
Eurographics/ IEEE-VGTC Symposium on Visualization (2006)
Thomas Ertl, Ken Joy, and Beatriz Santos (Editors)

Perspective Isosurface and Direct Volume Rendering
for Virtual Endoscopy Applications

Henning Scharsach1 Markus Hadwiger1 André Neubauer2 Stefan Wolfsberger3 Katja Bühler1

1VRVis Research Center 2Tiani Medgraph 3Department of Neurosurgery, Medical University Vienna

Figure 1: The three main application areas of our system. Left: Virtual colonoscopy. The semi-transparent isosurface is blended
with a direct volume ray-casting of the area behind. Center: Planning of pituitary surgery for tumor removal. Using direct
volume rendering in combination with semi-transparent isosurfaces allows for visualization of otherwise occluded objects.
Right: Virtual angioscopy of the aorta and a stent that supports it. Two different isovalues have to be used in this case.

Abstract

Virtual endoscopy has proven to be a very powerful tool in endoscopic surgery. However, most virtual endoscopy
systems are restricted to rendering isosurfaces or require segmentation in order to visualize additional objects
behind occluding tissue. This paper presents a system for real-time perspective direct volume and isosurface
rendering, which allows to simultaneously visualize both the interesting tissue and everything that is behind.
Large volume data can be viewed seamlessly from inside or outside the volume without any pre-computation or
segmentation. Our system uses a novel ray-casting pipeline for GPUs that has been optimized for the requirements
of virtual endoscopy and also allows easy incorporation of auxiliary geometry, e.g., for displaying parts of the
endoscopic device, pointers, or grid lines for orientation purposes. We present three main applications of this
system and the underlying ray-casting algorithm. Although our ray-casting approach is of general applicability,
we have specifically applied it to virtual colonoscopy, virtual angioscopy, and virtual pituitary surgery.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism Color, shading, shadowing, and texture

1. Introduction

Virtual endoscopy has become a very powerful tool for
aiding endoscopic surgery procedures, from initial surgeon
training to preoperative planning and intraoperative sup-
port [BHH∗04, Bar05]. For rendering, most systems for vir-
tual endoscopy are focusing on rendering isosurfaces, e.g., to
depict tissue walls surrounding the current position of the en-
doscope. The two main approaches for rendering isosurfaces
are to extract explicit geometry [BHH∗04,Bar05], e.g., with
a variant of the marching cubes algorithm [LC87], or to use
first-hit ray-casting in order to determine the intersection of

viewing rays with the isosurface [NMHW02,NWF∗]. While
the first category is able to achieve very high performance,
especially when graphics hardware is used for rendering the
surface geometry [HMK∗97, BS99], the fact that explicit
geometry can usually not be extracted interactively ham-
pers isovalue changes. Furthermore, high-resolution isosur-
face geometry is very memory intensive. On the other hand,
ray-casting approaches for virtual endoscopy have the flex-
ibility to change the isovalue interactively, but cannot make
use of hardware-accelerated polygon rasterization and are
usually implemented with custom CPU algorithms [NWF∗].

c© The Eurographics Association 2006.



H. Scharsach, M. Hadwiger, A. Neubauer, S. Wolfsberger, K. Bühler / Isosurface and Direct Volume Rendering for Virtual Endoscopy

Figure 2: Overview of a 512x512x478 colonoscopy data set
rendered with our system. Figure 1 (left) and Figure 3 show
inside views using the same data set and transfer function.

Though isosurface-renderings can be enhanced to include
more information about surface properties [NWF∗], a large
part of the information contained in a medical scan is still
discarded during rendering because everything in front and
especially most of the information behind the isosurface
is not rendered. A crucial example is pituitary surgery for
removing a tumor at the pituitary gland near the internal
carotid artery, which is hidden behind a bone structure that
must be punctured by the surgeon without damaging the
artery behind it [NWF∗] (see Figure 1 (center)). Most previ-
ous approaches have required segmentation in order to visu-
alize these crucial occluded structures, which is a very time-
consuming task and only allows to depict objects as isosur-
faces of smoothed binary masks [NFW∗04].

In contrast, direct volume rendering is only common for
viewing volume data from the outside, because most ap-
proaches either use orthogonal projection or incur artifacts
with perspective projection due to incorrect opacity correc-
tion [EHK∗04]. Endoscopic views, however, require per-
spective projection with large fields of view and correct com-
putation of the volume rendering integral, which necessi-
tated special hardware architectures so far to achieve inter-
activity [MB01]. GPU-based ray-casting on the other hand
can deliver this interactivity for either perspective or or-
thogonal projections [KW03], but requires far more effort
to overcome the inherent problems. Most recent approaches
build on single-pass ray-casting, where the entire volume
is traversed in a single rendering pass using data-dependent
looping in the hardware fragment shader [SSK∗05,HSS∗05,
KSS∗05]. In order to support large data sets, a bricked vol-

ume can be rendered in correct visibility order by performing
ray-casting for each brick individually [HQK05]. This, how-
ever, incurs per-brick setup overhead in contrast to single-
pass approaches.

Our system uses a novel ray-casting pipeline for GPUs
supporting Shader Model 3.0 (e.g., NVIDIA GeForce 6800
or ATI Radeon X1800) that uses perspective projection and
also allows easy incorporation of auxiliary geometry, e.g.,
for displaying parts of the endoscopic device, pointers, or
grids for orientation. We seamlessly integrate direct volume
rendering with isosurface rendering and achieve real-time
performance for both fly-through and outside views without
the need for pre-computation or segmentation, which greatly
facilitates use by physicians that are working under enor-
mous time pressure.

Although our system can essentially be used for virtual
endoscopy in general, we have specifically applied it to three
different applications: Virtual colonoscopy [HMK∗97],
virtual angioscopy [NMHW02], and virtual endonasal
transsphenoidal pituitary surgery [NWF∗]. We have inte-
grated our system into a commercial medical workstation
software, and the application to neurosurgery is already in
regular clinical use for operation planning at the department
of neurosurgery at the Medical University Vienna.

2. Applications

Virtual endoscopy has proven to be a useful tool for a num-
ber of different applications, including pre-operative plan-
ning, diagnostic purposes, teaching and practicing with en-
doscopic tools and even the emerging field of aided intra-
operative navigation. The aim of all of these systems - espe-
cially the latter one - is to aid medical doctors with a com-
puter generated view of a certain position and orientation of
the endoscope that resembles the real endoscopic view as
closely as possible while at the same time supplying addi-
tional information that would not be visible otherwise. This
additional information may include waypoints that prevent
deviation from the optimal path, tissue right behind visi-
ble structures, the endoscope and attached endoscopic tools
themselves, means to measure certain structures to get a bet-
ter impression of the surrounding tissue and emphasizing
important parts like nerves or bigger blood vessels that must
not be damaged by any means.

To fulfill all these requirements, a suitable renderer has
to be able to visualize many semi-transparent structures at
the same time while always keeping the focus on the main
object of interest: The surrounding walls of the blood ves-
sel, colon or other structure that the endoscope is travelling
through. What makes this task even more difficult is the fact
that we are facing three different types of objects here that
all have to be visualized accordingly: Isosurfaces like the
walls have to be extracted and lit in a way that gives a good
overview about surface properties and makes small deforma-
tions easily detectable. Regions of interest like tissue behind

c© The Eurographics Association 2006.



H. Scharsach, M. Hadwiger, A. Neubauer, S. Wolfsberger, K. Bühler / Isosurface and Direct Volume Rendering for Virtual Endoscopy

Figure 3: Changing the isosurface opacity allows to focus more on the foreground rendered with isosurfacing (e.g., the colon)
or the background rendered with direct volume rendering. Correctly integrating polygonal geometry such as the grid shown
here facilitates spatial orientation. Isosurface opacity also influences rendering performance, as illustrated in Tables 1 and 2.

walls, important nerves or organs should be visualized us-
ing direct volume rendering, giving the user the possibility
to distinguish different parts of tissue by assigning a suitable
transfer function. Finally, endoscopic tools, grids and point-
ers, which will aid the surgeon in orientation and estimation
of magnitude, are made up of lines and polygons and should
be visualized using the normal OpenGL pipeline.

Bringing these visualization techniques together while
still preserving interactive framerates was the primary goal
of our system, and in the following we will present three
fields of application where this leads to significant improve-
ments over previous systems in both expressiveness and ap-
plicability.

2.1. Virtual Colonoscopy

A regular colonoscopy enables doctors to examine the last
portion of the gastrointestinal tract and look for problem ar-
eas such as inflamed tissue, abnormal growths and ulcers.
The main purpose is to detect early signs of cancer in the
colon and rectum and further analyze or remove them, if pos-
sible. Virtual colonoscopy can greatly speed up this process
by enabling doctors to check for any kind of abnormality be-
forehand, and only perform a real colonoscopy when polyps
have to be removed or samples have to be taken.

Unfortunately, most virtual colonoscopy systems suffer
from the limited expressiveness of the common isosurface
extraction, which makes it very difficult to identify all ab-
normalities and may even lead to false diagnoses because
important features where simply overlooked. With doctors
hesitating to adopt a technology that has not really proven re-
liability yet, not many of these systems have found their way
into clinical practice. Another shortcoming is that the visu-
alization often lacks resemblance to the real images, making
it very difficult for doctors to estimate tissue properties and
recognize certain parts later on.

The solution we propose is to combine isosurface extrac-
tion for visualization of the colon with a DVR of the regions

of interest behind the intestinal wall, thus gaining additional
information about the respective tissue. This not only leads
to a much more expressive image, but also provides impor-
tant clues about the position and orientation within the colon,
because the whole gastrointestinal tract can be seen at any
time. In the case of an intra-operative system, this makes it
extremely simple to quickly find areas of interest again, thus
greatly speeding up the surgery.

For diagnostic purposes, an automatic path can be cal-
culated which provides a convenient and quick fly-through
from the beginning of the colon to the rectum, giving an
overview over the large intestine in a matter of minutes.

2.2. Virtual Angioscopy

Virtual angioscopy (virtual endoscopy inside blood vessels)
is primarily used for detecting stenoses and calcifications
in blood vessels. With many blood vessels being too nar-
row for a normal endoscope, virtual angioscopy is in many
cases the only alternative to the tedious process of examining
2D-slices of a CT scan. Besides the small size of the struc-
tures, the specific nature of an angiography requires a slight
modification of the rendering pipeline: Because some kind
of contrast medium is injected to identify important ves-
sels more easily, density values inside the vessels are higher
than those outside. On the other hand, calcifications inside
the vessel have an even higher density value, which means
that we face two different isosurfaces: One at a certain mini-
mum threshold (i.e., the outer walls) and one at a maximum
threshold above that of the contrast medium, which in most
cases are calcifications but can also be structures such as
stents [BDV∗97]. An example that has been generated with
our system is illustrated in Figure 1 (right). In this case, the
first isosurface corresponds to the stent, and the second iso-
surface corresponds to the aortic wall. Everything outside
one of the isosurfaces (i.e. below the minimum or above
the maximum threshold) will be rendered with DVR again,
which supplies additional information about the tissue den-
sity thus aiding doctors in detecting calcifications and again

c© The Eurographics Association 2006.



H. Scharsach, M. Hadwiger, A. Neubauer, S. Wolfsberger, K. Bühler / Isosurface and Direct Volume Rendering for Virtual Endoscopy

facilitates estimating the absolute position and orientation
through the visualization of certain body landmarks.

A further interesting application is the implantation of
stents, which are small tubular prostheses that are inserted
into an artery via an endovascular procedure and are mainly
used to enlarge a stenosis (i.e. a local narrowing of the arte-
rial lumen). Like calcifications, stents have a density thresh-
old well above that of the contrast medium, which requires
the rendering of two different isosurfaces again. When im-
planting a stent, the position in respect to other landmarks of
the body (e.g. heart, lung or bones) is especially important,
which is achieved through a whole DVR behind the semi-
transparent isosurfaces again.

2.3. Endonasal Transsphenoidal Pituitary Surgery

Endonasal transsphenoidal pituitary surgery is a minimally
invasive endoscopic procedure, mainly applied to remove
various kinds of pituitary tumors. Virtual endoscopy can aid
medical doctors by simulating this challenging surgery be-
forehand and planning the approach and ideal target posi-
tion of the endoscopic intervention. Especially in the case
of an intra-operative environment, the system should pro-
vide visual feedback about important nerves, blood vessels
and other significant landmarks that should not be damaged,
thus assisting the doctor in finding the optimal path.

In order to do this, those important landmarks have to
be identified and should be visualized throughout the whole
process. To avoid the necessity of pre-segmenting every sin-
gle one of those objects, the whole head should be rendered
with a semi-transparent DVR. If a suitable transfer function
is selected, this not only warns the doctor whenever an im-
portant object is nearby that requires special attention, but
also avoids deviation of the optimal path by always visualiz-
ing the main object of interest (e.g. the tumor).

Visualizing the endoscopic tools is another important as-
pect: Especially when planning the optimal path and ideal
target position, the size and proportions of these tools with

Figure 4: In endonasal pituitary surgery the endoscope en-
ters through the nose and is advanced to the sphenoid sinus
and the pituitary gland behind it (see Figure 1 (center)).

respect to the surrounding tissue is crucial. Because a vol-
umetric approach would raise some serious issues (rotating
the tools, limited resolution etc.) and probably not resemble
the real appearance closely enough, a polygonal representa-
tion of the tools should be merged with the volumetric scene.
Of course, intersections have to be calculated and displayed
correctly, otherwise the perceived information about avail-
able space and proportions may be misleading.

Furthermore, when encountering objects of interest like
small passages or even the tumor itself, there should be a
way to measure this object or at least get a first estimation
of its size. Other auxiliary graphical elements like grids and
pointers can assist the user here, again necessitating a ren-
dering pipeline that can deal with both polygonal and volu-
metric objects.

3. Hybrid Ray-Casting for Virtual Endoscopy

Choosing the right volume rendering mode for a particular
application is crucial for extracting the useful and important
information that the user wants to see. In the case of virtual
endoscopy, using only isosurface rendering discards a lot of
information behind the surface that can provide additional
insight into the properties of the underlying tissue, as well
as crucial information about occluded structures. In order to
alleviate this problem, our system combines isosurface and
direct volume ray-casting in a single rendering. We render
a shaded semi-transparent isosurface in front, and perform
unshaded direct volume rendering behind it. This rendering
mode achieves our goals and also avoids visual confusion
of isosurface shading and volume shading. The focus is still
on the isosurface, but important background information is
available at any time. Shading the isosurface is important for
shape perception. Direct volume rendering then provides ad-
ditional information, such as the tissue structure close to the
isosurface, as well as depicting background objects farther
behind. This leads to very expressive images and allows for
considerable flexibility. The basic algorithm is very simple
and leverages standard polygon rasterization for ray setup,
and a very short fragment shader loop for actual ray-casting.
In addition to the volume, intersecting polygonal geometry
is integrated seamlessly.

3.1. Algorithm Overview

The ray-casting pipeline of our system combines object-
order and image-order stages in order to find a balance be-
tween the two and leverage the parallel processing of modern
GPUs. For culling of irrelevant subvolumes, a regular grid
of min-max values for bricks of size 83 is stored along with
the volume. Ray-casting itself is performed in a single ren-
dering pass in order to avoid the setup overhead of casting
each brick separately [HQK05]. The first step of the algo-
rithm culls bricks on the CPU and generates two separate bit
arrays that determine whether a brick is active or inactive.

c© The Eurographics Association 2006.



H. Scharsach, M. Hadwiger, A. Neubauer, S. Wolfsberger, K. Bühler / Isosurface and Direct Volume Rendering for Virtual Endoscopy

The first bit array contains the state of bricks with respect to
the isosurface. A brick is active when it intersects the isosur-
face. The second bit array contains the state of bricks with
respect to the transfer function. A brick is active when it is
not completely transparent.

In the object-order stage on the GPU, these two bit ar-
rays are used to rasterize brick boundary faces in several
rendering passes. The result of these rendering passes are
two images that drive the subsequent ray-casting stage. The
first image, the ray start position image, contains the volume
coordinate positions where ray-casting should start for each
pixel. Coordinates are stored in the RGB components, and
the alpha component is one when a ray should be started,
and zero when no ray should be started. The second image,
the ray length image contains the direction vectors for ray-
casting in the RGB components and the length of each ray
in the alpha component. Note that the direction vectors could
easily be computed in the fragment shader from the camera
position and the ray start positions as well. However, the ray
length must be rendered into an image that is separate from
the ray start positions due to read-write dependencies, which
can then also be used for storing the direction vectors that are
needed for ray length computation anyway.

The main steps of our ray-casting approach for each pixel
are:

1. Compute the initial ray start position on the near clipping
plane of the current viewport. When the start position is in
an inactive brick with respect to the isosurface, calculate
the nearest intersection point with the boundary faces of
active isosurface bricks, in order to skip empty space. The
result is stored in the ray start position image.

2. Compute the ray length until the last intersection point
with boundary faces of bricks that are active either due to
the isosurface or the transfer function or both. The result
is stored in the ray length image.

3. Optionally render opaque polygonal geometry and over-
write the ray length image where the distance between
the ray start position and the geometry position is less
than the stored ray length.

4. Cast from the start position stored in the ray start position
image along the direction vector until the accumulated
opacity reaches a specified threshold (early ray termina-
tion) or the ray length given by the ray length image is
exceeded. The result of ray-casting is stored in a separate
compositing buffer.

5. Blend the ray-casting compositing buffer on top of the
polygonal geometry.

The two main acceleration schemes exploited here are empty
space skipping and early ray termination. For the former,
view-independent culling of bricks and rasterization of their
boundary faces are employed (Section 3.2), whereas the lat-
ter is handled during ray-casting (Section 3.3).

3.2. Culling and Brick Boundary Rasterization

Because we are using hybrid isosurface and direct volume
rendering, culling has to determine two different sets of ac-
tive/inactive states for all bricks, which are stored in separate
bit arrays. Each brick is either inactive, active with respect
to the isosurface, active with respect to the transfer func-
tion, or active with respect to both. In order to determine
ray start positions and ray lengths, we employ rasterization
of the boundary faces between active and inactive bricks,
which is illustrated in Figure 5. To handle brick culling ef-
ficiently, the minimum and maximum voxel values of each
brick are stored along with the volume, which are compared
at run-time with the isovalue and the transfer function, re-
spectively. A brick can be safely discarded when the opacity
is always zero between those two values, which can be deter-
mined very quickly using summed area tables [GBKG04].

Rasterizing the boundary faces between active and inac-
tive bricks results in object-order empty space skipping. It
prunes the rays used in the ray-casting pass and implicitly
excludes most inactive bricks. Note, however, that our ap-
proach does not exclude all empty space from ray-casting,
which can be seen for ray r3 in Figure 5 (left). This is a
trade-off that enables ray-casting without any per-brick setup
overhead and works extremely well in practice, which is also
illustrated by the performance figures in Section 4. The bor-
der between active and inactive bricks defines a surface that
can be rendered as standard OpenGL geometry with the cor-
responding position in volume coordinates encoded in the
RGB colors. Corresponding to the two bit arrays of active
bricks that results from culling, two sets of boundary faces
must be considered. All vertices of brick bounding geometry
are constantly kept in video memory. Only two additional in-
dex arrays referencing the vertices of active boundary faces
have to be updated every time the isovalue or the transfer
function changes. As long as the near clipping plane does not
intersect the bounding geometry, rays can always be started
at the brick boundary front faces. However, if such an in-

Figure 5: Determining ray start positions and ray lengths
using rasterization of brick boundary faces. Left: The basic
case described in Section 3.2.1. Right: Extended cases for
endoscopy rendering, which are described in Section 3.2.2.

c© The Eurographics Association 2006.



H. Scharsach, M. Hadwiger, A. Neubauer, S. Wolfsberger, K. Bühler / Isosurface and Direct Volume Rendering for Virtual Endoscopy

tersection occurs, it will produce holes in the front-facing
geometry, which results in some rays not being started at all,
and others started at incorrect positions. Figure 6 illustrates
this problem. In an endoscopic view, we constantly face this
situation, so rays typically need to be started at the near clip-
ping plane, which is shown in Figure 5 in the case of points
n2-n4. To avoid casting through empty space, rays should
not be started at the near clipping plane if the starting posi-
tion is in an inactive brick but at the next intersection with
active boundary faces, such as rays r0 and r1 in Figure 5.
These rays are started at f0 and f1, instead of being starting
at n0 and n1. We achieve this by drawing the near clipping
plane first and the front faces afterwards, which ensures that
whenever there are no front faces to start from, the position
of the near clipping plane will be taken. However, since the
non-convex bounding geometry often leads to multiple front
faces for a single pixel, the next front face is used when the
first front face is clipped, which results in incorrect ray start
positions. The solution is to detect when a ray intersects a
back face before the first front face that is not clipped.

3.2.1. The Basic Case

When only one bit array of active bricks is used, e.g., di-
rect volume rendering is used without isosurfacing, the basic
steps to obtain the ray start position image are as follows:

1. Disable depth buffering. Rasterize the entire near clip-
ping plane into the color buffer. Set the alpha channel to
zero everywhere.

2. Enable depth buffering. Disable writing to the RGB com-
ponents of the color buffer. Rasterize the nearest back
faces of all active bricks into the depth buffer, e.g., by
using a depth test of GL_LESS. Set the alpha channel to
one where fragments are generated.

3. Enable writing to the RGB components of the color
buffer. Rasterize the nearest front faces of all ac-
tive bricks, e.g., by once again using a depth test of
GL_LESS. Set the alpha channel to one where fragments
are generated.

This ensures that all possible combinations shown in Fig-
ure 5 (left) are handled correctly. Rasterizing the nearest
front faces makes sure that all near plane positions in in-
active bricks will be overwritten by start positions on active

Figure 6: Holes resulting from near clipping plane intersec-
tion (left) must be filled with valid starting positions (right).

bricks that are farther away (rays r0 and r1). Rasterizing the
nearest back faces before the front faces ensures that near
plane positions inside active blocks will not be overwritten
by front faces that are farther away (rays r2 and r3). Brick
geometry that is nearer than the near clipping plane is auto-
matically clipped by the graphics subsystem. After that, the
ray length image can be computed, which first of all means
finding the last intersection points of rays with the bounding
geometry. The basic steps are:

1. Rasterize the farthest back faces, e.g., by using a depth
test of GL_GREATER.

2. During this rasterization, sample the ray start position im-
age and subtract it from the back positions obtained via
rasterization of the back faces. This yields the ray vectors
and the ray lengths from start to end position.

3. Multiply all ray lengths with the alpha channel of the ray
start position image (which is either 1 or 0).

These steps can all be performed in the same fragment
shader. Drawing the back faces of the bounding geometry
results in the last intersection points of rays and active brick
geometry, which are denoted as li in Figure 5. Subtract-
ing end positions from start positions yields the ray vec-
tors, which can then be normalized and stored in the RGB
components of the ray length image together with the ray
lengths in the alpha channel. Note that the alpha channel of
the ray length image has consistently be set to zero where
a ray should not be started at all, which is exploited in the
ray-casting pass (Section 3.3).

3.2.2. Combining Isosurfacing and DVR

The basic case described in the previous section must be
extended when isosurface and direct volume rendering are
combined:

1. Rasterization passes for the ray start position image must
use the bit array containing the state of bricks with respect
to the isosurface. The transfer function is disregarded.

2. Rasterization for generation of the ray length image must
treat all bricks as active that are active with respect to ei-
ther the isosurface or the transfer function or with respect
to both.

Figure 5 (right) illustrates all possible cases. Ray r0 is never
cast because it never intersects isosurface bricks. Both ray r1
and ray r2 start at isosurface bricks and terminate at transfer
function bricks that are inactive with respect to the isosur-
face. Ray r3 starts at an isosurface brick but terminates at a
transfer function brick that is also active with respect to the
isosurface. Ray r4 starts and ends at isosurface bricks that
are inactive with respect to the transfer function.

3.3. Ray-Casting

Our system employs a ray-casting fragment shader that per-
forms the entire casting step for both the isosurface and

c© The Eurographics Association 2006.



H. Scharsach, M. Hadwiger, A. Neubauer, S. Wolfsberger, K. Bühler / Isosurface and Direct Volume Rendering for Virtual Endoscopy

the DVR part behind it in a single rendering pass. There-
fore, the GPU is required to support data-dependent loop-
ing and branching in the fragment shader, e.g., an NVIDIA
GeForce 6 or an ATI Radeon X1800. The shader is essen-
tially comprised of two successive ray-casting loops, which
perform first-hit ray-casting followed by DVR ray-casting.
The first loop in the fragment shader starts at the position
given by the ray start position image and traverses the ray
until it finds an intersection with the isosurface. After an in-
tersection has been detected, the actual intersection position
is refined using iterative bisection with a fixed number of
four iterations [HSS∗05]. Then, the gradient at the intersec-
tion position is computed using central differences and the
isosurface is shaded using the standard Blinn-Phong model.
The shaded result is weighted according to the opacity of
the isosurface, which can be set arbitrarily via a fragment
shader parameter. Figure 3 illustrates changing isosurface
opacity. After the isosurfacing part of the shader, DVR ray-
casting continues with the initial alpha set to the opacity of
the isosurface and performs sampling and compositing un-
til a specified alpha threshold is exceeded. Checking against
this threshold results in early ray termination. That is, the
DVR ray-casting loop is terminated as soon as all subse-
quent samples cannot contribute to the final pixel color any-
more. Note that early ray termination naturally depends sig-
nificantly on the constant opacity of the isosurface. Tables 1
and 2 clearly show that the frame rate increases considerably
with increasing isosurface opacity. In order to avoid visual
interference with the shaded isosurface that is in front, no
further shading is performed in the DVR compositing loop.
Naturally, this also increases performance accordingly. Note
that the ray-casting shader only performs ray-casting for pix-
els with a ray length greater than zero, which also excludes
rays from processing that do not intersect active bricks at all
as described in Section 3.2.1.

3.4. Geometry Intersection

Many applications for virtual endoscopy require both volu-
metric and polygonal data to be present in the same scene.

Figure 7: When rays intersect opaque polygonal geometry,
they are terminated immediately. This is achieved by modi-
fying the ray length image accordingly.

Naturally, intersections of the volume and geometry have to
achieve a correct visibility order, and in many cases look-
ing at the intersections of the geometry and the isosurface is
the reason for rendering geometry in the first place. A very
powerful use of combining geometry with volume render-
ing is to display grid lines for orientation purposes, which
is illustrated in Figure 3. We use a planar grid consisting of
lines, which is a very simple but powerful means for assess-
ing spatial location. This grid plane can be translated in the
orthogonal direction and can also be rotated arbitrarily. Also,
parts that do not contribute to the final image because they
are occluded by geometry should not perform ray-casting at
all. An easy way to achieve this is to terminate rays once
they hit a polygonal object by modifying the ray length im-
age accordingly. This is illustrated in Figure 7. Of course,
ray lengths should only be modified if a polygonal object
is closer to the view point than the initial ray length. This
problem can again be solved by using the depth test and ex-
tending the algorithm described in Section 3.2.1, leading to
the complete algorithm outlined in Section 3.1.

After rendering the back faces of active/inactive brick
boundaries with their respective depth values (and depth test
set to GL_GREATER), the intersecting geometry is rendered
to the same buffer, with the corresponding volume coordi-
nates encoded in the color channel. With the depth test re-
versed to GL_LESS, only those parts will be drawn that are
closer to the view point than the initial ray lengths. This ap-
proach modifies ray-casting such that it results in an image
that looks as if it was intersected with an invisible object.
Blending this image on top of the actual geometry in the last
pass of the algorithm results in a rendering with correct in-
tersections and visibility order.

4. Rendering Performance

Tables 1 and 2 give rendering performance results of our sys-
tem. Setting the transfer function to a simple alpha ramp il-
lustrates the effectiveness of early ray termination (Table 1).
Setting the isosurface to full opacity will result in immedi-
ate ray termination when the isosurface is hit, which yields
performance figures similar to rendering isosurfaces only.
The less opacity the isosurface adds to the image, the longer
the ray has to travel to accumulate full opacity in the direct
volume rendering stage. Choosing a more complex transfer

alpha isosurface opacity
ramp TF 100% 80% 50% 0%
Minimum 40.3 fps 32.4 fps 29.5 fps 28.3 fps
Maximum 64.7 fps 54.8 fps 48.6 fps 44.4 fps
Average 58.2 fps 46.3 fps 41.2 fps 37.5 fps

Table 1: Performance comparison of different isosurface
opacities for the colonoscopy dataset with a simple ramp
as transfer function. Measured for a 512x512 viewport on a
GeForce 7800.

c© The Eurographics Association 2006.



H. Scharsach, M. Hadwiger, A. Neubauer, S. Wolfsberger, K. Bühler / Isosurface and Direct Volume Rendering for Virtual Endoscopy

complex isosurface opacity
TF 100% 80% 50% 0%
Minimum 40.3 fps 11.1 fps 10.0 fps 9.4 fps
Maximum 64.7 fps 18.6 fps 16.7 fps 15.9 fps
Average 58.2 fps 16.8 fps 14.6 fps 13.2 fps

Table 2: Performance comparison of different isosurface
opacities for the colonoscopy dataset with a complex trans-
fer function that prevents early ray termination most of the
time. Measured for a 512x512 viewport on a GeForce 7800.

function with low alpha values results in performance reduc-
tion because in this case early ray termination is ineffective
for many rays (Table 2).

5. Conclusions

We have described an effective system for virtual endoscopy
that uses GPU-based ray-casting in order to achieve real-
time performance. The combination of isosurface and direct
volume ray-casting has proven to be very useful during en-
doscopic planning in order to inspect structures that would
otherwise be hidden behind the isosurface.

Using the computational power of today’s GPUs in a
hardware-based approach as described here, simultaneous
isosurface and direct volume ray-casting is feasible at in-
teractive frame rates, which has traditionally been substi-
tuted by pure isosurfacing or requiring segmentation. Merg-
ing this capability with a flexible rendering pipeline that can
handle both volumetric and polygonal data, we have pre-
sented a system that is capable of meeting the visualization
demands of medical doctors in diagnostic as well as intra-
operative environments. The effectiveness and applicability
of this virtual endoscopy system has been shown in three dif-
ferent fields of endoscopic procedures: virtual colonoscopy,
virtual angioscopy and pituitary surgery. For neurosurgery,
our system is already in clinical use, and we will investigate
the clinical applicability of the other applications we have
presented in the future.

Acknowledgments. The authors would like to thank Christian Sigg
for important input. The VRVis research center is funded in part by
the Austrian Kplus project. The medical data sets are courtesy of
Tiani MedGraph.

References

[Bar05] BARTZ D.: Virtual endoscopy in research and clinical
practice. In Computer Graphics Forum (2005), p. 24(1).

[BDV∗97] BEIER J., DIEBOLD T., VEHSE H., BIAMINO G.,
FLECK E., FELIX R.: Virtual endoscopy in the assessment of
implanted aortic stents. In Proc. of Computer Assisted Radiology
(1997), pp. 183–188.

[BHH∗04] BARTZ D., HARDENBERGH J., HAUTH M.,
MUELLER K., WACKER M., WU Y.: Advanced virtual
medicine: Techniques and applications for virtual endoscopy

and soft-tissue-simulation. In IEEE Visualization 2004 Tutorial
Notes (2004).

[BS99] BARTZ D., SKALEJ M.: VIVENDI - a virtual ventricle
endoscopy system for virtual medicine. In Data Visualization
(Proc. of Symposium on Visualization) (1999), pp. 155–166.

[EHK∗04] ENGEL K., HADWIGER M., KNISS J., LEFOHN A.,
REZK-SALAMA C., WEISKOPF D.: Real-Time Volume Graph-
ics. Course Notes SIGGRAPH 2004, 2004.

[GBKG04] GRIMM S., BRUCKNER S., KANITSAR A.,
GRÖLLER E.: Memory efficient acceleration structures
and techniques for cpu-based volume raycasting of large
data. In Proceedings IEEE/SIGGRAPH Symposium on Volume
Visualization and Graphics (2004), pp. 1–8.

[HMK∗97] HONG L., MURAKI S., KAUFMAN A., BARTZ D.,
HE T.: Virtual voyage: Interactive navigation in the human colon.
In Proceedings of SIGGRAPH’97 (1997), pp. 27–34.

[HQK05] HONG W., QIU F., KAUFMAN A.: Gpu-based object-
order ray-casting for large datasets. In Proceedings of Volume
Graphics 2005 (2005).

[HSS∗05] HADWIGER M., SIGG C., SCHARSACH H., BÜHLER

K., GROSS M.: Real-time ray-casting and advanced shading
of discrete isosurfaces. In Proceedings of Eurographics 2005
(2005), pp. 303–312.

[KSS∗05] KLEIN T., STRENGERT M., STEGMAIER S., , ERTL

T.: Exploiting frame-to-frame coherence for accelerating high-
quality volume raycasting on graphics hardware. In Proceedings
of IEEE Visualization 2005 (2005), pp. 123–230.

[KW03] KRÜGER J., WESTERMANN R.: Acceleration tech-
niques for gpu-based volume rendering. In Proc. of IEEE Vi-
sualization 2003 (2003), pp. 287–292.

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A
high resolution 3D surface construction algorithm. In Proc. of
SIGGRAPH ’87 (1987), pp. 163–169.

[MB01] MEISSNER M., BARTZ D.: Translucent and opaque di-
rect volume rendering for virtual endoscopy applications. In Pro-
ceedings of Volume Graphics 2001 (2001).

[NFW∗04] NEUBAUER A., FORSTER M., WEGENKITTL R.,
MROZ L., BÜHLER K.: Efficient display of background objects
for virtual endoscopy using flexible first-hit ray casting. In Pro-
ceedings of VisSym 2004 (2004), pp. 301–310.

[NMHW02] NEUBAUER A., MROZ L., HAUSER H., WE-
GENKITTL R.: Cell-based first-hit ray casting. In Proceedings
of VisSym 2002 (2002), pp. 77–ff.

[NWF∗] NEUBAUER A., WOLFSBERGER S., FORSTER M.,
MROZ L., WEGENKITTL R., BÜHLER K.: Advanced virtual en-
doscopic pituitary surgery. IEEE Transactions on Visualization
and Computer Graphics 11, 5, 497–507.

[NWF∗04] NEUBAUER A., WOLFSBERGER S., FORSTER M.,
MROZ L., WEGENKITTL R., BÜHLER K.: STEPS - an ap-
plication for simulation of transsphenoidal endonasal pituitary
surgery. In Proc. of IEEE Visualization (2004).

[SSK∗05] STEGMAIER S., STRENGERT M., KLEIN T., , ERTL

T.: A simple and flexible volume rendering framework for
graphics-hardware-based raycasting. In Proceedings of Volume
Graphics 2005 (2005), pp. 187–195.

c© The Eurographics Association 2006.



H. Scharsach, M. Hadwiger, A. Neubauer, S. Wolfsberger, K. Bühler / Isosurface and Direct Volume Rendering for Virtual Endoscopy

Figure 8: (a) A view from a planning session for virtual pituitary surgery. (b) and (c) illustrate virtual colonoscopy with an
overview and an inside view, respectively. Both images use the same transfer function, and in (c) also the surface of the colon
is shaded and rendered semi-transparently. (d) During virtual pituitary surgery an endoscope is inserted through the nose.

c© The Eurographics Association 2006.

msh
Note
This is the color plate.


