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Abstract—The analysis and exploration of multidimensional
and multivariate data is still one of the most challenging areas
in the eld of visualization. In this paper, we describe an
approach to visual analysis of an especially challenging set
of problems that exhibit a complex internal data structure.
We describe the interactive visual exploration and analysis of
data that includes several (usually large) families of function
graphs fi(x;t). We describe analysis procedures and practical
aspectsof the interactive visual analysis speci ¢ to this type of
data (with emphasison the function graph characteristic of the
data). We adopted the well-proven approach of multiple, link ed
views with advanced interactive brushing to assessthe data.
Standard views such as histograms, scatteplots, and parallel
coordinatesare usedto jointly visualizedata. We support iterati ve
visual analysisby providing meansto create complex,composite
brushesthat span multiple views and that are constructed using
different combination schemesWe demonstratethat engineering
applications representa challenging but very applicable area for
visual analytics. As a casestudy, we describethe optimization of
a fuel injection systemsin Diesel enginesof passengercars.

Index Terms—visual exploration, composite brushing, link ed
views, time seriesdata, fuel injection system

|. INTRODUCTION

HE developmenf effective visualizationandinteraction

techniquesequiresthe understandingf the propertiesof
the dataand the typical tasksthe userswant to perform[1].
Unfortunately this requirementis not always met, often be-
causeof insufcient collaboratiorandcommunicatiorbetween
visualizationexpertsandthe users.The users'ultimategoalis
alwaysto nd expectedphenomendo support(or reject)their
hypothesesr to discover unexpectedresultsthatquestiontheir
assumptionsor the validity of the data acquisition process.
That canleadto the generationof new hypotheses.

The challengeof dataanalysisand exploration are associ-
atedwith very large datasets,increasedlimensionalityandthe
consideratiorof datasemanticsincluding featuresfocusand
contet [2]. Thereforea visualizationtool shouldbe designed
in close collaborationwith potential users.Tool developers
must be aware of the users' actual requirementsthe usual
tasksthey needto solwe, the shortcomingf their previously
usedtools, and their feedbackon new ideas.A part of that
processs adevelopmentof intuitive andeffective visualization
and interactiontechniquesbasedon a commondata model.
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If designedwell, the same principles can be used across
several applicationdomains,from real-time data monitoring
to engineeringdesignapplications,ncluding simulations.

Modernsimulationsoftware can generatemassie amounts
of data that require suitable analysistechniquesto get an
insightinto the practicalimplicationsof the results.Simulation
is increasinglyusedto assesshe quality and potentialof nev
designsearly in the procesge.g. aircraftsand cars).Building
real prototypeds time-consumingndexpensve. Eventhough
measurement®sn test bed systemsare likely to remain an
important way to verify designsin the future, the use of
computationasimulationin the designandproductionprocess
canhelpto minimize the costsof the developmentandshorten
the time-to-marlet for new products.

For example, in the automotve industry mary different
aspectsof new designsare checled using simulation long
before a new car is manufctured. Examplesinclude mix-
ture formation and comhustion, enginecooling and lter re-
generationair conditioningin the passengecabin and front
shielddeicing,andmary others.The increasingcompleity of
automotve subsystemse.g., the power train, the intake and
exhaustsystem,or the fuel injection subsystemalsorequires
simulationfor optimization.Tuning of aninjection systemfor
moderncarsis an exampleof a multi-parametepoptimization
process.The operationof the injection systemdependsjn a
very indirectway, on several parametersTherefore optimiza-
tion by experienceand/orintuition is usually not possible.

In this paper we presenta nenv approachto the interactve
visual exploration and analysisof measuremenand simula-
tion data. This approachis generalenoughfor a numberof
applicationscenarioghat sharethe samecharacteristicgin-
cluding multi-parametetuning problems).A major challenge
(in general)is how to visually relate the multivariate depen-
dentvariablesto their multidimensionalreferenceparameters
(independenvariables) We suggest combinationof different
kinds of views with speci ¢ brushinginteractionsall adapted
to work well for the families of function graphsin order to
facilitatethe interactive visual explorationandanalysisof such
data sets.We have investigated the usability of our ideasin
two very differentsettingsthe analysisof roadtrafc dataand
the optimization of a fuel injection system.The road traf ¢
data set senes as an illustrative example for the introduced
conceptswhile the fuel injection systemdata set provides a
casestudy describedn detail in SectionVI.

The remainderof the paperis organizedas follows. Sec-
tion Il providesan overview of relatedwork. Sectionlll gives
a brief descriptionof the datamodelusedandthe exploration
procedures.Section IV describesour proposedtools and



methodsfor supportingthesetasks.SectionV introducesthe
typical tasksin the analysisof such data sets. Section VI
describeghe use of the developedapproachfor a real world
automotve enginedesigntask. SectionVIl provides closing
remarksand directionsfor future work.

Il. RELATED WORK

Interactve visual explorationand analysiscanbene t from
previousresultsin mary areasWe rst addreswisualanalytics
and then provide an overview of visualizationtechniquedor
high dimensionaldataand the linked views principle.

Thomasand Cook [1] de ne visual analyticsas “the sci-
enceof analytical reasoningfacilitated by interactive visual
interfaces’ It is a wide-ranging eld of sciencethat involves
visualizationand interactionmethodscombinedwith analyti-
cal reasoningdatarepresentatiorand transformationas well
as productionand presentatiorof the results. Thereforeit is

et al. [11] we focus on the visualizationof multidimensional
data. Keim [12] classi es methodsfor visualizationof high
dimensionabatainto four groups:geometrigprojections hier-
archicalmethodsjconic methodsand pixel-basedechniques.
In our work we have consideredonly geometricprojections
sofar. Geometricprojectionsinclude two of the mostpopular
information visualization techniques:scatterplots[13], [14]
and parallel coordinateq15], [16], [17], [18], [19].

Using multiple, interactively linked views of the samedata
set allows the userto productvely combinethe information
he or she gathersfrom the different views. The Attribute
Explorer[20], [21] useslinked histogramsto simultaneously
representhe interactionbetweenattributesandallow the user
to narrav thefocusby de ning limits on certainattributes.The
In uence Explorer[22] allows exploration of datacomputed
from a model using given setsof parametewaluesas input.
The user can selecta set of pointsin either the parameter

dif cult to nd a previously publishedwork thatencompasses or the result spacesand see how this set correspondsto

all aspectsWe are able to collect and generatedata at an
increasinglyfastrate,but capability of analyzingthe collected
data lags behind [3]. We focus on how usersgain insight
into data, nd expectedand unexpectedfeaturesand make
decisionsusing visual tools.

Traftonetal. [4] present studyof how experiencedveather
forecastersnterpretcomple visualizationsto build their own
gualitatve mentalmodelsof weatherconditionswhichin turn
are the basis of the weatherreport they produce.In their
experimentsthey shov how the users perform cornvergent
thinking (assemblingevidenceto supporta hypothesis)and
divergentthinking (thinking creatively to identify alternatves)
at various stagesof their work. Saraiyaet al. [5] evaluate

ve visualizationtools to determinewhich one provides the
bestinsightinto the speci ¢ data.Gonzlezet al. [6] describe
how aninformationvisualizationsystemwas usedby admin-
istrative data analysts.Ahlberg et al. [7] introducea visual
informationseekingtechniquewhich focuseson rapid Itering
and progressie re nementof searchparameters.

Thereare numerouspublicationsof having scienti ¢ visu-
alization (SciVis) techniguesapplied to the visualization of
simulation datawith an engineeringperspectie. Larameeet
al. [8] provide a thoroughvisual analysisof the coolant o w
through the cooling jacket of a car engineby using various
different o w visualizationmethodso reveal differentaspects
of the simulationdata.Konyhaet al. [9] propose3D iconsfor
the analysisof simulationdataof chainand belt drives.

There are simulation data types that are more effectively
explored by even more abstractvisualization methods. In
those casesthe user may be able to gain more insight if
informationvisualization(InfoVis) techniquesreusedinstead
of or togetherwith SciVis methods.Matkovi¢ et al. [10]
describea methodfor the analysisof a fuel injection system.
The simulationtime seriesdatais reducedand describedby
a set of scalarswhich resultsin a highly abstractview of
the injection system.The casestudy illustratesin detail how
engineerscan use the interactve, linked InfoVis views to
explore andanalyzesimulationdataof a fuel injection system.

The body of literature about the visualization of high
dimensionaldatais vast. Following the terminologyof Wong

points in other dimensionsin both spacesGreshet al. [23]

presentan approachthat links 3D visualizationsto statistical
representationso facilitate effective exploration of medical
data.Doleischet al. [24] usemultiple linked views, including
adaptedinformation visualization views in the analysis of

CFD simulation data. Piringer et al. [25] interlink 2D/3D
scatterplotaandhistogramswith smoothbrushing.Schafhitzel
et al. [26] link several texture-adected o w visualizationson

slices with the 3D view of the vector eld in an attempt
to overcome occlusion problems. Matkovi¢ et al. [27] use
Timebox-like [28] brushingto link the graph of a function
to a scatterplotdisplay of its parametespace More adwvanced
multiple view visualizationsystemscan be con gured freely
to suit variousdatasets[29] andallow e xible coordinationof

views [30]. As the numberof linked views andthe amountof

coordinationincreasedt may becomenecessaryo visualize
the visualizations structureand operation[31].

I1l. DATA MODEL

Generally speaking,a data model consistsof a data def-
inition and a manipulationlanguage(structuring and oper
ational de nitions) [32]. Data de nitions that result from
an engineeringsimulation, a real-world sensordata set, or
intelligencedatamay be very similar. Consequentlythe data
setsunder considerationrsharesomecommoncharacteristics.
The datasetscontainvaluesfor m independentariablesand
n dependentariables.

The independentvariablesx =
valuesde ne asubset of thedataset. A memberof | <™
represents speci ¢ setof valuesx; of independenvariables.
For eachx;, thecorrespondingetof valuesof dependentari-
ablesis provided. Therearetwo typesof dependenvariables,
regular and function graphs.While regular variableshave a
singularvalue for eachx;, function graphvariablesusetime
asanadditionalindependentariableto provide a setof values
for eachx;. A functiongraphcanbevisualizedas2D plot that
shavs how the value of a dependentvariable changesover

dependonly on x while the function graph variablesf =
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Fig. 1. Left: the map of all sensorlocationsin the Minneapolisfreewvay
systemtrafc data. A schematicmap is underlayedto provide context
information. Eachred dot marksthe location of one station (which usually
encompasseseveral sensors,detectos, one per lane). Right: road trafc
occupang family of function graphs.Datafrom somesensorgmarked with
theblackrectangleon road35W in the map)is highlightedin red. Occupang
is de ned asa percentagef time a detectordetectsvehicles.|t is measured
in ten minute intervals. An occupang value of 0.7 meansthat for seven out
of ten minutesa sensordetectedvehicles.

set of valuesx; of independenwariablesand x ed time t;
we cande ne the setof valuesof dependenvariablesasd =

The dependentariablesandtheir values(possibly over time)
de ne a subsetD of the data set. For a given function
graphvariable,f; (x;t), we de ne afamily of functiongraphs
as a set of function graphsfor each possible value of x,
ff; (xi;t)j8x; 2 1.

Oncethe datasetis de ned, the questionis how to analyze
the data.In our datamodel, the manipulationlanguageis an
explorationlanguagehatenablesearchandpatterndiscovery
without modifying the dataset.Fromthe visualanalyticspoint
of view, the goalis to discover, in aniteratve manneytrends,
tendenciesand outliers in the dataand to seehow patterns
in D map to the correspondingsubsetsn | and vice-versa.
In orderto achiese that, dataexploration techniqguesmust be
conceptuallysimple, easily combinedand visually intuitive.

The visualizationframework is basedon the describeddata
model and a set of visual operators(brushing techniques)
andviews (histogramsscatterplotsparallel coordinatesegtc.)
that are linked together The design of interactve visual
analysis within this framework is basedon the following
principles.The analystcan selecta varying numberof views.
Within eachview, the variablesof interestcan be selected
andthe correspondingraluesdisplayed.The visual operators
are usedto selecta subsetof “interesting” values for the
speci ¢ variablesin the view. The selectionis immediately
displayedin all otherviews. Families of function graphsare
of specialimportancein providing a visual spacefor patterns.
Within a family of function graphs,we would like to select
function graphsbasedon their shapesit is possibleto usea
combinationof function graphvaluesto specify the desired
shapeof a function graph,i.e. the pattern.

We will useareal-world roadtrafc measurementdataset
to illustrate the conceptsdescribedin SectionslV and V.
The datasetis provided by the Trafc Managemen€Centerof
MinnesotaDepartmentof Transportation33] that maintains
an archive databaseof road trafc measurementérom the
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Fig. 2. Several occupang function graphsof atypical shapehave been
selectedvy the red line brush.We concludefrom very high occupang values
that those function graphsindicate malfunctioning sensors.In the linked

map view (scatterplotview of sensorcoordinates)ve can seethat thereare

two malfunctioningsensorsnext to eachother In anotherlinked scatterplot
view weekdaysandroadnumbersare displayed . Eachcolumnrepresent®ne

direction (for instance south-boundpf a road.We canseethatthosesensors
areon road 35E andthat they did not work for threedays.

freawvay systemin the Twin Cities metropolitanarea.The data
set contains 28 days of measurementsrom approximately
4,000sensorgyroupedinto about1,000 stationscavering ten

mainroads.Oppositedirectionsonaroad(e.g.north-boundss.

south-bound)are treatedseparatelythus effectively creating
20 one-vay roads.| consistsof the positionsof the sensors,
roadnumbersandweekdaysThe sensorseporttraf c volume

and occupanyg, thus D consistsof two families of function

graphsin this dataset.

IV. TOOLSFOR ANALYSIS OF FAMILIES OF FUNCTION
GRAPHS

We have developed a tool basedon premisesdescribed
in Sectionlll. The combinationof basic, highly interactve
views is sufcient to carry out a wide rangeof sophisticated
analysistasks. Interactivity plays a crucial role in analysis.
Importantandnovel aspectshatsupportinteractve procedures
aredescribedn the following.

We currently offer up to six linked views including his-
tograms scatterplotsparallelcoordinatesandfunctiongraphs.
We do not make ary assumptionsabout independentand
dependentvariablesin the sensethat we would restrict ary
of the basicview to display either of them. The inputs of the
views can be mappedto ary attribute of the data set, both
independentand dependentvariables.The user can arrange
the views as desired,can have more than one instanceof the
sameview type shaving the sameor differentattribute sets.It
is possibleto temporarilymaximizeoneview for moredetailed
examinationsHistogramsparallelcoordinatesndscatterplots
arestandardwell known views [34], thuswe do not describe
them herein detail. However, it is worth mentioningthat the
point size in scatterplotviews can optionally be proportional
to the numberof dataitemsrepresentetby a singlepoint. The
more items a point representshe larger it is. An exampleis
shavn in Fig. 2: larger points indicate more sensorson the
road. Similarly, the sizesof pointshighlightedin the focusset
arealsoproportionalto the numberof itemsbrushedFig. 11).
Thusthe ratio of brusheditemsversuscontect representedby
a point in the scatterplotis indicatedby point sizes.

The function graph view displays a family of function
graphsat once.If the numberof function graphsin the family
is large then the display can becomevisually clutteredand
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Fig. 3. A snapshofrom an interactve visual analysissessionof trafc datain the Minneapolismetropolitanarea.The brush creationorder is indicated
by red numbers.Here we look for locationsof high volume morningtrafc on a given road on weekdays.The userhasselectedthe road and weekdaysin

the scatterplot(brush 1) and thenremoved low trafc volume graphsintersectingbrush2 using SUB operation.The locationsare highlightedin the linked
map. The road number(35WSB, i.e. 35W south-bound)s shovn on mouse-@er. We canseethat heary morningtrafc on south-bound35W mainly occurs

mainly north of the downtown, i.e., towardsit.

non-informatve. In order to representthe characteristicsof
thefamily better we can(optionally) renderthe pixelsthrough
which more graphspassthroughwith higherintensity

In the following we will describegenericinteractionprin-
ciples and elaborateon the speci ¢ requirementf brushing
andlinking in variousviews.

A. Genericlnteraction Featues

If the basicviews listed abore are independenthen they
provide a limited insight into the dataset. However, if areas
of focus can be highlighted with applicable brushingtech-
niguesand this focus areais linked to the other views, then
correlationsand dependenciesn the data can be revealed.
Our systemsupportsinteractive brushingand linking and the
numberof currently brusheddataitemsversustotal is always
indicated.The usercan perform brushingin ary of the views
and all the otherviews will also highlight the brusheditems
while the contet is shawvn in a different,lesssaturatectolor.
Wheneer applicable,the view can be zoomedto showv the
brushedegiononly. Thebrushesanberesizedanddraggedo
new locationswhich helpsin the interactve dataexploration.
A tahlular displayof the currentlybrushedtemscanbe opened
whenthe userneedsdetailednumericinformation.

With simplebrushingandlinking it is usuallya problemto

locatethe matchingbrusheddataitemsin differentviews. If
more dataitemsarebrushedin a view thenall corresponding
items are highlightedin other views, but we cannotvisually
identify the sameitem in the differentviews. We have applied
anoptionalcolor gradientalongthe brushandusedthis color
gradientin the linked views to establisha visualidenti cation
of the correlateddataitems. That aidsthe userin discovering
tendenciesn the dataset. Fig. 9 provides an illustration of
the gradientbrush.

Anotherimprovementis compositebrushing a query tool
which is a resultof logical operationsperformedon brushes.
Compositebrushingmakes it possibleto build queriesthat
specify several overlappingor intersectingrangesof criteria
in the sameor differentviews. We could have chosento offer
AND, OR andNOT operationgo compositebrushesandadd
aformulaeditorto allow controllingthe orderof operationdy
bracleting. In contrast,we usecompositebrushingsimilar as
in the SimVis system[35] by offering AND, OR and SUB
operationswhere the rst operandis always the result of
the latestcomposition.This allows a simpli ed, intuitive, and
moreiterative work ow comparedo working with a formula
editor Theuserde nesthe rst brush,then(optionally)selects
a Booleanoperationadjuststhe compositionsetting(to either
AND, OR, or SUB) andthende nes the next brushto adjust



the currentselection Following brushesandoperationswill be
appliedto the result of prior brushesonly. Iteratively, every
new brushaltersthe currentselectionstatusaccordingto the
compositionrule in use. The processcontinuesin this way:
new brushesand operationsare applied to the latest state
only. Eachnew brushingoperationprovidesimmediatevisual
feedbackandthe usercaninteractvely re ne (usingAND and
SUB) or broaden(using OR) the currentselectionand steer
the information drill down. The usercanalsoresizeor move
ary existing brushin the chainto gain even more e xibility .

Brushingandlinking is a powerful featurein understanding
how outputs dependon inputs and nding input parameter
setswhen desiredpropertiesof outputsare known. Because
we treat all parametersn the samemanney one can brush
in views of independenparameterand studyhowv dependent
parameterghangen otherviews, or performtheinversekind
of investigationto nd suitableinputsfor speci ed resultsby
brushingin the views shaving output parameters.

Brushing corventional views is quite straightforvard. The
usercanselecthistogrambins, rectangulamareasin scatterplot
views or rangesof a parallel coordinatesaxes. We have
introduceda novel brushingtool in the function graphsview
andit will be describedn more detail.

B. BrushingFunction Graphs

We suggesttwo brushing methodsto meet the specic
requirementf querieson families of function graphs.

A line brushis a simpleline sggmentdrawvn in the function
graphview. It selectsall function graphsthatintersectthe line
Fig. 2 shavs an exampleof selectingseveral graphsthat have
high and constantoccupang value indicating malfunctioning
sensorsLinking themto the correspondingointsin | in the
map, we identify those sensors.It is very easyto exclude
outliersin a family of function graphsor to isolate function
graphswith desiredcharacteristicsvith just afew line brushes
(brush2 in Fig. 3). Additionally, it is very usefulto provide
a polyline brushingopportunity i.e., a brushin the form of
a polyline which selectsall function graphswhich intersect
ary of the polyline sggments.The line brush,togetherwith
the abase-mentioneccompositionfunctionality, assistthe user
when looking for function graphswhose approximateshape
is known. A logical operationcan be de ned individually
for eachline brush which supportsvery comple« queries.
An example of compositebrushingis provided in Fig. 5. A
complex combinationof line brushesis usedto include and
remove various function graph shapesin the focus set. We
have found compositionsof line brushesvery intuitive and
effective in brushingfunction graphs.

A rectangularbrush selectsall curves which passthrough
the rectangle. The timebox widget [28] is an analogy to
rectangulambrushing.We have enhancedhe original idea by
allowing the userto optionally limit the brushingto function
graphsthat enter and leave the rectangularbrush at given
edges.Probably the most useful ones are those where the
function graphis requiredto enterandleave at the bottom or
on the top edgeof the rectangle. Thesefunction graphshave
a local maximumor minimum inside the rectangle which is

oftena criterionin time seriesdataanalysis.This is especially
useful if the display of a family of function graphsis dense
and areasof maxima and minima are overlappedby other
function graphs.The rectangulabrushcan be representecs
a compositionof line brushes.

V. ANALYSIS PROCEDURES

The shapesof function graphsdependon the independent
variablesx andin practical casesthe shapesusually exhibit
similarities for slight variationsin the variable values,albeit
this correlationmay be quite indirect. For example,complex
physical systemscan be considered'black boxes” that return
outputfor aninput parameteset, but their exactdependencies
on inputs are unknawvn. This can also happenif a systemis
simulatedusinga computerithe boundaryconditionscanhave
sodiverseeffectsontheresultsthatin analysisof suchsystems
it is morefeasibleto reconstructhe black box by exploration
ratherthanby trying to deduceits internalsfrom a simulation
processAnalysisandexplorationof this classof datainvolves
several typesof proceduresincluding discovering trendsand
tendenciesor nding outliers in D. For certain data sets,
similar analysisof | canalsobe of interest.However, in this
sectionwe focuson nding patternsand dependencies the
unionof I andD.

A. Bladk Box Reconstruction

We call the processof understandingthe in uence of
independentariableson dependenfunction graphvariables
black box reconstruction To accomplishthis, we usually
needto have an overview of the entire data set, following
the principles of Schneidermas' Visual Information Seek-
ing Mantra: overview rst, zoomand Iter, then details-on-
demand36]. We areinterestedn how functiongraphschange
as values of independentvariables are changed.We want
to x valuesof some independentvariablesto reducethe
focusareaandvary otherindependentariableswhile studying
the correspondingunction graphs.This is an interactve and
iterative data exploration process:brushesare createdand
movedto areasf interest Whenwe have built up anoverview
of the dependencies/ie wantto zoomin on detailsin both |
and D in order to discoser more subtle correlationsin the
data.In caseof function graphsit is especiallyimportantto
provide context informationsothatchangesn shapearemore
obvious asvariousrangesof valuesare brushed.

An exampleof black box reconstructioris showvn in Fig. 4.
We are interestedin evening trafc characteristicsentering
the Minneapolis area freaway system.The freewvay system
has entrancesfrom North, South, East and West. We rst
brushtheseentry points in the map view with a logical OR
combinationof four brusheslabeled1 through4. Then low
trafc volumein the eveningis excludedfrom the focus set
usinga line brushwith SUB operation(5). Finally, we create
a sixth, larger brushin the map usingthe AND operationto
restrict the focus setto one of the entries.By draggingthis
last brushto the other three entrieswe can quickly change
thefocusandcomparerafc patternsof the four entry points,
while still beingaccuratewith respecto brushesl to 4. After
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Fig. 4. Anothersnapshobf aniterative, interactie visual analysisof the Minneapolistraf c data.The creationorderof brushess indicatedby red numbers.
First, entriesinto the freeway systemare selectedusingthe union (OR) of four brusheglabeledl to 4) in the top left map.Next, low volume eveningtrafc
is excludedfrom the focus by subtractinggraphswhich intersectbrush5. Using logical AND with brush6 in the mapview we canrestrictthe investigation
to one speci ¢ entry By draggingthis brushto other entrieswe can quickly changethe focusto one of the four entries.Therebya comparisonof trafc
patternswith respectto the four entriesis possible.In this snapshotveningtrafc on the southentry is shavn. The highlighted pointsin the lower middle
scatterplotandthe linked histogramseveal thatheavy trafc directionis south-boundrom Mondaysto Thursdaysput interestingly shifts to north-boundon
Fridaysand Saturdaygroad numberand direction are displayedon mouse-oer).

eachinteraction step all views are immediately updatedin
orderto supportiterative analysis.

B. Analysisof Families of Function Graphs

In this type of analysiswe (approximatelyknow the desired
or expected shapeof function graphsand our goal is to
nd combinationof independenvariablesthat producethose
shapesWe also want to exclude combinationsthat produce
undesirableor invalid function graphsand we want to nd
out how the deviationsfrom the desiredshapedependon the
independentvariables. This could be consideredan inverse
investicgation comparedthe one in Section V-A. However,
this type of analysisrequiresthat the we have an idea of
the operationof the black box so that we avoid erroneously
identifying dependenciethat are a merecoincidence.

The procedurerequiresfocus+contgt views of the graphs
where criteria can be de ned to select graphs of specic
shapes.The desiredshapesof graphscan be characterized
by brushing. The typical procedureis to locate invalid or
undesiredfunction graphs rst, asillustratedin Fig. 2. We
brushthem in the function graphview and nd the related
valuesof independenvariables,in this caselocationsof the
malfunctioning sensors.We will exclude these items from
further analysis.

Thedesiredpropertiesof afunctiongraphcanbede ned by
line brushesasshawn in Fig. 3. Herewe look for locationsof
highvolumemorningtrafc onagivenroadonweekdaysThis
can be accomplishedy selectingthe road and weekdaysin
the scatterplot{brushl) andthenremaving low trafc volume
function graphsusing SUB operation(brush2). The locations
are highlightedin the linked map.

C. MultidimensionalRelations

Anotherinterestingaspectof the analysisis the correlation
betweervariousfamiliesof functiongraphs We wantto inves-
tigate featuresof onefamily of function graphsdependingon
the propertiesof a setof functiongraphsin anotherfamily, for
example,relationshipsetweentraf ¢ volumeandoccupang.
This analysiswithin multidimensionatime seriesdatarequires
that families of function graphsare displayedsimultaneously
andthe usercaninteractizely brushspeci ¢ groupsof function
graphsin onefamily andstudythe correspondingpnesin the
other families. We may also want to narrav the searchby
specifying Iters onthefunctiongraphsindependenvariables
x. Furthermore,we want to be able to de ne criteria for
variousfamilies of function graphs.

As an illustrative example let us considerthe following
query on the trafc data: we look for areaswheretrafc is
strong, but still moving both in the morningandin the after
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Fig.5. Welook for roadswheretrafc is high bothin themorningandin the
afternoon First we selectheary morningtrafc (1 AND 2), thenremove low

eveningtraf ¢ volume(SUB 3). Datafrom malfunctioningsensorss remaoved
(SUB 4). Next we remove high occupang function graphsby subtracting
brushesb, 6 and 7. The desiredfunction graphshapesare further re ned by

removing function graphswhich intersectbrushes3, 9 and 10. The combined
criteria on the two function graphsrevealsthe roadsin questionon the map.
We can also seein the lower scatterplotview that interestingly on speci c

roads,no pointsare highlightedon WednesdaysThis meanstrafc on those
roadsdoesnot follow this pattern.

noon.Thosearehearily usedroadswithouttrafc jams.If cars
travel at higher speedshen mary carspassover the sensors
but with relatively large gaps.Thisis indicatedby high volume
and relatively low occupang values.In the analysistool this
is expressedas a combinationof brushesin both families
of function graphs.There is no direct correlation between
the two function graphs.The investigation is demonstrated
in Fig. 5. We brushin the volume and occupang function
graphviews and study the linked map. First large morning
trafc volumeis brushedusingtwo line brushes(1 AND 2).
Thenwe remove function graphswith low trafc volumein
the evening (SUB 3). Now we narrov down the searchin
the occupang function graphview. Datafrom malfunctioning
sensorgs excluded(SUB 4). We thenlimit the occupang by
removing function graphswhich intersectbrushess, 6 and7.
Now we have a view of the areaswheretrafc is strongbut
moving in the morning and in the evening. We can further
re ne the desiredtrafc volume shapein the morning by
removing the function graphswhich intersectthe three line
brushegSUB 8). Finally, we limit the occupang to evenlower
rangesby removing function graphsthat intersectbrushes9
and 10.

D. HypothesisGeneationsvia Visual Analysis

There is a particularly strong needin engineeringappli-
cationsto perform automaticoptimization of designsusing
several simulation iterations with suitably varied boundary
conditions.The automaticoptimizationprocessmusthave an
approximatemodelof thesimulationsoto know how boundary
conditionsshouldbe adjustedn searchor anoptimum.Visual
analysiscan be usedto createhypothesesand rules that the
automaticoptimization can use in its simplied model and
alsoto nd outif the optimization missessomefamilies of
function graphswhile searchingor an optimum.

Gaininginsight into the currentdesignand settingup hy-
pothesesboutits operationvia visual analysishasa very im-
portantadditionaladvantageover pure numeric optimization.
When designinga new component,engineersalmost never
start from scratch,but the new designevolves from an old
one.Becauseof this iterative natureof designin engineering,
the insight gained from analysisof previous designscan be
usefulin improving future ones.It alsoimpliesthatsimulation
modelsof new designsare not radically differentfrom that of
the old onesandtheir resultsare comparablego someextent.
By analyzingthe relationshipsbetweenthe two, tendencies
can be found and extrapolatedto improve future designs.

VI. ENGINEERING APPLICATION: FUEL INJECTION
SYSTEM SIMULATION

The scienceof visual analyticsis very applicablein engi-
neering applications.Simulation and measurementiata sets
are vast, optimizationgoalsare often con icting, the tenden-
ciesanddependencies thedatacanbeindirectandengineers
needto nd optimal con gurations. Designersmust make
defensibleand responsibladecisionsbecausalesignmistales
can have very expensve consequencef shortcomingsare
discoveredduring production.Time-to-marlet for new designs
needdo be short,so designersnustwork undertime pressure
andcommunicateaheir ndings to collaboratingteams.In this
sectionwe demonstratehe applicability of our approachto
the analysisof Dieselinjection systemsimulationdata.

A. DieselCommonRail Injection Systems

Thereare mary (often con icting) goalsof Diesel engine
designincluding the needfor high power and goodfuel ef -
cieng/, meetingemissiorregulations reducingnoiselevelsand
improving driveability (steadyand reliable torque at various
engine speeds).The fuel injection systemis the key Diesel
enginecomponento achiere thosegoals.Thefollowing prop-
ertiesareconsideredmportantin the fuel injection procedure:

high injection pressurefor good atomizationand com-
bustion,

e xible timing of the injection,

short pre-injectionbeforethe main burst to reducecom-
bustionnoise,

accuratecontrol of injectedfuel quantity

ability to inject smallamountsof fuel to achieve econom-
ical operationand good emissionproperties.

A speci ¢ type of injection systemsthe commonrail injec-
tion systemcanbe controlledin a very e xible way. Injection
pressureand quantity can be controlled with a high degree
of e xibility, multiple fuel injectionsare possiblewithin one
injection cycle andthe time anddurationof the injectionscan
be controlled precisely by the engine control unit basedon
the enginespeedandload. Thesepropertiesare key factorsin
meetingcurrentandfuture very stringentemissionregulations.
Therefore,commonrail injection systemsare seenas a very
popularoption by mary manufcturers.n our casestudy we
use the simulation resultsof a corventional seriescommon
rail Dieselfuel injection system[10], [37].



Fig. 6. Control parameterdor the simulation.Left: inlet pressurecharac-
teristics are pressurelevels Piqy , Phig h and the time interval of pressure
increasedTp. Right: injector valve opening/closingpropertiesare the time
Tv1 whenthe valve startsto openandthe opening/closingime interval dTy, .

Fig. 7. A typical shapeof thefuel injectionratefunctiongraphis highlighted
in red. Thereis a shortpilot injection rst, followed by the main injection.
The function graphsresultingfrom othercombinationsof control parameters
aregray

B. Fuel Injection Simulation

Thefuel injection simulationdatais from AVL-List GmbH.
The simulationis basedon the theory of 1D uid dynamics
and2D vibrationsof multi-bodysystemsin 1D uid dynamics
pressures uniform on pipe slices perpendicularto the axis.
The simulation was run for a number of cases Each case
is representedy its own setof simulationcontrol parameter
values. The software can automaticallyloop the parameters
over a speci ed rangeand run a simulationvariant for each
resulting case.The engineersstudy the resulting output data
and attemptto nd ideal simulation input parametersfor
various engineoperatingsituations.This dataset follows the
modelintroducedin Sectionlll: | consistsof the simulation
control parametersaand D consistsof the simulation output.
In the following, we provide a detailed description of the
dependentind independentariablesin this dataset.

1) Simulation Control Parametes: The injection shape
dependsnainly onthreefactorsithenozzlegeometryinjection
pressure@ndtimingsfor valve openingandclosingprocedures.
Thein uence of control parameterselatedto nozzlegeometry
hasalreadybeeninvestigatedin our previous work [10]. Once
a (nearly) optimal nozzle geometryis found andit goesinto
productionit cannotbe changedrery oftenbecauséhatwould
be too expensve. The focus of fuel injection optimization
afterwardsis usually on varying the remainingtwo factors.

Therefore,the independentariablesin our currentinves-
tigation are related to injection pressureand injector valve
timings only. Theinjection pressurads controlledby the injec-
tion pressuremodulationdevice which is positionedbetween
the rail and injector In our investigations this device is not

Fig. 8. Pilot injectionswith high amountof fuel are brushedwith a line
brush.As seenin the parallel coordinates/iew of the independentariables,
theseall correspondo high Py, values.

Fig. 9. High dTy andall Py, simulationparametersare brushedin the
scatterplotdiagramusing a gradientbrush. The correlationof Py, andthe
amountof pilot injection is revealedby the color gradient.

modeledn detail,but we take the modulatedpressurasinput.

The characteristicof the pressureon the injector's inlet are
describedby threeindependentariables(Fig. 6). Theinjector
valve actuatorthat controlsthe injection timing is described
by its opening/closingimesandvelocities.Although this is a

simpli ed model, it allows the simulationof varioustypesof

valve actuatorsncludingthe popularsolenoidtype or themore
recent piezoelectricones. Consequentlywe have | of ve

independentariables.In parenthesisve indicatethe number
of variationsfor eachindependentariable.

1) Piow: low pressureon the injectorinlet (5),

2) Phig n: high pressureon the injector inlet (5),

3) dT,: time interval of modulatedpressuréncreaseon the
injector's inlet (5),
dT,: time interval of the injector valve openingand
closing (5),

5) Tya1: injector valve openingtime (7).

The total numberof variationsof the independenvariablesis
5% 7, whichmeanst375differentsetsof simulationboundary
conditions.

2) SimulationOutput: For eachcombinationof the inde-
pendentvariablesthe simulatorcomputesthree setsof time-
dependentesults: Qiy (t): injection rate, Py (t): injection
pressureand A, (t): needlelift. In other words, there are
threefamiliesof function graphsin this dataset.Furthermore,
the following regular dependenvariablesare computed:Qp:
amountof fuel injected during pilot injection, Qn,: amount
of fuel injected during main injection, Q,: amountof fuel
0 wing backto the fuel tank, Vgpen : Needleopeningvelocity,
Veose: Needleclosing velocity, L,: spray penetrationdepth,
Pia : averageinjection power.

4)



Fig. 10. Idealshapeof themaininjectionfor variousengineoperatingpoints
de ned by enginespeedandload. The shapecanbe classi edinto threetypes:
square(injection rate steeplyincreaseso a maximumlevel), ramp (the slope
is more gentle) and boot (following a nearly horizontal sggment injection
rate rapidly increaseso maximum level at the momentof ignition). This
classi cation is somevhat arbitrary sincethe shapechangesrom squareto
bootin a continuousmannerasthe control parametersary.

Fig. 11. Range<f control parametershatproducesquareshapednjections.
First the user attemptedto selectsquareshapedgraphswith brush 1. This
brush selectsseveral not squareshapedgraphs,too. Theseare removed by
subtractinggraphsthat intersectbrush 2. Brush 3 removes graphsthat drop
undera certainthresholdin the main injection part. This propertyis a result
of vibrationsin the fuel line, which areto be avoided.

C. Analysisof Fuel Injection SimulationData

Arbitrary shapedinjection rate function graphscannotbe
producedn simulationbecaus®f the physicalrequirementsf
the comhustionin the engine.The enginewill notrun properly
if the shapeof injection rate function graphdoesnot follow
the onesin Fig. 7. There are usually one (as in Fig. 7) or
two small peakscalled pilot injection in the rst quarterof
the injection procedurein order to reducecomhustion noise
and NOx emissionin combinationwith the main injection.
The goal is to nd combinationsof simulation parameters
that control the volume of the pilot injection and producethe
desiredshapeof the main injection.

1) Analysis of Pilot Injection: We investigate how the
amountof fuel and the timing of the pilot injection depend
on the control parametersWe zoomto the pilot injection part
of the Qi (t) function graphand selectfunction graphswith
high peaksusing a line brush (Fig. 8). The corresponding
items are highlighted in the parallel coordinateview of the
input parameterdNe can seethat strongpilot injectionsare
linked with high P, values.We suspecthatthereis a direct
correlation betweenP),, and the amountof fuel injected
during pilot injection. To supportthis hypothesiswe brushall
Piow andhighdT, valueswith a gradientbrushin a scatterplot
view (Fig. 9). The color gradientfrom redto greenestablishes

Fig. 12. Requiredneedlemovementcharacteristicfor squareshapedmain
injections.Top left: control parametershat producesquareshapednjections
arebrushedTop right: red to greengradientshaws that earliervalve opening
timescausedeviation from theideal squareshapeBottomleft: needleopening
and closing velocities must be fairly high for this shape.Bottom right: the
shapeof the needlelift function graphis closely correlatedto that of the
injection rate function graph.

visual links betweenthe brushedtemsin the scatterplotview
of the injection control parameter&ndthe graphview of the
injection rate.

Next, wetry to nd theparametershatdeterminghetiming
of the pilot injection. We brush the peaksof the function
graphwith a line brushand examinethe parallel coordinate
view of the control parametersWe concludethat time of
pilot injection's peakdepend®n dT, . This hypothesiscanbe
counterchecledin aninteractive way. A brushis pannedover
the scatterplotdiagramof P, anddT, and the highlighted
injection rate function graphsare studied.We nd that large
dT, valuescausethe pilot injection to startlater and alsoto
have slightly lowervolume.Thefully coveredaxesof thethree
other control parametersn the parallel coordinatessuggest
that the pilot injection’s shapedoesnot dependon them.

2) Analysisof Main Injection: The optimal shapeof main
injectionis differentfor eachparticularengineoperatingpoint
(Fig. 10). The engine control unit (ECU) measuresngine
speedand load to determinethe current operating point.
For each operatingpoint the ECU containsa lookup table
of injection control parametersusedto control the injection
system.Thegoalisto nd suitablesetsof control parameters
for characteristigpoints in the diagramand understanchow
various propertiesof the injection rate function graphcan be
controlled.In thefollowing we investigatehow suitablecontrol
parametersanbefoundfor speci ¢ maininjectionshapeskor
eachcasewe also demonstratesomeadditionaldependencies
andtendenciesn the dataset.

a) Squae: Square main injection shapeis desirable
when load is very low or when the engine speedand load
areboth high. We useda combinationof threeline brushego
selectsquareshapedinjection rate function graphs(Fig. 11).



Fig. 13. Top left: brush1 selectscontrol parametergor ramp shapedmain
injections.Bottomleft: brush2 is probedin the histogramof the high pressure
on injector inlet usingthe AND operation.Top right: injection rate function
graphsof the brusheditems.Bottom right: injection pressurdunction graphs
of the brusheditems. By draggingbrush?2 and studyingthe linked function
graphview we obsene thatinjection ratefunction graphshave similar shapes
but differentmaxima.

The aim of brush 3 is to exclude undesiredshock wave
re ections.

Using stepssimilar to the onesusedwheninvestigating the
pilot injection we discover that T, is high for the brushed
functiongraphs.Thatmeangheinjectorvalve opendatewhen
the pressureon its inlet is alreadyvery high. This leadsto
a suddenincreaseof injection rate, creating squareshaped
injectionratefunctiongraphsAs brush3 is createdve obsere
in the linked scatterplotdiagramthat most of the items with
low dT, (time interval of modulatedpressureincrease)are
removed from the focus. This meansdT, mustnot be very
low in orderto avoid shockwave re ections.

We also study the desired needle opening and closing
velocitiesand the correlationsbetweenthe injection rate and
the needlelift function graphsfor this case.ln orderto do so,
high Ty; and dT, are brushedin the scatterplotdiagramin
Fig. 12. The highlightedpointsin the Vg ose/Vopen SCatterplot
diagramshaw that fairly fast needleopeningand closing is
requiredfor squareshapednjections.The needlelift function
graph (bottomright) is also linked and the color gradientof
the brush shaws a strong correlationbetweenthe needlelift
andthe injection rate graphs.

b) Ramp: Ramp-shapedhaininjectionis desirablevhen
the enginespeedandload arein a mid-range.In the previous
casewe have found a correlationbetweenT,; andthe shape
of the injection rate function graph. We also know that the
time interval of the modulatedpressurdncreaseon injector's
inlet shouldbe fairly high to avoid re ections. Basedon this
we startthe investigation by brushingcaseswvhenthe injector
valve startsopeninga little later and we exclude low dT,
ranges(brushl in Fig. 13).

The histogramof Pyign is also brushed(brush2) and the
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Fig. 14. If the injector valve is openedvery early than the injection rate
quickly increaseso the”boot” level. It reachedts maximumwhenthe mixture
is ignited in the comhustionchamber

intersectionof the two brushesds studiedin the injection rate
and injection pressurefunction graphs.We obsenre that the

correspondingunction graphsof injection rate and pressure
are similar in shapebut differ in their maximaas Phgn is

varied (Fig. 13).

c) Boot: Boot-shapedmain injection is desirable for
engineoperatingpoints of mid-rangeenginespeedsand high
load.Fromour previousexperiencenve assumehattheinjector
valve hasto be openedvery early to achieve this shape.This
assumptions veri ed in Fig. 14 by brushingthe corresponding
region in the scatterplotdiagramof Ty, anddT,.

Now we investigate how desiredamountsof fuel in the
main injection and various injection penetrationlevels are
achieved. The scatterplodiagramof thesedependenvariables
is brushedand the brusheditems are obsered in the linked
views in Fig. 15. We obsene that the brushedinjection rate
functiongraphsareall bootshapedIn the parallelcoordinates
view it is obvious that boot shapednjection doesnot require
fastinjectionrateincreasebut fastneedleclosingandinjection
ratedecreasarestill preferred We alsodiscover thatfor deep
fuel spray penetrationand high injection powers (brushedin
greenin Fig. 15) fast needleclosing velocities are required.
The injectedfuel mass(Qn,) andthe amountof fuel returned
to the fuel tank (Qy,) are both fairly high. This matchesour
expectationssincewe seein the parallelcoordinateview that
fuel pressurePnig n Wasalso quite high in thesecases.

3) Insight Gainedfrom Analysis: In this examplewe have
gainedvaluableinsightinto the fuel injection simulationdata
setandtherebyinto the fuel injection process.

We found that the amount of injected fuel in the main
injection stage can be controlled by adjusting Phign. The
amountof pilot injectionis controlledmostlyby Py, butdT,
alsohassomein uence on it. We obsered that choosingdT,
andT,; is thekey to achiesing the desirednjectionshapedor
variousengineoperatingconditions.When pressuréncreases
too faston the injector’s inlet thenthe resultingwave canbe
re ected into the fuel line which impairs our control over the
injection's shape.By studyingthe needlelift function graph
and the related Vopen and Vgiose Simulation outputswe can
de ne the desiredneedlecharacteristicfor speci c injection
shapesand seehow tightly the injection rate and the needle
lift function graphsare correlated.

Additional imagesand supportingvideos are available at
http://www.vrvis.at/scivis/graphs-analysis/
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Fig. 15. We investicate the conditionswhenfuel is injecteddeepin the comhustion chamberandwith high power. The correspondingtems are brushedin
the scatterplotdiagram.The linked injection rate function graphsshaw thatthis requiresboot shapedmnain injections.The desiredneedleopeningand closing

velocitiesare highlightedin the parallel coordinateview.

VIlI. CONCLUSION

The analysisof relationshipsbetweenfamilies of function
graphsis a commontask in mary application domains.A
novel combination of establishedvisualization techniques,
linked views and adwanced brushing featuresrepresentsa
valuabletool for interactve visual exploration and analysis
of data setsthat include families of function graphs.Inde-
pendentand dependentvariablesin the data set are treated
the same providing improved supportfor iterative exploration
and analysisof the entire dataspace.Multiple, linked views
enablesimultaneousviewing of independentand dependent
parametersvith immediatefeedback.

Brushing proved to be especially effective, since it al-
lows the interactve exploration of relations betweeninde-
pendentand dependentvariables. The color gradient im-
proves the visual connectionof the brusheditems to the
linked focus+contgt visualizations.The compositebrushing
with AND, OR, and SUB operationssupportsthe iterative
re nement of information drill-down and the detection or
extraction of patternsfrom the applicationdomain. The line
brush techniqueproves to be especiallyuseful in selecting
function graphs.lt is intuitive, easyto useandvery effective.
Fig. 5 shavs how a compositionof nearlyadozenline brushes
is usedto identify a patternin a family of trafc volume
function graphs.

The processof the compositebrush constructioncaptures
the essencef visual analyticsproceduresit is interactize and
iterative. Theinitial brushprovidestheinitial dataselectionin
oneview. Thatselectionis immediatelydisplayedn thelinked
views whereit canbe analyzedfrom differentperspectiesto
formulate a hypothesis.That hypothesisis then testedusing
new brushes.During this iterative procedurenew, possibly
unexpectedpatternscan be found. Fig. 2 shaws a discorery
of a patternin D (constanthigh occupang) that indicates
a patternin | (malfunctioningsensors)Suchdiscoveriesare
more dif cult or even impossiblewithout interactve visual
analysis.

Futurework will proceedin threedirections.First, we will
expandthe datamodelto includeinput time seriesandtime-
dependentnput parameteraswell as rst and secondorder
deriatives of times series.We will explore what impactthis

hason therequiredanalysisproceduresndtry to nd toolsto
supportthe new tasks Finally, we will exploretheuseof large-
scaledisplaysandusabilityissueselatedto manageabilityand
arrangemenbf large numberof views.
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