further re�ned by
removing functiongraphswhich intersectbrushes8, 9 and10. Thecombined
criteria on the two function graphsrevealsthe roadsin questionon the map.
We can also seein the lower scatterplotview that interestingly, on speci�c
roads,no pointsarehighlightedon Wednesdays.This meanstraf�c on those
roadsdoesnot follow this pattern.

noon.Thoseareheavily usedroadswithout traf�c jams.If cars
travel at higher speedsthen many carspassover the sensors
but with relatively largegaps.This is indicatedby highvolume
andrelatively low occupancy values.In the analysistool this
is expressedas a combinationof brushesin both families
of function graphs.There is no direct correlation between
the two function graphs.The investigation is demonstrated
in Fig. 5. We brush in the volume and occupancy function
graph views and study the linked map. First large morning
traf�c volume is brushedusing two line brushes(1 AND 2).
Then we remove function graphswith low traf�c volume in
the evening (SUB 3). Now we narrow down the searchin
theoccupancy functiongraphview. Datafrom malfunctioning
sensorsis excluded(SUB 4). We thenlimit the occupancy by
removing function graphswhich intersectbrushes5, 6 and7.
Now we have a view of the areaswheretraf�c is strongbut
moving in the morning and in the evening. We can further
re�ne the desired traf�c volume shapein the morning by
removing the function graphswhich intersectthe three line
brushes(SUB8). Finally, we limit theoccupancy to evenlower
rangesby removing function graphsthat intersectbrushes9
and10.

D. HypothesisGenerationsvia Visual Analysis

There is a particularly strong need in engineeringappli-
cations to perform automaticoptimization of designsusing
several simulation iterations with suitably varied boundary
conditions.The automaticoptimizationprocessmusthave an
approximatemodelof thesimulationsoto know how boundary
conditionsshouldbeadjustedin searchfor anoptimum.Visual
analysiscan be usedto createhypothesesand rules that the
automaticoptimization can use in its simpli�ed model and
also to �nd out if the optimization missessomefamilies of
function graphswhile searchingfor an optimum.

Gaining insight into the currentdesignand settingup hy-
pothesesaboutits operationvia visualanalysishasa very im-
portantadditionaladvantageover pure numericoptimization.
When designinga new component,engineersalmost never
start from scratch,but the new designevolves from an old
one.Becauseof this iterative natureof designin engineering,
the insight gained from analysisof previous designscan be
usefulin improving futureones.It alsoimpliesthatsimulation
modelsof new designsarenot radically differentfrom that of
the old onesand their resultsarecomparableto someextent.
By analyzing the relationshipsbetweenthe two, tendencies
canbe found andextrapolatedto improve future designs.

VI . ENGINEERING APPLICATION: FUEL INJECTION

SYSTEM SIMULATION

The scienceof visual analyticsis very applicablein engi-
neeringapplications.Simulation and measurementdata sets
are vast,optimizationgoalsare often con�icting, the tenden-
ciesanddependenciesin thedatacanbeindirectandengineers
need to �nd optimal con�gurations. Designersmust make
defensibleandresponsibledecisionsbecausedesignmistakes
can have very expensive consequencesif shortcomingsare
discoveredduringproduction.Time-to-market for new designs
needsto beshort,sodesignersmustwork undertime pressure
andcommunicatetheir �ndings to collaboratingteams.In this
sectionwe demonstratethe applicability of our approachto
the analysisof Diesel injection systemsimulationdata.

A. DieselCommonRail Injection Systems

Thereare many (often con�icting) goalsof Diesel engine
designincluding the needfor high power andgood fuel ef�-
ciency, meetingemissionregulations,reducingnoiselevelsand
improving driveability (steadyand reliable torqueat various
enginespeeds).The fuel injection systemis the key Diesel
enginecomponentto achieve thosegoals.Thefollowing prop-
ertiesareconsideredimportantin thefuel injectionprocedure:

� high injection pressurefor good atomizationand com-
bustion,

� �e xible timing of the injection,
� shortpre-injectionbeforethe main burst to reducecom-

bustionnoise,
� accuratecontrol of injectedfuel quantity,
� ability to inject smallamountsof fuel to achieve econom-

ical operationandgoodemissionproperties.

A speci�c typeof injectionsystems,thecommonrail injec-
tion systemcanbe controlledin a very �e xible way. Injection
pressureand quantity can be controlled with a high degree
of �e xibility , multiple fuel injectionsare possiblewithin one
injectioncycle andthe time anddurationof the injectionscan
be controlled preciselyby the enginecontrol unit basedon
the enginespeedandload.Thesepropertiesarekey factorsin
meetingcurrentandfuturevery stringentemissionregulations.
Therefore,commonrail injection systemsare seenas a very
popularoption by many manufacturers.In our casestudywe
use the simulation resultsof a conventional seriescommon
rail Diesel fuel injection system[10], [37].
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Fig. 6. Control parametersfor the simulation.Left: inlet pressurecharac-
teristics are pressurelevels Plow , Phig h and the time interval of pressure
increasedTp . Right: injector valve opening/closingpropertiesare the time
Tv 1 whenthevalve startsto openandtheopening/closingtime interval dTv .

Fig. 7. A typical shapeof thefuel injectionratefunctiongraphis highlighted
in red. There is a short pilot injection �rst, followed by the main injection.
The function graphsresultingfrom othercombinationsof control parameters
aregray.

B. Fuel Injection Simulation

Thefuel injectionsimulationdatais from AVL-List GmbH.
The simulation is basedon the theory of 1D �uid dynamics
and2D vibrationsof multi-bodysystems.In 1D �uid dynamics
pressureis uniform on pipe slicesperpendicularto the axis.
The simulation was run for a number of cases. Each case
is representedby its own set of simulationcontrol parameter
values.The software can automaticallyloop the parameters
over a speci�ed rangeand run a simulationvariant for each
resultingcase.The engineersstudy the resultingoutput data
and attempt to �nd ideal simulation input parametersfor
variousengineoperatingsituations.This dataset follows the
model introducedin SectionIII: I consistsof the simulation
control parametersand D consistsof the simulation output.
In the following, we provide a detailed descriptionof the
dependentand independentvariablesin this dataset.

1) Simulation Control Parameters: The injection shape
dependsmainlyonthreefactors:thenozzlegeometry, injection
pressureandtimingsfor valveopeningandclosingprocedures.
Thein�uence of controlparametersrelatedto nozzlegeometry
hasalreadybeeninvestigatedin our previouswork [10]. Once
a (nearly) optimal nozzlegeometryis found and it goesinto
productionit cannotbechangedvery oftenbecausethatwould
be too expensive. The focus of fuel injection optimization
afterwardsis usuallyon varying the remainingtwo factors.

Therefore,the independentvariablesin our current inves-
tigation are related to injection pressureand injector valve
timingsonly. The injectionpressureis controlledby the injec-
tion pressuremodulationdevice which is positionedbetween
the rail and injector. In our investigations this device is not

Fig. 8. Pilot injectionswith high amountof fuel are brushedwith a line
brush.As seenin the parallelcoordinatesview of the independentvariables,
theseall correspondto high Plow values.

Fig. 9. High dTv and all Plow simulationparametersare brushedin the
scatterplotdiagramusing a gradientbrush.The correlationof Plow and the
amountof pilot injection is revealedby the color gradient.

modeledin detail,but we take themodulatedpressureasinput.
The characteristicsof the pressureon the injector's inlet are
describedby threeindependentvariables(Fig. 6). The injector
valve actuatorthat controls the injection timing is described
by its opening/closingtimesandvelocities.Although this is a
simpli�ed model, it allows the simulationof varioustypesof
valveactuatorsincludingthepopularsolenoidtypeor themore
recent piezoelectricones. Consequently, we have I of � ve
independentvariables.In parenthesiswe indicatethe number
of variationsfor eachindependentvariable.

1) Pl ow : low pressureon the injector inlet (5),
2) Phig h : high pressureon the injector inlet (5),
3) dTp: time interval of modulatedpressureincreaseon the

injector's inlet (5),
4) dTv : time interval of the injector valve opening and

closing(5),
5) Tv1: injector valve openingtime (7).

The total numberof variationsof the independentvariablesis
54 � 7, whichmeans4375differentsetsof simulationboundary
conditions.

2) SimulationOutput: For eachcombinationof the inde-
pendentvariablesthe simulatorcomputesthreesetsof time-
dependentresults:Qinj (t): injection rate, Pinj (t): injection
pressureand An (t): needle lift. In other words, there are
threefamiliesof functiongraphsin this dataset.Furthermore,
the following regular dependentvariablesare computed:Qp:
amountof fuel injected during pilot injection, Qm : amount
of fuel injected during main injection, Qvo: amountof fuel
�o wing backto the fuel tank,Vopen : needleopeningvelocity,
Vcl ose: needleclosing velocity, L p: spray penetrationdepth,
Pia : averageinjection power.
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Fig. 10. Idealshapeof themain injectionfor variousengineoperatingpoints
de�ned by enginespeedandload.Theshapecanbeclassi�ed into threetypes:
square(injection ratesteeplyincreasesto a maximumlevel), ramp(the slope
is more gentle) and boot (following a nearly horizontal segment injection
rate rapidly increasesto maximum level at the moment of ignition). This
classi�cation is somewhat arbitrary, sincethe shapechangesfrom squareto
boot in a continuousmanneras the control parametersvary.

Fig. 11. Rangesof controlparametersthatproducesquareshapedinjections.
First the user attemptedto selectsquareshapedgraphswith brush 1. This
brush selectsseveral not squareshapedgraphs,too. Theseare removed by
subtractinggraphsthat intersectbrush2. Brush 3 removes graphsthat drop
undera certainthresholdin the main injection part. This propertyis a result
of vibrationsin the fuel line, which are to be avoided.

C. Analysisof Fuel Injection SimulationData

Arbitrary shapedinjection rate function graphscannotbe
producedin simulationbecauseof thephysicalrequirementsof
thecombustionin theengine.Theenginewill not run properly
if the shapeof injection rate function graphdoesnot follow
the ones in Fig. 7. There are usually one (as in Fig. 7) or
two small peakscalled pilot injection in the �rst quarterof
the injection procedurein order to reducecombustion noise
and NOx emissionin combinationwith the main injection.
The goal is to �nd combinationsof simulation parameters
that control the volumeof the pilot injection andproducethe
desiredshapeof the main injection.

1) Analysis of Pilot Injection: We investigate how the
amountof fuel and the timing of the pilot injection depend
on the control parameters.We zoomto the pilot injectionpart
of the Qinj (t) function graphandselectfunction graphswith
high peaksusing a line brush (Fig. 8). The corresponding
items are highlighted in the parallel coordinateview of the
input parametersWe can seethat strong pilot injections are
linkedwith high Pl ow values.We suspectthat thereis a direct
correlation betweenPl ow and the amount of fuel injected
during pilot injection.To supportthis hypothesiswe brushall
Pl ow andhigh dTv valueswith a gradientbrushin a scatterplot
view (Fig. 9). Thecolor gradientfrom redto greenestablishes

Fig. 12. Requiredneedlemovementcharacteristicsfor squareshapedmain
injections.Top left: control parametersthat producesquareshapedinjections
arebrushed.Top right: red to greengradientshows that earliervalve opening
timescausedeviation from theidealsquareshape.Bottomleft: needleopening
and closing velocitiesmust be fairly high for this shape.Bottom right: the
shapeof the needlelift function graph is closely correlatedto that of the
injection rate function graph.

visual links betweenthe brusheditemsin the scatterplotview
of the injection control parametersand the graphview of the
injection rate.

Next, we try to �nd theparametersthatdeterminethetiming
of the pilot injection. We brush the peaksof the function
graphwith a line brushand examine the parallel coordinate
view of the control parameters.We conclude that time of
pilot injection's peakdependson dTv . This hypothesiscanbe
counter-checked in an interactive way. A brushis pannedover
the scatterplotdiagramof Pl ow and dTv and the highlighted
injection rate function graphsare studied.We �nd that large
dTv valuescausethe pilot injection to start later and also to
haveslightly lowervolume.Thefully coveredaxesof thethree
other control parametersin the parallel coordinatessuggest
that the pilot injection's shapedoesnot dependon them.

2) Analysisof Main Injection: The optimal shapeof main
injection is differentfor eachparticularengineoperatingpoint
(Fig. 10). The engine control unit (ECU) measuresengine
speed and load to determine the current operating point.
For each operatingpoint the ECU containsa lookup table
of injection control parametersusedto control the injection
system.The goal is to �nd suitablesetsof control parameters
for characteristicpoints in the diagramand understandhow
variouspropertiesof the injection rate function graphcan be
controlled.In thefollowing we investigatehow suitablecontrol
parameterscanbefoundfor speci�c maininjectionshapes.For
eachcasewe alsodemonstratesomeadditionaldependencies
and tendenciesin the dataset.

a) Square: Square main injection shape is desirable
when load is very low or when the enginespeedand load
areboth high. We useda combinationof threeline brushesto
selectsquareshapedinjection rate function graphs(Fig. 11).
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Fig. 13. Top left: brush1 selectscontrol parametersfor rampshapedmain
injections.Bottomleft: brush2 is probedin thehistogramof thehigh pressure
on injector inlet using the AND operation.Top right: injection rate function
graphsof the brusheditems.Bottom right: injection pressurefunction graphs
of the brusheditems.By draggingbrush2 and studyingthe linked function
graphview we observe that injectionratefunctiongraphshave similar shapes
but differentmaxima.

The aim of brush 3 is to exclude undesiredshock wave
re�ections.

Using stepssimilar to the onesusedwheninvestigating the
pilot injection we discover that Tv1 is high for the brushed
functiongraphs.Thatmeanstheinjectorvalveopenslatewhen
the pressureon its inlet is alreadyvery high. This leadsto
a suddenincreaseof injection rate, creating squareshaped
injectionratefunctiongraphs.As brush3 is createdweobserve
in the linked scatterplotdiagramthat most of the items with
low dTp (time interval of modulatedpressureincrease)are
removed from the focus. This meansdTp must not be very
low in order to avoid shockwave re�ections.

We also study the desired needle opening and closing
velocitiesand the correlationsbetweenthe injection rate and
the needlelift function graphsfor this case.In orderto do so,
high Tv1 and dTp are brushedin the scatterplotdiagramin
Fig. 12. The highlightedpoints in the Vcl ose/Vopen scatterplot
diagramshow that fairly fast needleopeningand closing is
requiredfor squareshapedinjections.The needlelift function
graph(bottom right) is also linked and the color gradientof
the brushshows a strongcorrelationbetweenthe needlelift
and the injection rategraphs.

b) Ramp: Ramp-shapedmaininjectionis desirablewhen
the enginespeedandload arein a mid-range.In the previous
casewe have found a correlationbetweenTv1 and the shape
of the injection rate function graph.We also know that the
time interval of the modulatedpressureincreaseon injector's
inlet shouldbe fairly high to avoid re�ections. Basedon this
we start the investigation by brushingcaseswhenthe injector
valve starts opening a little later and we exclude low dTp

ranges(brush1 in Fig. 13).
The histogramof Phig h is also brushed(brush2) and the

Fig. 14. If the injector valve is openedvery early than the injection rate
quickly increasesto the”boot” level. It reachesits maximumwhenthemixture
is ignited in the combustionchamber.

intersectionof the two brushesis studiedin the injection rate
and injection pressurefunction graphs.We observe that the
correspondingfunction graphsof injection rate and pressure
are similar in shapebut differ in their maxima as Phig h is
varied (Fig. 13).

c) Boot: Boot-shapedmain injection is desirable for
engineoperatingpointsof mid-rangeenginespeedsandhigh
load.Fromourpreviousexperienceweassumethattheinjector
valve hasto be openedvery early to achieve this shape.This
assumptionis veri�ed in Fig. 14by brushingthecorresponding
region in the scatterplotdiagramof Tv1 anddTp.

Now we investigate how desiredamountsof fuel in the
main injection and various injection penetrationlevels are
achieved.Thescatterplotdiagramof thesedependentvariables
is brushedand the brusheditems are observed in the linked
views in Fig. 15. We observe that the brushedinjection rate
functiongraphsareall bootshaped.In theparallelcoordinates
view it is obvious that boot shapedinjection doesnot require
fastinjectionrateincrease,but fastneedleclosingandinjection
ratedecreasearestill preferred.We alsodiscover that for deep
fuel spraypenetrationand high injection powers (brushedin
greenin Fig. 15) fast needleclosing velocitiesare required.
The injectedfuel mass(Qm ) andthe amountof fuel returned
to the fuel tank (Qvo) are both fairly high. This matchesour
expectations,sincewe seein the parallelcoordinateview that
fuel pressurePhig h wasalsoquite high in thesecases.

3) Insight Gainedfrom Analysis: In this examplewe have
gainedvaluableinsight into the fuel injection simulationdata
setand therebyinto the fuel injection process.

We found that the amount of injected fuel in the main
injection stage can be controlled by adjusting Phig h . The
amountof pilot injectionis controlledmostlyby Pl ow , but dTv

alsohassomein�uence on it. We observed that choosingdTp

andTv1 is thekey to achieving thedesiredinjectionshapesfor
variousengineoperatingconditions.Whenpressureincreases
too faston the injector's inlet then the resultingwave canbe
re�ected into the fuel line which impairsour control over the
injection's shape.By studying the needlelift function graph
and the relatedVopen and Vcl ose simulation outputswe can
de�ne the desiredneedlecharacteristicsfor speci�c injection
shapesand seehow tightly the injection rate and the needle
lift function graphsarecorrelated.

Additional imagesand supportingvideos are available at
http://www.vrvis.at/scivis/graphs-analysis/ .



11

Fig. 15. We investigate the conditionswhenfuel is injecteddeepin the combustionchamberandwith high power. The correspondingitemsarebrushedin
the scatterplotdiagram.The linked injection ratefunction graphsshow that this requiresboot shapedmain injections.The desiredneedleopeningandclosing
velocitiesarehighlightedin the parallelcoordinateview.

VII . CONCLUSION

The analysisof relationshipsbetweenfamilies of function
graphsis a common task in many application domains.A
novel combination of establishedvisualization techniques,
linked views and advanced brushing features representsa
valuable tool for interactive visual exploration and analysis
of data sets that include families of function graphs.Inde-
pendentand dependentvariablesin the data set are treated
thesame,providing improvedsupportfor iterative exploration
and analysisof the entire dataspace.Multiple, linked views
enablesimultaneousviewing of independentand dependent
parameterswith immediatefeedback.

Brushing proved to be especially effective, since it al-
lows the interactive exploration of relations betweeninde-
pendent and dependentvariables. The color gradient im-
proves the visual connectionof the brushed items to the
linked focus+context visualizations.The compositebrushing
with AND, OR, and SUB operationssupportsthe iterative
re�nement of information drill-down and the detection or
extraction of patternsfrom the applicationdomain.The line
brush techniqueproves to be especiallyuseful in selecting
function graphs.It is intuitive, easyto useandvery effective.
Fig. 5 shows how a compositionof nearlya dozenline brushes
is used to identify a pattern in a family of traf�c volume
function graphs.

The processof the compositebrush constructioncaptures
theessenceof visualanalyticsprocedures:it is interactive and
iterative. The initial brushprovidesthe initial dataselectionin
oneview. Thatselectionis immediatelydisplayedin thelinked
views whereit canbe analyzedfrom differentperspectivesto
formulatea hypothesis.That hypothesisis then testedusing
new brushes.During this iterative procedurenew, possibly
unexpectedpatternscan be found. Fig. 2 shows a discovery
of a pattern in D (constanthigh occupancy) that indicates
a patternin I (malfunctioningsensors).Suchdiscoveriesare
more dif�cult or even impossiblewithout interactive visual
analysis.

Futurework will proceedin threedirections.First, we will
expandthe datamodel to include input time seriesand time-
dependentinput parametersas well as �rst and secondorder
derivatives of times series.We will explore what impact this

hason therequiredanalysisproceduresandtry to �nd tools to
supportthenew tasks.Finally, wewill exploretheuseof large-
scaledisplaysandusabilityissuesrelatedto manageabilityand
arrangementof large numberof views.
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