
A Mesh Data Structure for
Rendering and Subdivision

Robert F. Tobler

VRVis Research Center
Donau-City Str. 1/3
 1120 Wien, Austria

rft@vrvis.at

Stefan Maierhofer
VRVis Research Center

Donau-City Str. 1/3
 1120 Wien, Austria

sm@vrvis.at

ABSTRACT
Generating subdivision surfaces from polygonal meshes requires the complete topological information of the
original mesh, in order to find the neighbouring faces, and vertices used in the subdivision computations.
Normally, winged-edge type data-structures are used to maintain such information about a mesh. For rendering
meshes, most of the topological information is irrelevant, and winged-edge type data-structures are inefficient
due to their extensive use of dynamical data structures. A standard approach is the extraction of a rendering mesh
from the winged-edge type data structure, thereby increasing the memory footprint significantly.

We introduce a mesh data-structure that is efficient for both tasks: creating subdivision surfaces as well as fast
rendering. The new data structure maintains full topological information in an efficient and easily accessible
manner, with all information necessary for rendering optimally suited for current graphics hardware. This is
possible by disallowing modifications of the mesh, once the topological information has been created. In order to
avoid any inconveniences due to this limitation, we provide an API that makes it possible to stitch multiple
meshes and access the topology of the resulting combined mesh as if it were a single mesh. This API makes the
new mesh data structure also ideally suited for generating complex geometry using mesh-based L-systems.

Keywords
Mesh, Subdivision, Rendering.

1. INTRODUCTION
Subdivision Surfaces [Cat78], [Doo78] have recently
been established as a very popular method for
generating smooth geometrical objects in computer
graphics [Cav91], [DeR98], [Kob00]. With the rise
of cheap graphics hardware for consumer PCs, real-
time rendering of subdivision surfaces becomes ever
more important.

In order to generate the necessary geometry for real-
time rendering of subdivision surfaces, complete
topology information is necessary for a given mesh
of input polygons. Over the years a number of mesh
representations have been developed that provide this

topology information, given an arbitrary input mesh.
Most of these mesh representations are based on the
winged-edge representation introduced by Bruce
Baumgart [Bau72].

In order to facilitate access to the complete topology
of a polygon mesh, winged-edge representations
maintain lists of edges around each vertex, and lists
of edges for each face. Thus each edge partakes in
four lists: the two lists for its end vertices, and the
two lists for the faces it separates (see figure 1).

This type of data-structure is very elegant from a
topological point of view: as an example, the dual
mesh, where each vertex is replaced by a face, and
each face is replaced by a vertex, can be easily
created, since vertices and faces are structurally
equivalent in this representation. Also, topological
modifications to the mesh can be easily implemented
by changing the corresponding lists. However, this
flexibility comes at a price: due to the dynamic
nature of the list data structures, access to specific
edges, faces or vertices often results in following a
number of elements of the described lists, reducing
the access performance. In addition to that, dynamic

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Short Communications proceedings ISBN 80-86943-05-4
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

memory management is needed to maintain these
structures.

Figure 1: Winged-Edge data structure with

complete topological information.

For real-time rendering, the topological information
is not needed, therefore the standard approach of a
number of packages is to generate a triangle
representation optimized for rendering when it is
needed. Although this results in optimal rendering
performance, the memory cost is increased, since
some information needs to be duplicated.
Additionally the generation of this rendering
representation requires some computation.

2. MESH REPRESENTATIONS
In order to improve the performance of the winged-
edge data structure for a number of algorithms that
are usually performed on meshes, various mesh
representations have been developed. In the
following section we will highlight two of these
representations on which we have based our
additional ideas.

Directed Edges
A useful adaptation of the winged-edge that avoids
the original pointer data structures has been
developed by Campagna et al. [Cam98]. The idea of
this structure is the representation of each edge
between two faces as two directed edges, each
belonging to one of the faces. This is equivalent to
the half edge structure described by Kettner [Ket98].
Each directed edge is part of a circle of directed
edges around a face, and references its corresponding
directed edge in the neighbouring face (see figure 2).
In order to avoid lists in the representation, directed-
edges are stored consecutively in an array, and only
the base index needs to be stored in the face data
structure.

Figure 2: Directed edges representing triangles.

OpenMesh
OpenMesh [Bot02] is a C++ implementation of the
ideas presented in the directed edge data structure
paper. Due to the use of templates, the exact mesh
data-structure that is used by an application can be
adapted to the algorithms that need to be applied to
the mesh. With the help of the template mechanism,
arbitrary attributes can be attached to each geometric
object (face, vertex, edge) in the mesh. On first
glance, this data structure seems to solve all possible
needs, however due to the use of templates, it is
necessary to instantiate specific mesh data-structures
for each algorithm that needs private attributes.
Therefore, if two algorithms with different attribute
needs are run on the same mesh, the mesh data
structure has to be cloned.

3. MESH REQUIREMENTS
The two main algorithms that our mesh data structure
has been designed for, are subdivision and real-time
rendering. Although this seems limiting for a data
structure, it turns out, that our resulting design is still
very general and can be used for a wide variety of
algorithms. The following section summarizes the
base requirements that are necessary for efficient
implementation of our two main algorithms.

Requirements for subdivision
As already mentioned, full topology information is
necessary for subdivision algorithms. In order to
optimize these algorithms it is beneficial if topology
information is not stored in lists, that have to be
traversed, but in arrays that can be directly indexed.
Since the resulting meshes of subdivision algorithms
can be stored in different meshes, it is not necessary
to modify the topological information once it has
been created.

Requirements for real-time rendering
Current graphics hardware supports a number of
ways to supply geometric data. Among these are:
sending the coordinates of each triangle separately,
sending so-called triangle strips, where shared
coordinates of neighbouring triangles are not
retransmitted, or indexed structures, with separate

coordinate arrays and triangle arrays containing
vertex indices.

Since triangle strips or indexed structures are
normally more efficient than sending each triangle
separately, they are the methods of choice for
sending geometric data. Triangle strips require an
additional preprocessing step for finding the longest
strips in a given mesh of triangles. Thus the indexed
structures often represent the optimal choice for
storing geometric information.

In real-time rendering applications a specific triangle
mesh is normally rendered multiple times in
subsequent frames. In order to prevent this, it is
possible to explicitly store the transmitted data
directly in the memory of the graphics hardware
using so called vertex buffer objects. By using the
indexed structures that separate coordinates and
vertex indices, some of the information stored in the
graphics hardware can be reused between different
meshes.

For these reasons the use of indexed structures is
often the preferred method for storing geometric data
and sending the data to the graphics hardware.

4. THE NEW DATA STRUCTURE
Our data structure for rendering and subdivision
maintains rendering information and topological
information separately. The topological information
can be created if it is needed, but need not be present
for rendering.

Geometric information for rendering
In order to facilitate fast rendering, the memory
layout of all geometric information has been chosen
to correspond to the indexed face set data structure as
used in VRML and Inventor. As current graphics
hardware supports explicit commands for supplying
triangles and quadrangles, we reflect this by
maintaining separate arrays for these geometric
primitives. Some popular types of geometric data,
such as heightfields use quadrangles and therefore
our explicit support in noticeable memory savings (as
opposed to splitting everything into triangles). Figure
3 shows the data structure with additional normal and
colour attributes for each vertex. In order to simplify
our first implementation we do not explicitly support
general polygons, and directly split these into
triangles.

Figure 3: Mesh data structure for rendering.

Shown with normal and colour attributes for each
vertex.

Topology information for rendering and
subdivision
As the data structure for geometric information
already supplies references from each face to its
vertices we designed the topological information in
such a way that this information is reused. The
general structure of our topological information is
shown in figure 4. Note that almost all other mesh
data structures (e.g. [Hop98]) do not explicitly store
the references from faces to vertices. Thus for
rendering all these other data structures, either these
references have to be created, or a somewhat slower
traversal of the mesh data structure, together with the
creation of a chaced representation with additional
memory requirements, needs to be performed.

Figure 4: General structure of topological

information in our mesh data structure. Note that
the references from faces to vertices are already

part of the rendering information.

In order to store this information as tightly as
possible we use some of the ideas presented by
Campagna et al. [Cam98]. A representation of the
resulting memory layout can be seen in figure 5.
Note that the face array shown in this figure is not
stored explicitly, but consists of the concatenated
triangle and quad arrays that are part of the rendering
information.

Figure 5: Memory Layout of the topological

information.

To complete the topological information, as shown in
figure 4 and 5, each of the references must contain
more than just the index of the target object: it is
necessary to know the exact orientation of the
referenced object as well (see figure 6) If e.g. a face
is indexed, the index of the face alone does not
include the information, which side of the face is
referenced. Thus for each array that contains indices
of faces, vertices, or edges we maintain a parallel
array that contains the orientation (or side) of the
referenced face, vertex or edge. For edge references
this orientation array could be packed to only contain
one bit per reference. For face and vertex references,
the memory consumption depends on the maximal
number of vertices per face, and edges meeting in a
vertex. In order to simplify our implementation we
chose to use the same size for this orientation array
for all three object types: 8-bit integers. Assuming
32-bit integers for all indices, this results in a
tolerable memory increase of 25% for all references.

Figure 6: For each reference the orientation (or
side) of the target object has to be maintained.

As the topological information for a mesh is created,
the mesh is split into multiple 2-manifold sheets.
Each vertex in a mesh is only allowed to be member
of a single sheet, so vertices are replicated for
representing non-manifold objects.

5. ADVANCED CONCEPTS
As we use indexed arrays to maintain vertices, edges,
and faces, modifying the topological information
would entail writing customized memory
management algorithms for these arrays. Although
this is possible in principle, and we may want to
implement this in future, for the sake of simplicity
we currently do not allow modification of the
topological information, once it has been created.
This sounds like a severe restriction, however any
algorithm that modifies the topology of a mesh can

easily be implemented in such a way, that it creates a
new mesh with the modified topology.

Per object attributes
As all geometric objects (faces, vertices, and edges)
can be identified by their index within a mesh,
additional attributes can be maintained as parallel
attribute arrays. Thus multiple algorithms that need
different sets of attributes can be run on the same
mesh without replicating the geometric and
topological information. Based on the frequency of
each attribute different implementation strategies can
be chosen for each attribute:

• dense attributes: ie. attributes that are present
for nearly every object are stored in standard
arrays

• sparse attributes: ie. attributes that are present
for very few objects are stored in hash tables

As the attributes for different algorithms can be
maintained in parallel for the same geometric and
topological mesh structure, and chosen to be
represented according to their density, the proposed
data structure achieves a near optimal memory
utilization.

Stitching of multiple meshes
In order to alleviate the restriction that the topology
of a mesh cannot be modified, we introduce a
different concept – stitching of multiple meshes.
Again we try to keep the concept very simple, so that
it can be easily used to build complex meshes out of
simpler constituting part meshes: we allow that single
faces of a mesh can be set to be equivalent with
single faces of other meshes (see figure 7). As we
assume, that only few of the faces of a mesh are
stitched with other meshes, we maintain this
information as a sparse attribute of the mesh faces.

Figure 7: Stitching two meshes by setting faces of

different meshes to be equivalent.

Topology API
One important aspect of our mesh data structure is an
API to access topology across multiple stitched
meshes, as if they were one single mesh. This API is
implemented by creating simple handle objects for
faces, vertices, and edges. These handle objects that
are depicted in figure 8 contain a pointer to the mesh

that contains the respective object, its index within
that mesh, and its orientation.

Figure 8: Handle objects are general references to

faces, vertices, and edges.

The API of the handle objects allows access to all
connected geometric objects of a given object, and
returns handles to these connected objects. These
handle objects are normally allocated on the stack,
and filled with the reference to the object upon
creation.

• face handle objects: allow access to all vertices
and edges of a face, as well as all neighbouring
faces

• vertex handle objects: allow access to all faces
and edges meeting in a vertex, as well as to all
neighbouring vertices

• edge handle objects: allow access to the two
end vertices and the two coinciding faces of an
edge

6. RESULTS
Memory consumption
In order to analyze the memory consumption of our
mesh data structure we computed the memory
requirements for the geometric and topological
information of an infinite regular triangle mesh as
well as an infinite regular quad mesh. We assume
that 32-bit IEEE floats are used for the vertex
coordinates and normals, and that for each vertex the
position, the normal and a 32-bit colour is stored.
Table 1 shows the resulting memory consumption per
triangle/quad.

geometric

information
topological
information

infinite
triangle mesh 26 bytes 37 bytes

infinite quad
mesh

44 bytes 52 bytes

Table 1. Per triangle/quad memory consumption
for infinite triangle/quad meshes.

Example meshes
We used our data structure for subdivision and
rendering of a few example meshes as seen in figure
9 and 10.

Figure 9: The input and subdivided mesh of a

branching structure.

Figure 10: A chair built from multiple sheets

created using Catmull-Clark subdivision [Cat78].

7. APPLICATION OF THE NEW
MESH DATA STRUCTURE
The mesh data structure we presented is suitable for a
number of applications, however our main
application is real-time rendering of large vegetation
scenes. One important aspect of this application is,
that a typical scene contains more geometry than can
be explicitly represented in memory.

Levels of detail
In order to overcome this problem, a level of detail
approach is employed in our application. Due to the
nature of current graphics hardware, the so called
chunked level-of-detail approach has been chosen,
i.e. the granularity of the geometry for which a level-
of-detail is chosen, is rather coarse. Thus we
represent a plant or a tree as a collection of meshes
for branches, twigs, leaves and trunk parts, that are
stitched to represent a single large mesh. For each
part-mesh, the topology API is used to generate
smoother, more detailed variants of the geometry
using subdivision. In the rendering application, the
currently optimal mesh is sent to the graphics
hardware.

Generating complex geometry
For generating the vegetation models in our
application, the mesh data structure is highly useful
due to its efficient use of memory. We used the
mesh-based L-system [Tob02a], [Tob02b] that
employs generalized subdivision in order to
introduce detail at finer subdivision levels. Some
results of our implementation can be seen in figures
11 and 12.

Figure 11: A grown structure consisting of

stitched meshes, and a smoothed result using
subdivision.

Figure 12: A complete rubber tree built using

stitched meshes and subdivision.

8. CONCLUSION AND FUTURE
WORK
We presented a new mesh data structure that has
been optimized for both real-time rendering and
subdivision. Due to the widely differing requirements
of these two applications the new data structure is
sufficiently general for a wide variety of algorithms.

For our prototype implementation a number of
simplifications in our implementation have been
made, and the only subdivision scheme we have
implemented so far is the one by Catmull-Clark. In
the future we expect to generalize our
implementation and test our mesh data structure by
implementing additional subdivision schemes, as
well as other mesh based algorithms such as quadric-
based surface simplification [Hec99].

9. REFERENCES
 [Bau72] Baumgart B. Winged edge polyhedron

representation. Artificial Intelligence Project
Memo AIM-179 (CS-TR-74-320), Stanford
University 1972.

[Bot02] Botsch M., Steinberg S., Bischoff S.,
Kobbelt L. Openmesh – a generic and efficient
polygon mesh data structure. OpenSG
Symposium, 2002.

[Cam98] Campagna S., Kobbelt L., Seidel H.-P.,
Directed edges – A scalable representation for
triangle meshes. Journal of Graphics Tools, JGT
3,4, 1-12, 1998..

 [Cat78] Catmull E., Clark J., Recursively generated
B-spline surfaces on arbitrary topological meshes.
Computer Aided Design 10, pp. 350-355, Sept.
1978.

[Cav91] Cavaretta A., Dahmen W., Micchelli C.,
Subdivision for Computer Aided Geometric
Design. Memoirs Amer. Math. Soc. 93, 1991.

[DeR98] DeRose T., Kass M., Truong T.,
Subdivision surfaces in character animation.
Computer Graphics 32, Annual Conference
Series, pp. 85-94, Aug. 1998.

[Doo78] Doo D., Sabin M., Behaviour of recursive
division surfaces near extraordinary points.
Computer-Aided Desin 10,pp.g 356-360, Sept.
1978.

[Hec99] Heckbert P.S., Garland M., Optimal
triangulation and qadric-based surface
simplification. Computational Geometry 14, pp.
49-65, 1999.

[Hop98] Hoppe, H., Efficient implementation of
progressive meshes, Computers & Graphics,
Elsevier, Vol. 22, No. 1., pp. 27-36, Jan-Feb
1998.

[Ket98] Kettner L., Using generic programming for
designing a data structure for polyhedral surfaces.
14th Annual ACM Symp. On Computational
Geometry, 1998.

[Kob00] Kobbelt L., Sqrt(3) Subdivision. In
SIGGRAPH 2000, Computer Graphics
Proceedings, Akeley K. (Ed.), Annual Conference
Series, ACMSIGGRAPH, pp. 103-112, 2000.

[Tob02a] Tobler R. F., Maierhofer S., Wilkie A.
Mesh-based parametrized L-Systems and
generalized subdivision for generating complex
geometry. Journal on Shape Modelling 8, 2, pp.
173-191, Dec. 2002.

[Tob02b] Tobler R.F., Maierhofer S., Wilkie A., A
multiresolution mesh generation approach for
procedural definition of complex geometry.
Shape Modeling International, Banff, Canada, pp.
35-42, 2002.

