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Abstract termine the disparity for each pixel. Global approaches are
incorporating explicit smoothness assumptions and are de-
A novel stereo matching algorithm is proposed that uti- termining all disparities simultaneously by applying energy
lizes color segmentation on the reference image and a self-minimization techniques such as graph cuts [2, 4, 6, 7], be-
adapting matching score that maximizes the number of re-lief propagation [5, 9, 10, 12], dynamic programming, scan-
liable correspondences. The scene structure is modeled byine optimization or simulated annealing.
a set of planar surface patches which are estimated usingRecently, segment-based methods [1, 2, 4, 6, 11] have at-
a new technique that is more robust to outliers. Instead tracted attention due to their good performance. They are
of assigning a disparity value to each pixel, a disparity based on the assumption that the scene structure can be ap-
plane is assigned to each segment. The optimal disparityproximated by a set of non-overlapping planes in the dis-
plane labeling is approximated by applying belief propaga- parity space and that each plane is coincident with at least
tion. Experimental results using the Middlebury stereo test one homogeneous color segment in the reference image.
bed demonstrate the superior performance of the proposedSegment-based methods generally perform four consecu-
method. tive steps that are illustrated in Figure 1. First, regions of
homogeneous color are located by applying a color seg-
mentation method. Second, a local window-based matching
method is used to determine disparities of reliable points.
Third, a plane fitting technique is applied to obtain dispar-
ity planes that are considered as a label set. Fourth, an op-
Stereo matching continues to be an active research areéimal disparity plane assignment (optimal labeling) is ap-
as is proven by a large number of recent publications dedi-proximated using greedy [1, 11] or graph cuts [2, 4, 6] opti-
cated to this topic [1, 2, 4, 6, 9, 12]. The goal is to determine mization. Despite our method shares the same consecutive
disparities that are indicating the difference in locating cor- steps, there are three main distinguishing features:
responding pixels. The recovery of an accurate disparity First, a self-adapting dissimilarity measure is used to in-
map still remains challenging, mainly due to the following crease the number of reliable correspondences as is ex-
reasons: plained is Section 3. Second, a novel outlier insensitive ap-
(i) Pixels of half occluded regions do not have correspon- proach is applied to extract the disparity planes (Section 4).
dences in the other image, leading to incorrect matches ifThird, the labeling problem is solved using belief propaga-
not taken into account. tion (Section 5). These features represent the main contri-
(i) Images are disturbed because of sensor noise. This isution of our approach which results in superior matching
especially problematic in poorly textured regions due to the quality (demonstrated in Section 6).
low signal-to-noise-ratio (SNR).
(i) The constant brightness or color constraint is only sat-
isfied under ideal conditions that can only roughly be met
in practice.
A comprehensive overview on stereo matching can be found  The first step in the workflow is to decompose the refer-
in [8]. In general matching algorithms can be classified into ence image into regions of homogeneous color or grayscale.
local and global methods. Local approaches are utilizing The algorithm assumes that disparity values vary smoothly
the color or intensity values within a finite window to de- inthose regions and that depth discontinuities only occur on

1. Introduction

2. Color segmentation



surfaces at the cost of a low discriminating power. In our
approach we are using a self-adapting dissimilarity measure
that combines sum of absolute intensity differences (SAD)
and a gradient based measure that are defined as follows:
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forward gradient to the bottom. Color images are taken into

i account by summing up the dissimilarity measures for all
channels.

An optimal weightingy betweenCs 4 p andCgrap is de-
termined by maximizing the number of reliable correspon-
dences that are filtered out by applying a cross-checking test
(comparing left-to-right and right-to-left disparity maps) in
conjunction with a winner-take-all optimization (choosing
region boundaries. Over-segmentation is preferred, since itthe (_jis_par_ity with the I.OWF.‘ISt mat.ching cost). The resulting
helps to meet this assumption in practice. Therefore mean-dISSImIIarIty measure is given by:
shift color segmentation recently successfully applied to im- C
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age segmentation by Comaniciu and Meer [3] is used. The (#,9,d) = (1=w)Csap(z,9,d) +w*Carap(@,y.d)
mean-shift analysis approach is essentially defined as a gragrthermore we are utilizing the reliable correspondences to
dient ascent search for maxima in a density function definedpredict the SNR that is used to normalize our dissimilarity
over a high dimensional feature space. The feature spacgneasure. Because of the normalization a fixed truncation

associated attributes that are considered during the analysigopyst matching score.

The main advantage of the mean-shift approach is based on
the fact that edge information is incorporated as well.

Figure 1. Block diagram of segment-based
stereo matching algorithms augmented with
input data, intermediate and final results of
the proposed method.

4. Disparity plane estimation
3. Local matching in pixel domain The reliable correspondences are used to derive a set
f disparity planes that are adequate to represent the scene
tructure. This is achieved by applying a novel robust plane
fitting method and a consecutive refinement step.

In the proposed method the scene structure is modele
by a set of planar disparity planes. A disparity plane
is specified by the three parametefs co, c3 that deter-
mine a disparityd for each reference image pixel (x,y):
d=ci1z + coy + c3 Robust plane fitting Despite only reliable disparities of
Due to the huge number of possible disparity planes theeach segment are used to derive a corresponding disparity
number is reduced by extracting a set of disparity planesplane, the estimated plane may be disturbed due to remain-
that is suff|C|er_1t to represent _the scene structure. 'ThIS ISing outliers. A straightforward way to determine the dispar-
done by applying local matching in the pixel domain fol- i hiane parameters is to solve a least square system. As is

lowed by a disparity plane estimation step. generally known least square solutions are very sensitive to
Local matching requires to define a matching score and anoutliers and that linear or median solutions are much more
aggregation window [8]. The most common dissimilarity robust

measures are squared intensity differences (SD) and ab-* , ) .
solute intensity differences (AD) that are strictly assuming Our method determines a robust solution by applying a
the constant color constraint. Other matching scores such aglecomposition method to solve each parameter separately.
gradient-based and non-parametric measures are more rd=irst, the horizontal slant is estimated using a set of all com-
bust to changes in camera gain and bias or non-lambertiarbinations of reliable disparities that are lying in the same



horizontal line within the segment. The derivationg 6= 6. Experimental results
are inserted to a list and a robust estimation of the horizontal

slant is determined by sorting the list and applying convo-  The proposed method was evaluated using the Middle-
lution with a Gaussian kernel. bury test bed (http://cat.middlebury.edu/stereo/) provided
Second, the vertical slant is estimated in a similar mannerby the authors of [8] Qualitative results are shown in Figure
by considering all combinations lying on the same vertical 2. Quantitative results of the ten best performing methods
line. are given in Table 1, where the percentage of pixels with
Third, the determined slant is used to obtain a robust es-an absolute disparity error greater than one pixel are shown
timate of the disparity value in the center of the segment. for different regions: non-occluded (nonoccl.), whole image
Therefore corresponding center disparities for each reliable(all) and pixels near discontinuities (on disc.). Our method
point, that are calculated by considering the estimated slantprocessed all four stereo pairs with a fixed parameter set and
are inserted to a list and a robust estimate is obtained asvas ranked at the first place. The calculation on a 2.21GHz
explained before. Athlon 64 computer takes between 14 and 25 sec, whereas
the mean-shift segmentation is the most time consuming
Disparity plane refinement The purpose of this stepisto  step.
increase the accuracy of the disparity plane set by repeating
the plane fitting for grouped regions that are dedicated tothe7  Conclusions
same disparity plane. Similar as in [6] the following steps
are processed:
First, a matching cost is calculated for each segment-to-
plane assignment. Itis computed by summing up the match-
ing cost for each pixel inside the segment S:

A new segment-based stereo matcher has been intro-
duced. The conjunction of color segmentation, a self-
adapting matching score, a robust plane fitting technique as
well as BP-optimization yields excellent results as demon-

Cspa(S,P)= Y Clx,yd), strated on the Middlebury stereo evaluation test bed.

(z,y)€S
whereP is a disparity plane that defines disparity
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In the final step an optimal solution for the segment-to-

disparity plane assignment is searched. Therefore the stereo
matching is formulated as an energy minimization problem
for the labelingf that assigns each segment R a corre-
sponding planef(s) € D. The energy for a labeling is

5. Disparity plane assignment

given by:
E(f) = Edata(f) + Esmooth(f)a
where
Edata(f) = Z CSEG(S’ f(s))
sER
and
Esmooth(f) = Z )\disc(siy Sg)

(Y(si,85)€SN | f(s:)#f(s5))

Sy represents a set of all adjacent segments and
Adisc(si, sj) is a discontinuity penalty that incorporates the
common border lengths and the mean color similarity as
proposed in [2].

An optimal labeling with minimum energy is approximated
using Loopy Belief Propagation [5] where the message
passing takes place between adjacent segments.



Algorithm Avg. | Tsukuba Venus Teddy Cones
Rank nonoccl. all on disc. nonoccl. all on disc. nonoccl. all on disc. nonoccl. all on disc.
Proposed Method| 1.7 1113 134 57% | 010, 0.2 144 | 422 7.06 11.8 | 248 792 732
Double-BP [12] 23 |1 088 129 476 | 014 060 200 | 355 8713 970 | 290 924 7.80
Segm+visib [1] 51 136 1574 6.9% | 0.7% 106 6.76 | 5.00s 654 123 | 3.7% 8.62% 10.%
SymBP+occ [9] 51 | 09% 175 5.0% | 0.1 033 219 |64% 107 17.00 | 4.79%: 10.% 10.9
C-SemiGlob 6.2 | 2.6L4s 3.29%; 9.894| 0.25 0545 3.24 | 514 11. 130, | 2.7» 835 8.2%
RegionTreeDP 7.0 139 164 6.8% | 022 057 193|742 11.9% 16.& | 6.344 11.9. 11.8
AdaptWeight 7.3 13 18% 6.90, | 0.7 1190 6.13% | 7880 13.3 18.6:| 3.9% 9.7% 8.26
SemiGlob 93 | 3.267 3.964 12.89| 1.000 15% 11.34| 6.02 122, 16.% | 3.06 9.7% 8.9%
RealtimeBP 10.4 1.49¢ 3.403 7.8%¢| 0.77 1.90; 9.003| 8.723 13.% 17.2% 4.61 11.6 12.43
Layered 114 | 1.57, 1.87% 8.28:| 1.34; 1.85 6.85¢| 8.64> 14.30 18.5¢| 6.59¢ 14.715 14.45
GC+occ 115 | 1.19, 201 6.24, | 1.64s 2.193 6.7% | 11.26 17.4¢ 19.84| 5363 12.43 13.04
MultiCamGC 12.0 | 1.27s 19% 648 | 2.799 3.137 3.6Q0; | 17.07 17.67 22.0| 4.8%2 11.8; 12.1;

Table 1. Middlebury stereo evaluation on different algorithms, ordered according to their overall
performance. The subscript numbers indicate the rank of each method in each column.
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Figure 2. Results using the Middlebury datasets: Tsukuba, Venus, Teddy and Cones. Pixels with a
disparity error greater than one pixel are displayed in the ’bad pixel’ maps, where missmatches in
non-occluded areas are indicated in black, in occluded areas in gray color.
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