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Interactive Visual Analysis of
Families of Function Graphs

Zoltán Konyha, Krešimir Matković, Denis Gračanin, Mario Jelović and Helwig Hauser

Abstract— The analysis and exploration of multidimensional
and multivariate data is still one of the most challenging areas
in the field of visualization. In this paper, we describe an
approach to visual analysis of an especially challenging set
of problems that exhibit a complex internal data structure.
We describe the interactive visual exploration and analysis of
data that includes several (usually large) families of function
graphs fi(x, t). We describe analysis procedures and practical
aspects of the interactive visual analysis specific to this type of
data (with emphasis on the function graph characteristic of the
data). We adopted the well-proven approach of multiple, linked
views with advanced interactive brushing to assess the data.
Standard views such as histograms, scatterplots, and parallel
coordinates are used to jointly visualize data. We support iterative
visual analysis by providing means to create complex, composite
brushes that span multiple views and that are constructed using
different combination schemes. We demonstrate that engineering
applications represent a challenging but very applicable area for
visual analytics. As a case study, we describe the optimization of
a fuel injection systems in Diesel engines of passenger cars.

Index Terms— visual exploration, composite brushing, linked
views, time series data, fuel injection system

I. INTRODUCTION

THE development of effective visualization and interaction
techniques requires the understanding of the properties of

the data and the typical tasks the users want to perform [1].
Unfortunately, this requirement is not always met, often be-
cause of insufficient collaboration and communication between
visualization experts and the users. The users’ ultimate goal is
always to find expected phenomena to support (or reject) their
hypotheses or to discover unexpected results that question their
assumptions or the validity of the data acquisition process.
That can lead to the generation of new hypotheses.

The challenges of data analysis and exploration are associ-
ated with very large data sets, increased dimensionality and the
consideration of data semantics, including features, focus and
context [2]. Therefore, a visualization tool should be designed
in close collaboration with potential users. Tool developers
must be aware of the users’ actual requirements, the usual
tasks they need to solve, the shortcomings of their previously
used tools, and their feedback on new ideas. A part of that
process is a development of intuitive and effective visualization
and interaction techniques based on a common data model.

Z. Konyha, K. Matković and H. Hauser are with the VRVis Research Center,
Donau-City-Strasse 1, A-1220 Vienna, Austria. Email: {Konyha, Matkovic,
Hauser}@VRVis.at.
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If designed well, the same principles can be used across
several application domains, from real-time data monitoring
to engineering design applications, including simulations.

Modern simulation software can generate massive amounts
of data that require suitable analysis techniques to get an
insight into the practical implications of the results. Simulation
is increasingly used to assess the quality and potential of new
designs early in the process (e.g. aircrafts and cars). Building
real prototypes is time-consuming and expensive. Even though
measurements on test bed systems are likely to remain an
important way to verify designs in the future, the use of
computational simulation in the design and production process
can help to minimize the costs of the development and shorten
the time-to-market for new products.

For example, in the automotive industry many different
aspects of new designs are checked using simulation long
before a new car is manufactured. Examples include mix-
ture formation and combustion, engine cooling and filter re-
generation, air conditioning in the passenger cabin and front
shield deicing, and many others. The increasing complexity of
automotive subsystems, e.g., the power train, the intake and
exhaust system, or the fuel injection subsystem, also requires
simulation for optimization. Tuning of an injection system for
modern cars is an example of a multi-parameter optimization
process. The operation of the injection system depends, in a
very indirect way, on several parameters. Therefore, optimiza-
tion by experience and/or intuition is usually not possible.

In this paper, we present a new approach to the interactive
visual exploration and analysis of measurement and simula-
tion data. This approach is general enough for a number of
application scenarios that share the same characteristics (in-
cluding multi-parameter tuning problems). A major challenge
(in general) is how to visually relate the multivariate depen-
dent variables to their multidimensional reference parameters
(independent variables). We suggest a combination of different
kinds of views with specific brushing interactions, all adapted
to work well for the families of function graphs in order to
facilitate the interactive visual exploration and analysis of such
data sets. We have investigated the usability of our ideas in
two very different settings: the analysis of road traffic data and
the optimization of a fuel injection system. The road traffic
data set serves as an illustrative example for the introduced
concepts while the fuel injection system data set provides a
case study, described in detail in Section VI.

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of related work. Section III gives
a brief description of the data model used and the exploration
procedures. Section IV describes our proposed tools and
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methods for supporting these tasks. Section V introduces the
typical tasks in the analysis of such data sets. Section VI
describes the use of the developed approach for a real world
automotive engine design task. Section VII provides closing
remarks and directions for future work.

II. RELATED WORK

Interactive visual exploration and analysis can benefit from
previous results in many areas. We first address visual analytics
and then provide an overview of visualization techniques for
high dimensional data and the linked views principle.

Thomas and Cook [1] define visual analytics as “the sci-
ence of analytical reasoning facilitated by interactive visual
interfaces.” It is a wide-ranging field of science that involves
visualization and interaction methods combined with analyti-
cal reasoning, data representation and transformation as well
as production and presentation of the results. Therefore it is
difficult to find a previously published work that encompasses
all aspects. We are able to collect and generate data at an
increasingly fast rate, but capability of analyzing the collected
data lags behind [3]. We focus on how users gain insight
into data, find expected and unexpected features and make
decisions using visual tools.

Trafton et al. [4] present a study of how experienced weather
forecasters interpret complex visualizations to build their own
qualitative mental models of weather conditions which in turn
are the basis of the weather report they produce. In their
experiments they show how the users perform convergent
thinking (assembling evidence to support a hypothesis) and
divergent thinking (thinking creatively to identify alternatives)
at various stages of their work. Saraiya et al. [5] evaluate
five visualization tools to determine which one provides the
best insight into the specific data. González et al. [6] describe
how an information visualization system was used by admin-
istrative data analysts. Ahlberg et al. [7] introduce a visual
information seeking technique which focuses on rapid filtering
and progressive refinement of search parameters.

There are numerous publications of having scientific visu-
alization (SciVis) techniques applied to the visualization of
simulation data with an engineering perspective. Laramee et
al. [8] provide a thorough visual analysis of the coolant flow
through the cooling jacket of a car engine by using various
different flow visualization methods to reveal different aspects
of the simulation data. Konyha et al. [9] propose 3D icons for
the analysis of simulation data of chain and belt drives.

There are simulation data types that are more effectively
explored by even more abstract visualization methods. In
those cases the user may be able to gain more insight if
information visualization (InfoVis) techniques are used instead
of or together with SciVis methods. Matković et al. [10]
describe a method for the analysis of a fuel injection system.
The simulation time series data is reduced and described by
a set of scalars which results in a highly abstract view of
the injection system. The case study illustrates in detail how
engineers can use the interactive, linked InfoVis views to
explore and analyze simulation data of a fuel injection system.

The body of literature about the visualization of high
dimensional data is vast. Following the terminology of Wong

et al. [11] we focus on the visualization of multidimensional
data. Keim [12] classifies methods for visualization of high
dimensional data into four groups: geometric projections, hier-
archical methods, iconic methods and pixel-based techniques.
In our work we have considered only geometric projections
so far. Geometric projections include two of the most popular
information visualization techniques: scatterplots [13], [14]
and parallel coordinates [15], [16], [17], [18], [19].

Using multiple, interactively linked views of the same data
set allows the user to productively combine the information
he or she gathers from the different views. The Attribute
Explorer [20], [21] uses linked histograms to simultaneously
represent the interaction between attributes and allow the user
to narrow the focus by defining limits on certain attributes. The
Influence Explorer [22] allows exploration of data computed
from a model using given sets of parameter values as input.
The user can select a set of points in either the parameter
or the result spaces and see how this set corresponds to
points in other dimensions in both spaces. Gresh et al. [23]
present an approach that links 3D visualizations to statistical
representations to facilitate effective exploration of medical
data. Doleisch et al. [24] use multiple linked views, including
adapted information visualization views in the analysis of
CFD simulation data. Piringer et al. [25] interlink 2D/3D
scatterplots and histograms with smooth brushing. Schafhitzel
et al. [26] link several texture-advected flow visualizations on
slices with the 3D view of the vector field in an attempt
to overcome occlusion problems. Matković et al. [27] use
Timebox-like [28] brushing to link the graph of a function
to a scatterplot display of its parameter space. More advanced
multiple view visualization systems can be configured freely
to suit various data sets [29] and allow flexible coordination of
views [30]. As the number of linked views and the amount of
coordination increases it may become necessary to visualize
the visualization’s structure and operation [31].

III. DATA MODEL

Generally speaking, a data model consists of a data def-
inition and a manipulation language (structuring and oper-
ational definitions) [32]. Data definitions that result from
an engineering simulation, a real-world sensor data set, or
intelligence data may be very similar. Consequently, the data
sets under consideration share some common characteristics.
The data sets contain values for m independent variables and
n dependent variables.

The independent variables x = [x1, . . . , xm] and their
values define a subset I of the data set. A member of I ⊆ <m

represents a specific set of values xi of independent variables.
For each xi, the corresponding set of values of dependent vari-
ables is provided. There are two types of dependent variables,
regular and function graphs. While regular variables have a
singular value for each xi, function graph variables use time
as an additional independent variable to provide a set of values
for each xi. A function graph can be visualized as 2D plot that
shows how the value of a dependent variable changes over
time. In other words, the regular variables r = [r1, . . . , rnr

]
depend only on x while the function graph variables f =
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Fig. 1. Left: the map of all sensor locations in the Minneapolis freeway
system traffic data. A schematic map is underlayed to provide context
information. Each red dot marks the location of one station (which usually
encompasses several sensors, detectors, one per lane). Right: road traffic
occupancy family of function graphs. Data from some sensors (marked with
the black rectangle on road 35W in the map) is highlighted in red. Occupancy
is defined as a percentage of time a detector detects vehicles. It is measured
in ten minute intervals. An occupancy value of 0.7 means that for seven out
of ten minutes a sensor detected vehicles.

[f1, . . . , fnf
] depend on x and time t ∈ <. For a specific

set of values xi of independent variables and fixed time tj

we can define the set of values of dependent variables as d =
[r1(xi), . . . , rnr

(xi), f1(xi, tj), . . . , fnf
(xi, tj)], nr+nf = n.

The dependent variables and their values (possibly, over time)
define a subset D of the data set. For a given function
graph variable, fj(x, t), we define a family of function graphs
as a set of function graphs for each possible value of x,
{fj(xi, t)|∀xi ∈ I}.

Once the data set is defined, the question is how to analyze
the data. In our data model, the manipulation language is an
exploration language that enables search and pattern discovery
without modifying the data set. From the visual analytics point
of view, the goal is to discover, in an iterative manner, trends,
tendencies and outliers in the data and to see how patterns
in D map to the corresponding subsets in I and vice-versa.
In order to achieve that, data exploration techniques must be
conceptually simple, easily combined and visually intuitive.

The visualization framework is based on the described data
model and a set of visual operators (brushing techniques)
and views (histograms, scatterplots, parallel coordinates, etc.)
that are linked together. The design of interactive visual
analysis within this framework is based on the following
principles. The analyst can select a varying number of views.
Within each view, the variables of interest can be selected
and the corresponding values displayed. The visual operators
are used to select a subset of “interesting” values for the
specific variables in the view. The selection is immediately
displayed in all other views. Families of function graphs are
of special importance in providing a visual space for patterns.
Within a family of function graphs, we would like to select
function graphs based on their shapes. It is possible to use a
combination of function graph values to specify the desired
shape of a function graph, i.e. the pattern.

We will use a real-world road traffic measurements data set
to illustrate the concepts described in Sections IV and V.
The data set is provided by the Traffic Management Center of
Minnesota Department of Transportation [33] that maintains
an archive database of road traffic measurements from the

Fig. 2. Several occupancy function graphs of atypical shape have been
selected by the red line brush. We conclude from very high occupancy values
that those function graphs indicate malfunctioning sensors. In the linked
map view (scatterplot view of sensor coordinates) we can see that there are
two malfunctioning sensors next to each other. In another linked scatterplot
view weekdays and road numbers are displayed. Each column represents one
direction (for instance, south-bound) of a road. We can see that those sensors
are on road 35E and that they did not work for three days.

freeway system in the Twin Cities metropolitan area. The data
set contains 28 days of measurements from approximately
4,000 sensors grouped into about 1,000 stations covering ten
main roads. Opposite directions on a road (e.g. north-bound vs.
south-bound) are treated separately, thus effectively creating
20 one-way roads. I consists of the positions of the sensors,
road numbers and weekdays. The sensors report traffic volume
and occupancy, thus D consists of two families of function
graphs in this data set.

IV. TOOLS FOR ANALYSIS OF FAMILIES OF FUNCTION
GRAPHS

We have developed a tool based on premises described
in Section III. The combination of basic, highly interactive
views is sufficient to carry out a wide range of sophisticated
analysis tasks. Interactivity plays a crucial role in analysis.
Important and novel aspects that support interactive procedures
are described in the following.

We currently offer up to six linked views including his-
tograms, scatterplots, parallel coordinates and function graphs.
We do not make any assumptions about independent and
dependent variables in the sense that we would restrict any
of the basic view to display either of them. The inputs of the
views can be mapped to any attribute of the data set, both
independent and dependent variables. The user can arrange
the views as desired, can have more than one instance of the
same view type showing the same or different attribute sets. It
is possible to temporarily maximize one view for more detailed
examinations. Histograms, parallel coordinates and scatterplots
are standard, well known views [34], thus we do not describe
them here in detail. However, it is worth mentioning that the
point size in scatterplot views can optionally be proportional
to the number of data items represented by a single point. The
more items a point represents the larger it is. An example is
shown in Fig. 2: larger points indicate more sensors on the
road. Similarly, the sizes of points highlighted in the focus set
are also proportional to the number of items brushed (Fig. 11).
Thus the ratio of brushed items versus context represented by
a point in the scatterplot is indicated by point sizes.

The function graph view displays a family of function
graphs at once. If the number of function graphs in the family
is large then the display can become visually cluttered and
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Fig. 3. A snapshot from an interactive visual analysis session of traffic data in the Minneapolis metropolitan area. The brush creation order is indicated
by red numbers. Here we look for locations of high volume morning traffic on a given road on weekdays. The user has selected the road and weekdays in
the scatterplot (brush 1) and then removed low traffic volume graphs intersecting brush 2 using SUB operation. The locations are highlighted in the linked
map. The road number (35WSB, i.e. 35W south-bound) is shown on mouse-over. We can see that heavy morning traffic on south-bound 35W mainly occurs
mainly north of the downtown, i.e., towards it.

non-informative. In order to represent the characteristics of
the family better, we can (optionally) render the pixels through
which more graphs pass through with higher intensity.

In the following we will describe generic interaction prin-
ciples and elaborate on the specific requirements of brushing
and linking in various views.

A. Generic Interaction Features

If the basic views listed above are independent then they
provide a limited insight into the data set. However, if areas
of focus can be highlighted with applicable brushing tech-
niques and this focus area is linked to the other views, then
correlations and dependencies in the data can be revealed.
Our system supports interactive brushing and linking and the
number of currently brushed data items versus total is always
indicated. The user can perform brushing in any of the views
and all the other views will also highlight the brushed items
while the context is shown in a different, less saturated color.
Whenever applicable, the view can be zoomed to show the
brushed region only. The brushes can be resized and dragged to
new locations which helps in the interactive data exploration.
A tabular display of the currently brushed items can be opened
when the user needs detailed numeric information.

With simple brushing and linking it is usually a problem to

locate the matching brushed data items in different views. If
more data items are brushed in a view then all corresponding
items are highlighted in other views, but we cannot visually
identify the same item in the different views. We have applied
an optional color gradient along the brush and used this color
gradient in the linked views to establish a visual identification
of the correlated data items. That aids the user in discovering
tendencies in the data set. Fig. 9 provides an illustration of
the gradient brush.

Another improvement is composite brushing, a query tool
which is a result of logical operations performed on brushes.
Composite brushing makes it possible to build queries that
specify several overlapping or intersecting ranges of criteria
in the same or different views. We could have chosen to offer
AND, OR and NOT operations to composite brushes and add
a formula editor to allow controlling the order of operations by
bracketing. In contrast, we use composite brushing similar as
in the SimVis system [35] by offering AND, OR and SUB
operations where the first operand is always the result of
the latest composition. This allows a simplified, intuitive, and
more iterative workflow compared to working with a formula
editor. The user defines the first brush, then (optionally) selects
a Boolean operation, adjusts the composition setting (to either
AND, OR, or SUB) and then defines the next brush to adjust
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the current selection. Following brushes and operations will be
applied to the result of prior brushes only. Iteratively, every
new brush alters the current selection status according to the
composition rule in use. The process continues in this way:
new brushes and operations are applied to the latest state
only. Each new brushing operation provides immediate visual
feedback and the user can interactively refine (using AND and
SUB) or broaden (using OR) the current selection and steer
the information drill down. The user can also resize or move
any existing brush in the chain to gain even more flexibility.

Brushing and linking is a powerful feature in understanding
how outputs depend on inputs and finding input parameter
sets when desired properties of outputs are known. Because
we treat all parameters in the same manner, one can brush
in views of independent parameters and study how dependent
parameters change in other views, or perform the inverse kind
of investigation to find suitable inputs for specified results by
brushing in the views showing output parameters.

Brushing conventional views is quite straightforward. The
user can select histogram bins, rectangular areas in scatterplot
views or ranges of a parallel coordinates axes. We have
introduced a novel brushing tool in the function graphs view
and it will be described in more detail.

B. Brushing Function Graphs

We suggest two brushing methods to meet the specific
requirements of queries on families of function graphs.

A line brush is a simple line segment drawn in the function
graph view. It selects all function graphs that intersect the line
Fig. 2 shows an example of selecting several graphs that have
high and constant occupancy value indicating malfunctioning
sensors. Linking them to the corresponding points in I in the
map, we identify those sensors. It is very easy to exclude
outliers in a family of function graphs or to isolate function
graphs with desired characteristics with just a few line brushes
(brush 2 in Fig. 3). Additionally, it is very useful to provide
a polyline brushing opportunity, i.e., a brush in the form of
a polyline which selects all function graphs which intersect
any of the polyline segments. The line brush, together with
the above-mentioned composition functionality, assist the user
when looking for function graphs whose approximate shape
is known. A logical operation can be defined individually
for each line brush which supports very complex queries.
An example of composite brushing is provided in Fig. 5. A
complex combination of line brushes is used to include and
remove various function graph shapes in the focus set. We
have found compositions of line brushes very intuitive and
effective in brushing function graphs.

A rectangular brush selects all curves which pass through
the rectangle. The timebox widget [28] is an analogy to
rectangular brushing. We have enhanced the original idea by
allowing the user to optionally limit the brushing to function
graphs that enter and leave the rectangular brush at given
edges. Probably the most useful ones are those where the
function graph is required to enter and leave at the bottom or
on the top edge of the rectangle. These function graphs have
a local maximum or minimum inside the rectangle, which is

often a criterion in time series data analysis. This is especially
useful if the display of a family of function graphs is dense
and areas of maxima and minima are overlapped by other
function graphs. The rectangular brush can be represented as
a composition of line brushes.

V. ANALYSIS PROCEDURES

The shapes of function graphs depend on the independent
variables x and in practical cases the shapes usually exhibit
similarities for slight variations in the variable values, albeit
this correlation may be quite indirect. For example, complex
physical systems can be considered “black boxes” that return
output for an input parameter set, but their exact dependencies
on inputs are unknown. This can also happen if a system is
simulated using a computer: the boundary conditions can have
so diverse effects on the results that in analysis of such systems
it is more feasible to reconstruct the black box by exploration
rather than by trying to deduce its internals from a simulation
process. Analysis and exploration of this class of data involves
several types of procedures, including discovering trends and
tendencies or finding outliers in D. For certain data sets,
similar analysis of I can also be of interest. However, in this
section we focus on finding patterns and dependencies in the
union of I and D.

A. Black Box Reconstruction

We call the process of understanding the influence of
independent variables on dependent function graph variables
black box reconstruction. To accomplish this, we usually
need to have an overview of the entire data set, following
the principles of Schneiderman’s Visual Information Seek-
ing Mantra: overview first, zoom and filter, then details-on-
demand [36]. We are interested in how function graphs change
as values of independent variables are changed. We want
to fix values of some independent variables to reduce the
focus area and vary other independent variables while studying
the corresponding function graphs. This is an interactive and
iterative data exploration process: brushes are created and
moved to areas of interest. When we have built up an overview
of the dependencies we want to zoom in on details in both I

and D in order to discover more subtle correlations in the
data. In case of function graphs it is especially important to
provide context information so that changes in shape are more
obvious as various ranges of values are brushed.

An example of black box reconstruction is shown in Fig. 4.
We are interested in evening traffic characteristics entering
the Minneapolis area freeway system. The freeway system
has entrances from North, South, East and West. We first
brush these entry points in the map view with a logical OR
combination of four brushes labeled 1 through 4. Then low
traffic volume in the evening is excluded from the focus set
using a line brush with SUB operation (5). Finally, we create
a sixth, larger brush in the map using the AND operation to
restrict the focus set to one of the entries. By dragging this
last brush to the other three entries we can quickly change
the focus and compare traffic patterns of the four entry points,
while still being accurate with respect to brushes 1 to 4. After
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Fig. 4. Another snapshot of an iterative, interactive visual analysis of the Minneapolis traffic data. The creation order of brushes is indicated by red numbers.
First, entries into the freeway system are selected using the union (OR) of four brushes (labeled 1 to 4) in the top left map. Next, low volume evening traffic
is excluded from the focus by subtracting graphs which intersect brush 5. Using logical AND with brush 6 in the map view we can restrict the investigation
to one specific entry. By dragging this brush to other entries we can quickly change the focus to one of the four entries. Thereby a comparison of traffic
patterns with respect to the four entries is possible. In this snapshot evening traffic on the south entry is shown. The highlighted points in the lower middle
scatterplot and the linked histograms reveal that heavy traffic direction is south-bound from Mondays to Thursdays, but interestingly, shifts to north-bound on
Fridays and Saturdays (road number and direction are displayed on mouse-over).

each interaction step all views are immediately updated in
order to support iterative analysis.

B. Analysis of Families of Function Graphs

In this type of analysis we (approximately) know the desired
or expected shape of function graphs and our goal is to
find combinations of independent variables that produce those
shapes. We also want to exclude combinations that produce
undesirable or invalid function graphs and we want to find
out how the deviations from the desired shape depend on the
independent variables. This could be considered an inverse
investigation compared the one in Section V-A. However,
this type of analysis requires that the we have an idea of
the operation of the black box so that we avoid erroneously
identifying dependencies that are a mere coincidence.

The procedure requires focus+context views of the graphs
where criteria can be defined to select graphs of specific
shapes. The desired shapes of graphs can be characterized
by brushing. The typical procedure is to locate invalid or
undesired function graphs first, as illustrated in Fig. 2. We
brush them in the function graph view and find the related
values of independent variables, in this case locations of the
malfunctioning sensors. We will exclude these items from
further analysis.

The desired properties of a function graph can be defined by
line brushes, as shown in Fig. 3. Here we look for locations of
high volume morning traffic on a given road on weekdays. This
can be accomplished by selecting the road and weekdays in
the scatterplot (brush 1) and then removing low traffic volume
function graphs using SUB operation (brush 2). The locations
are highlighted in the linked map.

C. Multidimensional Relations

Another interesting aspect of the analysis is the correlation
between various families of function graphs. We want to inves-
tigate features of one family of function graphs depending on
the properties of a set of function graphs in another family, for
example, relationships between traffic volume and occupancy.
This analysis within multidimensional time series data requires
that families of function graphs are displayed simultaneously
and the user can interactively brush specific groups of function
graphs in one family and study the corresponding ones in the
other families. We may also want to narrow the search by
specifying filters on the function graph’s independent variables
x. Furthermore, we want to be able to define criteria for
various families of function graphs.

As an illustrative example let us consider the following
query on the traffic data: we look for areas where traffic is
strong, but still moving both in the morning and in the after-
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Fig. 5. We look for roads where traffic is high both in the morning and in the
afternoon. First we select heavy morning traffic (1 AND 2), then remove low
evening traffic volume (SUB 3). Data from malfunctioning sensors is removed
(SUB 4). Next we remove high occupancy function graphs by subtracting
brushes 5, 6 and 7. The desired function graph shapes are further refined by
removing function graphs which intersect brushes 8, 9 and 10. The combined
criteria on the two function graphs reveals the roads in question on the map.
We can also see in the lower scatterplot view that interestingly, on specific
roads, no points are highlighted on Wednesdays. This means traffic on those
roads does not follow this pattern.

noon. Those are heavily used roads without traffic jams. If cars
travel at higher speeds then many cars pass over the sensors
but with relatively large gaps. This is indicated by high volume
and relatively low occupancy values. In the analysis tool this
is expressed as a combination of brushes in both families
of function graphs. There is no direct correlation between
the two function graphs. The investigation is demonstrated
in Fig. 5. We brush in the volume and occupancy function
graph views and study the linked map. First large morning
traffic volume is brushed using two line brushes (1 AND 2).
Then we remove function graphs with low traffic volume in
the evening (SUB 3). Now we narrow down the search in
the occupancy function graph view. Data from malfunctioning
sensors is excluded (SUB 4). We then limit the occupancy by
removing function graphs which intersect brushes 5, 6 and 7.
Now we have a view of the areas where traffic is strong but
moving in the morning and in the evening. We can further
refine the desired traffic volume shape in the morning by
removing the function graphs which intersect the three line
brushes (SUB 8). Finally, we limit the occupancy to even lower
ranges by removing function graphs that intersect brushes 9
and 10.

D. Hypothesis Generations via Visual Analysis
There is a particularly strong need in engineering appli-

cations to perform automatic optimization of designs using
several simulation iterations with suitably varied boundary
conditions. The automatic optimization process must have an
approximate model of the simulation so to know how boundary
conditions should be adjusted in search for an optimum. Visual
analysis can be used to create hypotheses and rules that the
automatic optimization can use in its simplified model and
also to find out if the optimization misses some families of
function graphs while searching for an optimum.

Gaining insight into the current design and setting up hy-
potheses about its operation via visual analysis has a very im-
portant additional advantage over pure numeric optimization.
When designing a new component, engineers almost never
start from scratch, but the new design evolves from an old
one. Because of this iterative nature of design in engineering,
the insight gained from analysis of previous designs can be
useful in improving future ones. It also implies that simulation
models of new designs are not radically different from that of
the old ones and their results are comparable to some extent.
By analyzing the relationships between the two, tendencies
can be found and extrapolated to improve future designs.

VI. ENGINEERING APPLICATION: FUEL INJECTION
SYSTEM SIMULATION

The science of visual analytics is very applicable in engi-
neering applications. Simulation and measurement data sets
are vast, optimization goals are often conflicting, the tenden-
cies and dependencies in the data can be indirect and engineers
need to find optimal configurations. Designers must make
defensible and responsible decisions because design mistakes
can have very expensive consequences if shortcomings are
discovered during production. Time-to-market for new designs
needs to be short, so designers must work under time pressure
and communicate their findings to collaborating teams. In this
section we demonstrate the applicability of our approach to
the analysis of Diesel injection system simulation data.

A. Diesel Common Rail Injection Systems

There are many (often conflicting) goals of Diesel engine
design including the need for high power and good fuel effi-
ciency, meeting emission regulations, reducing noise levels and
improving driveability (steady and reliable torque at various
engine speeds). The fuel injection system is the key Diesel
engine component to achieve those goals. The following prop-
erties are considered important in the fuel injection procedure:

• high injection pressure for good atomization and com-
bustion,

• flexible timing of the injection,
• short pre-injection before the main burst to reduce com-

bustion noise,
• accurate control of injected fuel quantity,
• ability to inject small amounts of fuel to achieve econom-

ical operation and good emission properties.
A specific type of injection systems, the common rail injec-

tion system can be controlled in a very flexible way. Injection
pressure and quantity can be controlled with a high degree
of flexibility, multiple fuel injections are possible within one
injection cycle and the time and duration of the injections can
be controlled precisely by the engine control unit based on
the engine speed and load. These properties are key factors in
meeting current and future very stringent emission regulations.
Therefore, common rail injection systems are seen as a very
popular option by many manufacturers. In our case study we
use the simulation results of a conventional series common
rail Diesel fuel injection system [10], [37].
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Fig. 6. Control parameters for the simulation. Left: inlet pressure charac-
teristics are pressure levels Plow , Phigh and the time interval of pressure
increase dTp. Right: injector valve opening/closing properties are the time
Tv1 when the valve starts to open and the opening/closing time interval dTv .

Fig. 7. A typical shape of the fuel injection rate function graph is highlighted
in red. There is a short pilot injection first, followed by the main injection.
The function graphs resulting from other combinations of control parameters
are gray.

B. Fuel Injection Simulation

The fuel injection simulation data is from AVL-List GmbH.
The simulation is based on the theory of 1D fluid dynamics
and 2D vibrations of multi-body systems. In 1D fluid dynamics
pressure is uniform on pipe slices perpendicular to the axis.
The simulation was run for a number of cases. Each case
is represented by its own set of simulation control parameter
values. The software can automatically loop the parameters
over a specified range and run a simulation variant for each
resulting case. The engineers study the resulting output data
and attempt to find ideal simulation input parameters for
various engine operating situations. This data set follows the
model introduced in Section III: I consists of the simulation
control parameters and D consists of the simulation output.
In the following, we provide a detailed description of the
dependent and independent variables in this data set.

1) Simulation Control Parameters: The injection shape
depends mainly on three factors: the nozzle geometry, injection
pressure and timings for valve opening and closing procedures.
The influence of control parameters related to nozzle geometry
has already been investigated in our previous work [10]. Once
a (nearly) optimal nozzle geometry is found and it goes into
production it cannot be changed very often because that would
be too expensive. The focus of fuel injection optimization
afterwards is usually on varying the remaining two factors.

Therefore, the independent variables in our current inves-
tigation are related to injection pressure and injector valve
timings only. The injection pressure is controlled by the injec-
tion pressure modulation device which is positioned between
the rail and injector. In our investigations this device is not

Fig. 8. Pilot injections with high amount of fuel are brushed with a line
brush. As seen in the parallel coordinates view of the independent variables,
these all correspond to high Plow values.

Fig. 9. High dTv and all Plow simulation parameters are brushed in the
scatterplot diagram using a gradient brush. The correlation of Plow and the
amount of pilot injection is revealed by the color gradient.

modeled in detail, but we take the modulated pressure as input.
The characteristics of the pressure on the injector’s inlet are
described by three independent variables (Fig. 6). The injector
valve actuator that controls the injection timing is described
by its opening/closing times and velocities. Although this is a
simplified model, it allows the simulation of various types of
valve actuators including the popular solenoid type or the more
recent piezoelectric ones. Consequently, we have I of five
independent variables. In parenthesis we indicate the number
of variations for each independent variable.

1) Plow: low pressure on the injector inlet (5),
2) Phigh: high pressure on the injector inlet (5),
3) dTp: time interval of modulated pressure increase on the

injector’s inlet (5),
4) dTv: time interval of the injector valve opening and

closing (5),
5) Tv1: injector valve opening time (7).

The total number of variations of the independent variables is
54×7, which means 4375 different sets of simulation boundary
conditions.

2) Simulation Output: For each combination of the inde-
pendent variables the simulator computes three sets of time-
dependent results: Qinj(t): injection rate, Pinj(t): injection
pressure and An(t): needle lift. In other words, there are
three families of function graphs in this data set. Furthermore,
the following regular dependent variables are computed: Qp:
amount of fuel injected during pilot injection, Qm: amount
of fuel injected during main injection, Qvo: amount of fuel
flowing back to the fuel tank, Vopen: needle opening velocity,
Vclose: needle closing velocity, Lp: spray penetration depth,
Pia: average injection power.
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Fig. 10. Ideal shape of the main injection for various engine operating points
defined by engine speed and load. The shape can be classified into three types:
square (injection rate steeply increases to a maximum level), ramp (the slope
is more gentle) and boot (following a nearly horizontal segment injection
rate rapidly increases to maximum level at the moment of ignition). This
classification is somewhat arbitrary, since the shape changes from square to
boot in a continuous manner as the control parameters vary.

Fig. 11. Ranges of control parameters that produce square shaped injections.
First the user attempted to select square shaped graphs with brush 1. This
brush selects several not square shaped graphs, too. These are removed by
subtracting graphs that intersect brush 2. Brush 3 removes graphs that drop
under a certain threshold in the main injection part. This property is a result
of vibrations in the fuel line, which are to be avoided.

C. Analysis of Fuel Injection Simulation Data

Arbitrary shaped injection rate function graphs cannot be
produced in simulation because of the physical requirements of
the combustion in the engine. The engine will not run properly
if the shape of injection rate function graph does not follow
the ones in Fig. 7. There are usually one (as in Fig. 7) or
two small peaks called pilot injection in the first quarter of
the injection procedure in order to reduce combustion noise
and NOx emission in combination with the main injection.
The goal is to find combinations of simulation parameters
that control the volume of the pilot injection and produce the
desired shape of the main injection.

1) Analysis of Pilot Injection: We investigate how the
amount of fuel and the timing of the pilot injection depend
on the control parameters. We zoom to the pilot injection part
of the Qinj(t) function graph and select function graphs with
high peaks using a line brush (Fig. 8). The corresponding
items are highlighted in the parallel coordinate view of the
input parameters We can see that strong pilot injections are
linked with high Plow values. We suspect that there is a direct
correlation between Plow and the amount of fuel injected
during pilot injection. To support this hypothesis we brush all
Plow and high dTv values with a gradient brush in a scatterplot
view (Fig. 9). The color gradient from red to green establishes

Fig. 12. Required needle movement characteristics for square shaped main
injections. Top left: control parameters that produce square shaped injections
are brushed. Top right: red to green gradient shows that earlier valve opening
times cause deviation from the ideal square shape. Bottom left: needle opening
and closing velocities must be fairly high for this shape. Bottom right: the
shape of the needle lift function graph is closely correlated to that of the
injection rate function graph.

visual links between the brushed items in the scatterplot view
of the injection control parameters and the graph view of the
injection rate.

Next, we try to find the parameters that determine the timing
of the pilot injection. We brush the peaks of the function
graph with a line brush and examine the parallel coordinate
view of the control parameters. We conclude that time of
pilot injection’s peak depends on dTv . This hypothesis can be
counter-checked in an interactive way. A brush is panned over
the scatterplot diagram of Plow and dTv and the highlighted
injection rate function graphs are studied. We find that large
dTv values cause the pilot injection to start later and also to
have slightly lower volume. The fully covered axes of the three
other control parameters in the parallel coordinates suggest
that the pilot injection’s shape does not depend on them.

2) Analysis of Main Injection: The optimal shape of main
injection is different for each particular engine operating point
(Fig. 10). The engine control unit (ECU) measures engine
speed and load to determine the current operating point.
For each operating point the ECU contains a lookup table
of injection control parameters used to control the injection
system. The goal is to find suitable sets of control parameters
for characteristic points in the diagram and understand how
various properties of the injection rate function graph can be
controlled. In the following we investigate how suitable control
parameters can be found for specific main injection shapes. For
each case we also demonstrate some additional dependencies
and tendencies in the data set.

a) Square: Square main injection shape is desirable
when load is very low or when the engine speed and load
are both high. We used a combination of three line brushes to
select square shaped injection rate function graphs (Fig. 11).
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Fig. 13. Top left: brush 1 selects control parameters for ramp shaped main
injections. Bottom left: brush 2 is probed in the histogram of the high pressure
on injector inlet using the AND operation. Top right: injection rate function
graphs of the brushed items. Bottom right: injection pressure function graphs
of the brushed items. By dragging brush 2 and studying the linked function
graph view we observe that injection rate function graphs have similar shapes
but different maxima.

The aim of brush 3 is to exclude undesired shock wave
reflections.

Using steps similar to the ones used when investigating the
pilot injection we discover that Tv1 is high for the brushed
function graphs. That means the injector valve opens late when
the pressure on its inlet is already very high. This leads to
a sudden increase of injection rate, creating square shaped
injection rate function graphs. As brush 3 is created we observe
in the linked scatterplot diagram that most of the items with
low dTp (time interval of modulated pressure increase) are
removed from the focus. This means dTp must not be very
low in order to avoid shock wave reflections.

We also study the desired needle opening and closing
velocities and the correlations between the injection rate and
the needle lift function graphs for this case. In order to do so,
high Tv1 and dTp are brushed in the scatterplot diagram in
Fig. 12. The highlighted points in the Vclose/Vopen scatterplot
diagram show that fairly fast needle opening and closing is
required for square shaped injections. The needle lift function
graph (bottom right) is also linked and the color gradient of
the brush shows a strong correlation between the needle lift
and the injection rate graphs.

b) Ramp: Ramp-shaped main injection is desirable when
the engine speed and load are in a mid-range. In the previous
case we have found a correlation between Tv1 and the shape
of the injection rate function graph. We also know that the
time interval of the modulated pressure increase on injector’s
inlet should be fairly high to avoid reflections. Based on this
we start the investigation by brushing cases when the injector
valve starts opening a little later and we exclude low dTp

ranges (brush 1 in Fig. 13).
The histogram of Phigh is also brushed (brush 2) and the

Fig. 14. If the injector valve is opened very early than the injection rate
quickly increases to the ”boot” level. It reaches its maximum when the mixture
is ignited in the combustion chamber.

intersection of the two brushes is studied in the injection rate
and injection pressure function graphs. We observe that the
corresponding function graphs of injection rate and pressure
are similar in shape but differ in their maxima as Phigh is
varied (Fig. 13).

c) Boot: Boot-shaped main injection is desirable for
engine operating points of mid-range engine speeds and high
load. From our previous experience we assume that the injector
valve has to be opened very early to achieve this shape. This
assumption is verified in Fig. 14 by brushing the corresponding
region in the scatterplot diagram of Tv1 and dTp.

Now we investigate how desired amounts of fuel in the
main injection and various injection penetration levels are
achieved. The scatterplot diagram of these dependent variables
is brushed and the brushed items are observed in the linked
views in Fig. 15. We observe that the brushed injection rate
function graphs are all boot shaped. In the parallel coordinates
view it is obvious that boot shaped injection does not require
fast injection rate increase, but fast needle closing and injection
rate decrease are still preferred. We also discover that for deep
fuel spray penetration and high injection powers (brushed in
green in Fig. 15) fast needle closing velocities are required.
The injected fuel mass (Qm) and the amount of fuel returned
to the fuel tank (Qvo) are both fairly high. This matches our
expectations, since we see in the parallel coordinate view that
fuel pressure Phigh was also quite high in these cases.

3) Insight Gained from Analysis: In this example we have
gained valuable insight into the fuel injection simulation data
set and thereby into the fuel injection process.

We found that the amount of injected fuel in the main
injection stage can be controlled by adjusting Phigh. The
amount of pilot injection is controlled mostly by Plow, but dTv

also has some influence on it. We observed that choosing dTp

and Tv1 is the key to achieving the desired injection shapes for
various engine operating conditions. When pressure increases
too fast on the injector’s inlet then the resulting wave can be
reflected into the fuel line which impairs our control over the
injection’s shape. By studying the needle lift function graph
and the related Vopen and Vclose simulation outputs we can
define the desired needle characteristics for specific injection
shapes and see how tightly the injection rate and the needle
lift function graphs are correlated.

Additional images and supporting videos are available at
http://www.vrvis.at/scivis/graphs-analysis/ .
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Fig. 15. We investigate the conditions when fuel is injected deep in the combustion chamber and with high power. The corresponding items are brushed in
the scatterplot diagram. The linked injection rate function graphs show that this requires boot shaped main injections. The desired needle opening and closing
velocities are highlighted in the parallel coordinate view.

VII. CONCLUSION

The analysis of relationships between families of function
graphs is a common task in many application domains. A
novel combination of established visualization techniques,
linked views and advanced brushing features represents a
valuable tool for interactive visual exploration and analysis
of data sets that include families of function graphs. Inde-
pendent and dependent variables in the data set are treated
the same, providing improved support for iterative exploration
and analysis of the entire data space. Multiple, linked views
enable simultaneous viewing of independent and dependent
parameters with immediate feedback.

Brushing proved to be especially effective, since it al-
lows the interactive exploration of relations between inde-
pendent and dependent variables. The color gradient im-
proves the visual connection of the brushed items to the
linked focus+context visualizations. The composite brushing
with AND, OR, and SUB operations supports the iterative
refinement of information drill-down and the detection or
extraction of patterns from the application domain. The line
brush technique proves to be especially useful in selecting
function graphs. It is intuitive, easy to use and very effective.
Fig. 5 shows how a composition of nearly a dozen line brushes
is used to identify a pattern in a family of traffic volume
function graphs.

The process of the composite brush construction captures
the essence of visual analytics procedures: it is interactive and
iterative. The initial brush provides the initial data selection in
one view. That selection is immediately displayed in the linked
views where it can be analyzed from different perspectives to
formulate a hypothesis. That hypothesis is then tested using
new brushes. During this iterative procedure new, possibly
unexpected patterns can be found. Fig. 2 shows a discovery
of a pattern in D (constant high occupancy) that indicates
a pattern in I (malfunctioning sensors). Such discoveries are
more difficult or even impossible without interactive visual
analysis.

Future work will proceed in three directions. First, we will
expand the data model to include input time series and time-
dependent input parameters as well as first and second order
derivatives of times series. We will explore what impact this

has on the required analysis procedures and try to find tools to
support the new tasks. Finally, we will explore the use of large-
scale displays and usability issues related to manageability and
arrangement of large number of views.
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