
A Mesh Data Structure for 
Rendering and Subdivision 

 
Robert F. Tobler 

VRVis Research Center 
Donau-City Str. 1/3  
 1120 Wien, Austria 

rft@vrvis.at 

Stefan Maierhofer 
VRVis Research Center 

Donau-City Str. 1/3  
 1120 Wien, Austria 

sm@vrvis.at 
 

ABSTRACT 
Generating subdivision surfaces from polygonal meshes requires the complete topological information of the 
original mesh, in order to find the neighbouring faces, and vertices used in the subdivision computations. 
Normally, winged-edge type data-structures are used to maintain such information about a mesh. For rendering 
meshes, most of the topological information is irrelevant, and winged-edge type data-structures are inefficient 
due to their extensive use of dynamical data structures. A standard approach is the extraction of a rendering mesh 
from the winged-edge type data structure, thereby increasing the memory footprint significantly. 

We introduce a mesh data-structure that is efficient for both tasks: creating subdivision surfaces as well as fast 
rendering. The new data structure maintains full topological information in an efficient and easily accessible 
manner, with all information necessary for rendering optimally suited for current graphics hardware. This is 
possible by disallowing modifications of the mesh, once the topological information has been created. In order to 
avoid any inconveniences due to this limitation, we provide an API that makes it possible to stitch multiple 
meshes and access the topology of the resulting combined mesh as if it were a single mesh. This API makes the 
new mesh data structure also ideally suited for generating complex geometry using mesh-based L-systems. 

Keywords 
Mesh, Subdivision, Rendering. 

 

1. INTRODUCTION 
Subdivision Surfaces [Cat78], [Doo78] have recently 
been established as a very popular method for 
generating smooth geometrical objects in computer 
graphics [Cav91], [DeR98], [Kob00]. With the rise 
of cheap graphics hardware for consumer PCs, real-
time rendering of subdivision surfaces becomes ever 
more important. 

In order to generate the necessary geometry for real-
time rendering of subdivision surfaces, complete 
topology information is necessary for a given mesh 
of input polygons. Over the years a number of mesh 
representations have been developed that provide this 

topology information, given an arbitrary input mesh. 
Most of these mesh representations are based on the 
winged-edge representation introduced by Bruce 
Baumgart [Bau72]. 

In order to facilitate access to the complete topology 
of a polygon mesh, winged-edge representations 
maintain lists of edges around each vertex, and lists 
of edges for each face. Thus each edge partakes in 
four lists: the two lists for its end vertices, and the 
two lists for the faces it separates (see figure 1). 

This type of data-structure is very elegant from a 
topological point of view: as an example, the dual 
mesh, where each vertex is replaced by a face, and 
each face is replaced by a vertex, can be easily 
created, since vertices and faces are structurally 
equivalent in this representation. Also, topological 
modifications to the mesh can be easily implemented 
by changing the corresponding lists. However, this 
flexibility comes at a price: due to the dynamic 
nature of the list data structures, access to specific 
edges, faces or vertices often results in following a 
number of elements of the described lists, reducing 
the access performance. In addition to that, dynamic 
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memory management is needed to maintain these 
structures. 

 
Figure 1: Winged-Edge data structure with 

complete topological information. 

For real-time rendering, the topological information 
is not needed, therefore the standard approach of a 
number of packages is to generate a triangle 
representation optimized for rendering when it is 
needed. Although this results in optimal rendering 
performance, the memory cost is increased, since 
some information needs to be duplicated. 
Additionally the generation of this rendering 
representation requires some computation. 

2. MESH REPRESENTATIONS 
In order to improve the performance of the winged-
edge data structure for a number of algorithms that 
are usually performed on meshes, various mesh 
representations have been developed. In the 
following section we will highlight two of these 
representations on which we have based our 
additional ideas. 

Directed Edges 
A useful adaptation of the winged-edge that avoids 
the original pointer data structures has been 
developed by Campagna et al. [Cam98]. The idea of 
this structure is the representation of each edge 
between two faces as two directed edges, each 
belonging to one of the faces. This is equivalent to 
the half edge structure described by Kettner [Ket98]. 
Each directed edge is part of a circle of directed 
edges around a face, and references its corresponding 
directed edge in the neighbouring face (see figure 2). 
In order to avoid lists in the representation, directed-
edges are stored consecutively in an array, and only 
the base index needs to be stored in the face data 
structure. 

 
Figure 2: Directed edges representing triangles. 

OpenMesh 
OpenMesh [Bot02] is a C++ implementation of the 
ideas presented in the directed edge data structure 
paper. Due to the use of templates, the exact mesh 
data-structure that is used by an application can be 
adapted to the algorithms that need to be applied to 
the mesh. With the help of the template mechanism, 
arbitrary attributes can be attached to each geometric 
object (face, vertex, edge) in the mesh. On first 
glance, this data structure seems to solve all possible 
needs, however due to the use of templates, it is 
necessary to instantiate specific mesh data-structures 
for each algorithm that needs private attributes. 
Therefore, if two algorithms with different attribute 
needs are run on the same mesh, the mesh data 
structure has to be cloned.  

3. MESH REQUIREMENTS 
The two main algorithms that our mesh data structure 
has been designed for, are subdivision and real-time 
rendering. Although this seems limiting for a data 
structure, it turns out, that our resulting design is still 
very general and can be used for a wide variety of 
algorithms. The following section summarizes the 
base requirements that are necessary for efficient 
implementation of our two main algorithms. 

Requirements for subdivision 
As already mentioned, full topology information is 
necessary for subdivision algorithms. In order to 
optimize these algorithms it is beneficial if topology 
information is not stored in lists, that have to be 
traversed, but in arrays that can be directly indexed. 
Since the resulting meshes of subdivision algorithms 
can be stored in different meshes, it is not necessary 
to modify the topological information once it has 
been created. 

Requirements for real-time rendering 
Current graphics hardware supports a number of 
ways to supply geometric data. Among these are: 
sending the coordinates of each triangle separately, 
sending so-called triangle strips, where shared 
coordinates of neighbouring triangles are not 
retransmitted, or indexed structures, with separate 



coordinate arrays and triangle arrays containing 
vertex indices. 

Since triangle strips or indexed structures are 
normally more efficient than sending each triangle 
separately, they are the methods of choice for 
sending geometric data. Triangle strips require an 
additional preprocessing step for finding the longest 
strips in a given mesh of triangles. Thus the indexed 
structures often represent the optimal choice for 
storing geometric information. 

In real-time rendering applications a specific triangle 
mesh is normally rendered multiple times in 
subsequent frames. In order to prevent this, it is 
possible to explicitly store the transmitted data 
directly in the memory of the graphics hardware 
using so called vertex buffer objects. By using the 
indexed structures that separate coordinates and 
vertex indices, some of the information stored in the 
graphics hardware can be reused between different 
meshes. 

For these reasons the use of indexed structures is 
often the preferred method for storing geometric data 
and sending the data to the graphics hardware. 

4. THE NEW DATA STRUCTURE 
Our data structure for rendering and subdivision 
maintains rendering information and topological 
information separately. The topological information 
can be created if it is needed, but need not be present 
for rendering. 

Geometric information for rendering 
In order to facilitate fast rendering, the memory 
layout of all geometric information has been chosen 
to correspond to the indexed face set data structure as 
used in VRML and Inventor. As current graphics 
hardware supports explicit commands for supplying 
triangles and quadrangles, we reflect this by 
maintaining separate arrays for these geometric 
primitives. Some popular types of geometric data, 
such as heightfields use quadrangles and therefore 
our explicit support in noticeable memory savings (as 
opposed to splitting everything into triangles). Figure 
3 shows the data structure with additional normal and 
colour attributes for each vertex. In order to simplify 
our first implementation we do not explicitly support 
general polygons, and directly split these into 
triangles. 

 
Figure 3: Mesh data structure for rendering. 

Shown with normal and colour attributes for each 
vertex. 

Topology information for rendering and 
subdivision 
As the data structure for geometric information 
already supplies references from each face to its 
vertices we designed  the topological information in 
such a way that this information is reused. The 
general structure of our topological information is 
shown in figure 4. Note that almost all other mesh 
data structures (e.g. [Hop98]) do not explicitly store 
the references from faces to vertices. Thus for 
rendering all these other data structures, either these 
references have to be created, or a somewhat slower 
traversal of the mesh data structure, together with the 
creation of a chaced representation with additional 
memory requirements, needs to be performed. 

 
Figure 4: General structure of topological 

information in our mesh data structure. Note that 
the references from faces to vertices are already 

part of the rendering information. 

In order to store this information as tightly as 
possible we use some of the ideas presented by 
Campagna et al. [Cam98]. A representation of the 
resulting memory layout can be seen in figure 5. 
Note that the face array shown in this figure is not 
stored explicitly, but consists of the concatenated 
triangle and quad arrays that are part of the rendering 
information. 



 
Figure 5: Memory Layout of the topological 

information. 

To complete the topological information, as shown in 
figure 4 and 5, each of the references must contain 
more than just the index of the target object: it is 
necessary to know the exact orientation of the 
referenced object as well (see figure 6) If e.g. a face 
is indexed, the index of the face alone does not 
include the information, which side of the face is 
referenced. Thus for each array that contains indices 
of faces, vertices, or edges we maintain a parallel 
array that contains the orientation (or side) of the 
referenced face, vertex or edge. For edge references 
this orientation array could be packed to only contain 
one bit per reference. For face and vertex references, 
the memory consumption depends on the maximal 
number of vertices per face, and edges meeting in a 
vertex. In order to simplify our implementation we 
chose to use the same size for this orientation array 
for all three object types: 8-bit integers. Assuming 
32-bit integers for all indices, this results in a 
tolerable memory increase of 25% for all references. 

 
Figure 6: For each reference the orientation (or 
side) of the target object has to be maintained. 

As the topological information for a mesh is created, 
the mesh is split into multiple 2-manifold sheets. 
Each vertex in a mesh is only allowed to be member 
of a single sheet, so vertices are replicated for 
representing non-manifold objects. 

5. ADVANCED CONCEPTS 
As we use indexed arrays to maintain vertices, edges, 
and faces, modifying the topological information 
would entail writing customized memory 
management algorithms for these arrays. Although 
this is possible in principle, and we may want to 
implement this in future, for the sake of simplicity 
we currently do not allow modification of the 
topological information, once it has been created. 
This sounds like a severe restriction, however any 
algorithm that modifies the topology of a mesh can 

easily be implemented in such a way, that it creates a 
new mesh with the modified topology. 

Per object attributes 
As all geometric objects (faces, vertices, and edges) 
can be identified by their index within a mesh, 
additional attributes can be maintained as parallel 
attribute arrays. Thus multiple algorithms that need 
different sets of attributes can be run on the same 
mesh without replicating the geometric and 
topological information. Based on the frequency of 
each attribute different implementation strategies can 
be chosen for each attribute: 

• dense attributes: ie. attributes that are present 
for nearly every object are stored in standard 
arrays 

• sparse attributes: ie. attributes that are present 
for very few objects are stored in hash tables 

As the attributes for different algorithms can be 
maintained in parallel for the same geometric and 
topological mesh structure, and chosen to be 
represented according to their density, the proposed 
data structure achieves a near optimal memory 
utilization. 

Stitching of multiple meshes 
In order to alleviate the restriction that the topology 
of a mesh cannot be modified, we introduce a 
different concept – stitching of multiple meshes. 
Again we try to keep the concept very simple, so that 
it can be easily used to build complex meshes out of 
simpler constituting part meshes: we allow that single 
faces of a mesh can be set to be equivalent with 
single faces of other meshes (see figure 7). As we 
assume, that only few of the faces of a mesh are 
stitched with other meshes, we maintain this 
information as a sparse attribute of the mesh faces. 

 
Figure 7: Stitching two meshes by setting faces of 

different meshes to be equivalent. 

Topology API 
One important aspect of our mesh data structure is an 
API to access topology across multiple stitched 
meshes, as if they were one single mesh. This API is 
implemented by creating simple handle objects for 
faces, vertices, and edges. These handle objects that 
are depicted in figure 8 contain a pointer to the mesh 



that contains the respective object, its index within 
that mesh, and its orientation. 

 
Figure 8: Handle objects are general references to 

faces, vertices, and edges. 

The API of the handle objects allows access to all 
connected geometric objects of a given object, and 
returns handles to these connected objects. These 
handle objects are normally allocated on the stack, 
and filled with the reference to the object upon 
creation. 

• face handle objects: allow access to all vertices 
and edges of a face, as well as all neighbouring 
faces 

• vertex handle objects: allow access to all faces 
and edges meeting in a vertex, as well as to all 
neighbouring vertices 

• edge handle objects: allow access to the two 
end vertices and the two coinciding faces of an 
edge 

6. RESULTS 
Memory consumption 
In order to analyze the memory consumption of our 
mesh data structure we computed the memory 
requirements for the geometric and topological 
information of an infinite regular triangle mesh as 
well as an infinite regular quad mesh. We assume 
that 32-bit IEEE floats are used for the vertex 
coordinates and normals, and that for each vertex the 
position, the normal and a 32-bit colour is stored. 
Table 1 shows the resulting memory consumption per 
triangle/quad. 

 
geometric 

information 
topological 
information 

infinite 
triangle mesh 26 bytes 37 bytes 

infinite quad 
mesh 

44 bytes 52 bytes 

Table 1. Per triangle/quad memory consumption 
for infinite triangle/quad meshes. 

Example meshes 
We used our data structure for subdivision and 
rendering of a few example meshes as seen in figure 
9 and 10. 

 
Figure 9: The input and subdivided mesh of a 

branching structure. 

 
Figure 10: A chair built from multiple sheets 

created using Catmull-Clark subdivision [Cat78]. 

7. APPLICATION OF THE NEW 
MESH DATA STRUCTURE 
The mesh data structure we presented is suitable for a 
number of applications, however our main 
application is real-time rendering of large vegetation 
scenes. One important aspect of this application is, 
that a typical scene contains more geometry than can 
be explicitly represented in memory. 

Levels of detail 
In order to overcome this problem, a level of detail 
approach is employed in our application. Due to the 
nature of current graphics hardware, the so called 
chunked level-of-detail approach has been chosen, 
i.e. the granularity of the geometry for which a level-
of-detail is chosen, is rather coarse. Thus we 
represent a plant or a tree as a collection of meshes 
for branches, twigs, leaves and trunk parts, that are 
stitched to represent a single large mesh. For each 
part-mesh, the topology API is used to generate 
smoother, more detailed variants of the geometry 
using subdivision. In the rendering application, the 
currently optimal mesh is sent to the graphics 
hardware. 



Generating complex geometry 
For generating the vegetation models in our 
application, the mesh data structure is highly useful 
due to its efficient use of memory. We used the 
mesh-based L-system [Tob02a], [Tob02b] that 
employs generalized subdivision in order to 
introduce detail at finer subdivision levels. Some 
results of our implementation can be seen in figures 
11 and 12. 

  
Figure 11: A grown structure consisting of 

stitched meshes, and a smoothed result using 
subdivision. 

 
Figure 12: A complete rubber tree built using 

stitched meshes and subdivision. 

8. CONCLUSION AND FUTURE 
WORK 
We presented a new mesh data structure that has 
been optimized for both real-time rendering and 
subdivision. Due to the widely differing requirements 
of these two applications the new data structure is 
sufficiently general for a wide variety of algorithms. 

For our prototype implementation a number of 
simplifications in our implementation have been 
made, and the only subdivision scheme we have 
implemented so far is the one by Catmull-Clark. In 
the future we expect to generalize our 
implementation and test our mesh data structure by 
implementing additional subdivision schemes, as 
well as other mesh based algorithms such as quadric-
based surface simplification [Hec99]. 
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