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ABSTRACT:   
 
This paper describes the land use classification of multispectral digital aerial images, the removal of buildings from the digital 
surface model and the visualization of the textured digital surface model with reconstructed buildings. The proposed approach 
applies spectral classification techniques to multispectral digital aerial images with RGB and NIR channels. The results of the land 
use classification are used both in dense matching and building extraction. Dense matching uses the knowledge of water areas to 
prevent wrong matches due to non-Lambertian reflections. The obtained digital surface model is used to generate the corresponding 
RGB ortho images. Further, in building extraction the classification is used as starting point for searching exact building borders and 
textures for building facades. The buildings in the digital surface model are replaced by refined building models using feature 
information.  Results from a huge test area in city center of Graz are presented and analyzed. This approach produces automatically 
appealing visualization after a short interactive training phase for classification. 
 
 

1. INTRODUCTION 

This contribution deals with images from the large format 
digital camera UltraCamD from Vexcel with its multispectral 
capability. UltraCamD offers simultaneously sensing of high 
resolution panchromatic information and additional 
multispectral - thus red, green, blue and near infrared (NIR) - 
information. The high resolution panchromatic images have a 
size of 11500 pixels across-track and 7500 pixels along-track. 
The multispectral low resolution images haves a size of 3680 by 
2400 pixels. The panchromatic high resolution images as well 
as the low resolution multispectral images are used for this 
approach. 
 
The data set used in this paper was acquired in the summer of 
2005 from the city center of Graz, Austria. It consists of 155 
images flown in 5 strips. The along-track overlap of this data 
set is 80%, the across-track overlap is approximately 60%. The 
ground sampling distance is approximately 8cm. 
 
The proposed workflow includes the following steps:  
 

• initial classification of all images, see section 2, 
• the aerial triangulation (AT), see section 3, 
• dense matching to generate a dense digital surface 

model (DSM), see section 4, 
• ortho image production, see section 5, 
• refined classification using the DSM and the ortho 

images, see section 6, 
• removal of buildings from the DSM, see section 7, 
• building reconstruction, see section 8, and finally 
• visualization of results, see section 9. 

 
The focus of this contribution lies on detection and description 
of buildings in the classification and reconstruction process. 
 

2. INITIAL CLASSIFICATION 

The initial classification is a supervised classification performed 
on each of the overlapping color images with 4 color channels 
RGB and NIR. The classes rely on color and infrared and will 
be refined later using height information from stereo matching. 

 
The classifier used for the supervised classification is a support 
vector machine (SVM). The SVM employs optimization 
algorithms to locate the optimal boundaries between classes. 
Statistically, the optimal boundaries should be generalized to 
unseen samples with least errors among all possible boundaries 
separating the classes, therefore minimizing the confusion 
between classes. SVMs have - after careful pre-processing – 
results that have similar accuracy like nearest neighbor or 
neural networks but the SVMs are more stable in use. Initial 
classification relies on the SVM library LIBSVM developed at 
the National Taiwan University, see (Chang, 2005) for software 
details and (Hsu, 2003) for a practical guide to support vector 
classification. 
 
Initial classification discriminates all classes that are more 
significantly described by color and NIR values than by texture 
and spatial relationship. The classes trained for the Graz dataset 
are: 
 

• Solid: man made structures like streets or buildings  
• Water: lakes, rivers, sea 
• Vegetation: wood, grassland, fields 
• Dark shadows 
 

Other classes like red roofs, bare earth, snow or swimming 
pools were not trained as they are not relevant for the following 
processing steps that concentrate on building reconstruction in a 
landscape. 
 
The first step in classification is feature extraction, i.e. the 
process of generating spectral feature vectors from the 4 input 
planes. The selection of the features to be extracted is important 
because it determines the amount of features that have to be 
computed and processed. In addition to the improved 
computational speed in lower dimensional feature spaces there 
might also be an increase in the accuracy of the classification 
algorithm. The features computed for initial classification 
include  
 

• Single pixel values of all input planes  



 

• Normalized ratio between image planes 
Ratio images can be used to remove the influence of 
light and shadow on a ridge due to the sun angle. It is 
also possible to calculate certain indices which can 
enhance vegetation or geology. NDVI - Normalized 
Difference Vegetation Index - is a commonly used 
vegetation index which uses the red and infrared 
bands of the spectrum. 

• Values computed in a circular neighborhood of given 
radius like minimum, maximum or standard deviation 

 
The feature values are scaled to prevent that features with 
greater numeric ranges may dominate. The scaling factors are 
determined during training and applied for later classification. 
 
We use a supervised classification: the analyst decides on the 
training sites and thus supervises the classification process. The 
training sites are several areas in an image which represent 
known features or land use.  
 
The result of the initial classification is for each pixel the most 
probable class including its probability and additionally a 
second class and its probability if there are two classes with 
high probabilities. The two classes and their probabilities will 
be used when the fusion of several initial classification results 
will be performed, see section 5.   
 
A complex example for the output of the initial classification is 
illustrated in Fig.  1. The color scheme used to represent the 
classification results is listed in the lower right corner of Fig.  1. 
Details on initial classification are described in (Gruber-
Geymayer, 2005). 
 

 
Fig.  1: Initial classification results of Graz dataset 

 
3. AUTOMATIC AERIAL TRIANGULATION 

The UltraCamD camera is able to produce highly overlapping 
images at very short baselines. Such dense block of images 
serves well for a robust automated aero triangulation. We start 
with a POI extraction in each image and calculate feature 
vectors from the close neighborhood. These feature vectors are 
used to find 1 to n correspondences between POIs in two 
images. The number of candidates is further reduced using 
affine invariant area based matching. In order to fulfill the non-
ambiguous criteria, only matches with a high distinctive score 
are retained. The robustness of the matching process is 
enhanced by applying a back-matching as well.  
  
This step is accomplished for all consecutive image pairs. In 
order to compute the orientation of the entire image set, the 

scale factor for additional image pairs has to be determined. 
This is done using corresponding POIs available in at least three 
images. A block bundle adjustment refines the relative 
orientation of the whole set and integrates other data like GPS 
or ground control information. Fig.  2 shows an oriented block 
of images.  
 

 
Fig.  2: Oriented block of 5 stripes of 31 images: arrows denote 

images and black dots denote 70.000 tie points  
 
The 5 x 31 aerial images are oriented to each other using about 
70.000 tie points on the ground which are shown as black dots 
in Fig.  2. The whole block of images was processed without 
any human interaction. Details are described in (Bauer, 2004). 
 

4. DENSE MATCHING 

Once the AT is finished we perform a dense area based 
matching to produce a dense DSM (digital surface model). In 
our approach we focus on an iterative and hierarchical method 
based on homographies to find dense corresponding points. For 
each input image an image pyramid is created and the 
calculation starts at the coarsest level. Corresponding points are 
determined and upsampled to the next level where the 
calculation proceeds. This procedure continues until the full 
resolution level is reached. Dense matching uses the results of 
initial classification: running water areas are excluded from 
computation to prevent wrong matches due to reflections. A 
detailed description of this algorithm is given in (Zebedin, 
2006b). The DSM for the Graz dataset is illustrated in Fig.  3. 
 

 
Fig.  3: DSM computed from 155 images of the Graz dataset; 

Note the enlargement at the lower right. 
 



 

5. DATA FUSION AND ORTHO IMAGE GENERATION 

An ortho image is obtained by the ortho projection onto the 
DSM, Fig.  4 shows an RGB ortho image including an image 
detail. The color information of the ortho image is calculated 
using all available aerial images and is based on view-
dependent texture mapping. The color information may either 
be panchromatic, RGB or CIR (NIR-R-G). 
 

 
Fig.  4: Ortho RGB image of the Graz dataset. Note the 

enlargement at the lower right. 
 
The fusion of initial classification results using the DSM is 
done in the following way:  
 

• Determine if a pixel of the initial classification result 
is visible in the ortho image, i.e. not hidden by an 
object 

• For each visible pixel select the class with highest 
probability as well as the class with second highest 
probability – if available 

• Perform special handling of shadows: remove visible 
shadow results if other initial classification results 
have more specific results like solid or vegetation  

• Perform a majority voting using the classes with 
highest and second highest probability for all visible 
pixel  

 
The fusion of several initial classification results from multiple 
source images improves the quality of the classification.  
 

6. REFINED CLASSIFICATION 

The following refinement of the initial classification results is 
performed during refined classification: 
 

• Solid gets refined into streets or parking areas and 
buildings  

• Vegetation gets refined into grass land or fields and 
wood or trees  

 
The refined classification of objects of class solid implies the 
specification of a minimal building height to distinguish 
between objects of lower height like cars and small huts. The 
minimal building height is used to compute building blocks. 
Building blocks are defined as local height maxima that are 
restricted to all non vegetation and non water classes. The 
building blocks are computed in the following way for each 
pixel classified as solid in initial classification: 
 

• Compute the significant minimum height value in a 
region with specified radius 

• Compute the maximum height difference, i.e. the 
difference between height value and  significant 
minimum height value 

• If the maximum height difference is higher than the 
specified minimum building height, then the pixel 
belongs to a building 

• Remove small buildings up to a specified size to 
prevent small but high objects like street-lamps to be 
classified as buildings 

 
Refined classification for objects of class solid or roof is based 
on the computed building blocks. See Fig.  5 for an example on 
building blocks and on refined classification results in which 
simple as well as complex buildings are correctly classified and 
are represented in yellow. 
 

 
Fig.  5: (left)  building blocks 
 (right) refined classification with buildings in yellow  
 
The computation of building blocks in such way as described 
above implies that there will be solid objects classified as 
buildings that have a height difference to the neighborhood but 
are not considered to be buildings, for example 
 

• construction sites  
• undercrossings 
• embankments 
 

 
Fig.  6: Removal of objects with height differences that are 

misclassified as buildings 
 
The algorithm considers the border of a building and computes 
the number of border pixels with 
 

• a height difference to the neighbor pixels that is larger 
than the specified minimum building height  

• no significant height difference to neighbor pixels 
from the class solid 

• no significant height difference to neighbor pixels that 
are not classified as solid, e.g. trees near a building 

Depending on the number of border pixels assigned to these 
classes the building is removed, or marked as building with low 
probability or accepted. 
 



 

Refined classification not only detects buildings but refines the 
class vegetation into the class grass and the class wood or trees. 
Refined classification performs in a way that the classification 
results are less scattered and regions up to a minimal size are 
removed. 
 
The refined classification result for the whole city of Graz 
dataset – the related RGB ortho image of the scene is presented 
in Fig.  4 - is given in Fig 7. The area marked in red is the one 
visualized in Fig. 12 with a textured DSM and the reconstructed 
buildings. Details on refined classification are described in 
(Gruber-Geymayer, 2005). 
 

 
Fig.  7: Refined classification results for Graz dataset; the area 

marked in red is visualized in Fig.  12 

 
7. REMOVAL OF BUILDINGS FROM THE DSM 

The DSM represents the entire landscape with buildings and 
trees. The generation of a Digital Terrain Model (DTM) from 
the DSM can be performed using the refined classification 
results. Objects of type building and tree have to be removed 
from the DSM to get the DTM. The height for buildings and 
trees is computed in the local neighborhood: the difference 
between height value in the DSM and a significant minimal 
height value in the local neighborhood.  
 
In our current approach we are less interested in the DTM but in 
a DSM where only buildings are removed. The DSM with 
removed buildings can be textured by the ortho RGB image and 
the reconstructed buildings can be placed into this textured 
landscape. The concept to remove buildings from the DSM is as 
follows: for each pixel classified as building in refined 
classification  
 

• Determine in the 8 main directions the next pixel “on 
earth”, i.e. solid or grass pixel, see Fig.  8 

• Determine the height value for the “on earth” pixel as 
well as its distance from the pixel considered 

• Compute the weighted mean value to get the height 
value for the building pixel 

 
A more sophisticated interpolation by hyperplanes is not 
necessary as the removed buildings are replaced by 
reconstructed buildings. The buildings will be modeled by 
facades and roofs extracted from aerial images, see section 8.  
 

 
Fig.  8: Removal of building: 8 points used for height 

interpolation 

The removal of all buildings from DSM for the Graz dataset 
generates a DSM as depicted in Fig. 9. Please compare to the 
input DSM in Fig. 3.  
 

 
Fig.  9: DSM of Graz dataset, buildings have been removed 

 
8. BUILDING RECONSTRUCTION 

The building reconstruction is performed in 2 steps: optimized 
building facades are determined in one step and optimized roof 
planes in a second step.  The algorithm for obtaining building 
facades can be decomposed into three steps: first some 
hypotheses are derived from the refined classification results. 
Then these facades are translated in such a way, that they are 
parallel to the true facade. In the last step the fine-grained 
optimization using multi-view correlation is performed. 
 
The algorithm to find roof planes is based on finding clusters of 
points that can be optimally represented by a roof plane. The 
following subsections outline the building reconstruction. A 
detailed description of façade reconstruction is given in 
(Zebedin, 2006a). 



 

 
8.1 Initial façade positions 

A building layer that describes the position of buildings can be 
extracted from the refined classification results. The building 
layer and the height field are used to get the initial estimates for 
the position of facades. The search for facades can be restricted 
to regions near buildings using the building layer. We apply an 
edge detector to the height field to detect lines in the building 
regions. One important parameter of this line extraction is the 
minimum length of each line, as longer lines tend to be more 
stable in the ongoing optimization steps. 
 
The result of this procedure is illustrated in Fig.  10. Note that 
only lines near buildings are extracted whereas there are no 
lines near the tree in the inner courtyard of the building, see 
Fig. 10(d). These lines in 2D are then extended to 3D planes by 
estimating the minimum and maximum height from the 
surrounding area in the height field. A small margin is 
subtracted from the top and bottom of the plane to account for 
possible occlusions near the roof and the ground. 
 

      
                          (a)                                                       (b) 

       
                        (c)                                                        (d) 
Fig.  10: Initial line extraction process in the height field 

(a) building-layer as result of refined classification 
(b) height field    
(c) gradient image (Sobel) and  
(d) height field with extracted lines in green 

 
8.2 Line Direction Optimization 

The first optimization applied to the facade planes aligns the 
hypothesis from the initial step to the real facade. As a result 
the plane should afterwards be parallel to the real facade. The 
algorithm relies on the fact that facades mainly contain 
structures which are horizontally or vertically aligned with the 
facade itself: windows, balconies, signs and similar structures. 
 
For each facade plane the algorithm first makes a ranking of all 
available cameras and assigns each one to a score. When the 
optimal camera has been determined, the corresponding image 
is correctly resampled by taking into account the perspective 
view. A Gaussian filter is then applied to remove small artifacts 
and distortions. In the following step we compute an orientation 
histogram: each peak in this histogram corresponds to one 
strong line direction in the texture. The proposed assumption 
that facades contain horizontally and vertically aligned 
structures allows concluding that the peak closest to zero can be 
moved to zero to make the facade plane parallel to the real 
facade. This enables us to calculate an orientation change which 

compensates this deviation of the peak by intersecting the lines 
from camera center to the endpoints of the detected lines with 
the horizontal plane. This ensures that the new line is horizontal 
and therefore that the plane is parallel to the real facade.  
 
8.3 Correlation Optimization 

In the third and last step of façade optimization each facade 
plane is moved forward and backward to increase the 
correlation of warped textures from different views. A 
hierarchical approach is used to overcome problems with 
mismatches caused by inaccurate initial positions. This means 
that each warped texture is turned into an image pyramid and 
starting with the coarsest level the correlation optimization is 
performed until the highest resolution level is reached. The 
quality of the optimization is usually good except in those cases 
where there are occlusions in all images, e.g. trees in inner 
courtyards, or the facade can not be satisfyingly be 
approximated with one plane. 
 
8.4 Roof reconstruction 

The roof planes are detected using a RANSAC approach which 
is similar to (Samadzadegan, 2005). First three random points 
from the local point cloud are selected and used as the 
hypothesis. Then points are classified as inliers or outliers 
depending on their distance to the hypothetical plane. Two 
separate roofs may lie on the same plane, therefore a clustering 
is applied to the inliers to retain only points which really pertain 
to one roof. Once a cluster is accepted, those points are 
removed from the point cloud and the process is repeated until 
no further planes with sufficient support are found. Some points 
could be assigned to two or more planes because they lie on an 
edge of the roof. This ambiguity is alleviated by initially 
accepting planes with a high support only. This ensures that 
dominant planes are fitted first. 
 
As a final result we show a block of buildings from the Graz 
dataset (marked red in Fig. 7). The visualization is presented in 
Fig 11. Roofs and outer facades are good but some facades in 
the courtyard suffer from occlusions by trees. These 
shortcomings are overcome when these building models are 
placed into the landscape and the trees are visualized too, see 
Fig. 12. 
 

 
Fig. 11: Building representation with optimized facade and roof 

planes 



 

 
9. VISUALISATION OF RESULTS 

Finally the reconstructed buildings are placed into a model of 
the landscape as follows: the DSM from which the buildings 
have been removed is textured with the ortho RGB image. Thus 
streets with cars or vegetation get their representation. The 
reconstructed buildings with facades and roofs are now placed 
into the textured landscape. A small area of Graz represented by 
265000 triangles can be seen in Fig. 12. The area represented is 
marked red in Fig. 7. 
 

 
Fig.  12: Reconstructed buildings placed into textured DSM; 

visualised region is marked red in Fig.  7 

 
10. CONCLUSIONS  

In our approach we use the high redundancy in the source input 
images to generate city models fully automatically. The steps 
performed are a land use classification, aerial triangulation, 
dense matching, ortho image generation, removal of buildings 
from the DSM as well as building reconstruction. The whole 
task is performed without human interaction after an initial 
training phase for classification. The algorithms are outlined 
and their results are demonstrated using a dataset from Graz. 
Further test sites were cities with skyscrapers on the one hand 
and suburban areas with a mixture of small houses and gardens 
with trees. 
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