High-Performance Multi-View Reconstruction

Christopher Zach

Mario Sormann

Konrad Karner

VRVis Research Center
QGraz, Austria
{zach, sormann, karner } @vrvis.at

Abstract

We present a high performance reconstruction approach,
which generates true 3D models from multiple views with
known camera parameters. The complete pipeline from
depth map generation over depth image integration to the fi-
nal 3D model visualization is performed on programmable
graphics processing units (GPUs). The proposed pipeline
is suitable for long image sequences and uses a plane-
sweep depth estimation procedure optionally employing ro-
bust image similarity functions to generate a set of depth
images. The subsequent volumetric fusion step combines
these depth maps into an impicit surface representation of
the final model, which can be directly displayed using GPU-
based raycasting methods. Depending on the number of in-
put views and the desired resolution of the final model the
computing times range from several seconds to a few min-
utes. The quality of the obtained models is illustrated with
real-world datasets.

1. Introduction

Creating virtual 3D models solely from a set of digital in-
put images is still an active research topic. The availability
of cheap, although high quality digital cameras in combina-
tion with the newest generation of powerful programmable
graphics hardware give an additional boost to the develop-
ment of algorithms for 3D model generation. One advan-
tage of using images as the only input source is the inde-
pendency from the size of the object to be modeled.

This work presents high-performance dense mesh gen-
eration methods within the complete 3D reconstruction
pipeline based on the computational power of modern pro-
grammable graphics hardware. There are at least two mo-
tivating reasons for a high-performance approach to 3D re-
construction: at first, some visual feedback is available to
a human operator at interactive rates, which allows instant
evaluation of the obtained results and immediate adjustment

of parameters as necessary. Further, faster processing is al-
ways desirable, especially if the number of images is large
in order to provide enough redundancy for a complete auto-
mated solution.

The proposed methods presented in this paper include
a local depth estimation method based on the plane-sweep
principle suitable for real-world application. This method
is entirely performed by graphics hardware, thus utilizing
the huge computational power of modern GPUs. Addition-
ally, a GPU-based volumetric depth integration method is
applied to obtain true 3D models from a set of depth maps,
which is robust to mismatches and outliers present in depth
images.

2. Previous Work

The first established multi-view depth estimation ap-
proach executed on programmable graphics hardware was
presented by Yang et al. [14], who developed a fast stereo
reconstruction method performed on graphics hardware by
utilizing a plane sweep approach to find correct depth val-
ues. The proposed method uses projective texturing capa-
bilities of 3D graphics hardware to project the given image
onto the reference plane. Further, single pixel error accu-
mulation for all given views is performed on the GPU as
well. The number of iterations is linear in the requested res-
olution of depth values, therefore this method is limited to
rather coarse depth estimation in order to fulfill the realtime
requirements of their video conferencing application. Fur-
ther, their approach requires a true multi-camera setup to be
robust, since the error function is only evaluated for single
pixels. As the application behind this method is a multi-
camera teleconferencing system, accuracy is less important
than realtime behaviour. In later work the method was made
more robust using trilinear texture access to accumulate er-
ror differences within a window [12]. Their developed ideas
were reused and improved to obtain a GPU-based dense
matching procedure for a rectified stereo setup [13].

The basic GPU-based plane-sweep technique for depth

estimation can be enhanced with implicit occlusion han-
dling and smoothness constraints to obtain depth maps with
higher quality. Woetzel and Koch [11] addressed occlusion
occuring in the source images by a best n out of m and by
a best half-sequence multi-view selection policy to limit the
impact of occlusions on the resulting depth map. In order to
obtain sharper depth discontinuities a shiftable correlation
window approach was utilitized. The employed image sim-
ilarity measure is a truncated sum of squared differences.

Cornelis and Van Gool [1] proposed several refinement
steps performed after a plane-sweep procedure, which is
used to obtain an initial depth map using a single pixel trun-
cated SSD correlation score. Outliers in the initially ob-
tained depth map are removed by a modified median fil-
tering procedure, which may destroy fine 3D structures.
These fine details are recovered by a subsequent depth re-
finement pass. Since this approach is based on single pixel
similarity instead of a window based one, slanted surfaces
and depth discontinuities are reconstructed more accurately
compared with window-based approaches. The disadvan-
tage of a pixel based similarity is that intensities are directly
compared, which works well only under a constant bright-
ness assumption. If illumination changes are expected, a
similarity measure between the gray value patterns within a
window is preferable.

Typically, the correlation windows used in realtime
dense matching have a fixed size, which causes inaccuracies
close to depth discontinuities. Since large depth changes are
often accompanied by color or intensity changes in the cor-
responding image, adapting the correlation window to ex-
tracted edges is a reasonable approach. Gong and Yang [3]
investigated in a GPU-based computational stereo proce-
dure with an additional color segmentation step to increase
the quality of the depth map near object borders.

We conclude this section by remarking that most work
on GPU-accelerated depth estimation methods display only
the resulting depth images, but typically no 3D geometry
is shown, which allows easier qualitative evaluation of the
result. Of course, most work in this field does not address
the creation of 3D models, hence other criteria like speed
for realtime settings are more important.

3. Small-Baseline Dense Depth Estimation us-
ing Plane-Sweep

Plane sweep techniques in computer vision are simple
and elegant approaches to image based reconstruction with
multiple views, since a rectification procedure as required
in many traditional computational stereo methods is not re-
quired. The 3D space is iteratively traversed by parallel
planes, which are usually aligned with a particular key view
(Figure 1). The plane at a certain depth from the key view
induces homographies for all other views, thus the reference

images can be mapped onto this plane easily.

Key view
Reference view

Figure 1. Plane sweeping principle. For dif-
ferent depths the homography between the
reference plane and the reference view is
varying. Consequently, the projected image
of the reference view changes with the depth
according to the epipolar geometry.

If the plane at a certain depth passes exactly through the
surface of the object to be reconstructed, the color values
from the key image and from the mapped references images
should coincide at appropriate positions (assuming constant
brightness conditions). Hence, it is reasonable to assign the
best matching depth value (according to some image corre-
lation measure) to the pixels of the key view. By sweeping
the plane through the 3D space (by varying the planes depth
wrt. the key view) a 3D volume can be filled with image cor-
relation values similar to the disparity space image (DSI) in
traditional stereo. Therefore the dense depth map can be
extracted using global optimization methods, if depth con-
tinuity or any other constraint on the depth map is required.

Note, that a plane sweep technique in a two frame rec-
tified stereo setup coincides with traditional stereo methods
for disparity estimation. In these cases the homography be-
tween the plane and the reference view is solely a translation
along the X-axis.

There are several techniques to make dense reconstruc-
tion approaches more robust in case of occlusions in a multi-
view setup. Typically, occlusions are only modeled implic-
itly in contrast to e.g. space carving methods, where the
generated model so far directly influences visibility infor-
mation. Here we discuss briefly two approaches to implicit
occlusion handling:

e Truncated scores: The image correlation measure is
calculated between the key view and the reference

view and the final score for the current depth hypothe-
sis is the accumulated sum of the truncated individual
similarities. The reasoning behind this approach is that
the effect of occlusions between a pair of views on the
total score should be limited to favor good depth hy-
potheses supported by other image pairs.

e Best half-sequence selection: In many cases the set of
images comprise a logical sequence of views, which
can be totally ordered (e.g. if the camera positions are
approximately on a line). Hence the set of images used
to determine the score wrt. the key view can be splitted
into two half-sequences, and the final score is the bet-
ter score of these subsets. The motivation behind this
approach is, that occlusion wrt. the key view appear
either in the left or in the right half-sequence.

Dense depth estimation using plane sweeping as described
in this section is restricted to small baseline setups, since
for larger baselines occlusions should be handled explicitly.
Additionally, the inherent fronto-parallel surface assump-
tion of correlation windows yields inferior results in wide
baseline cases.

3.1. Image Warping

In the first step, the reference images are warped onto
the current 3D key plane 7 = (n',d) using the projec-
tive texturing capability of graphics hardware. If we assume
the canonical coordinate frame for the key view, the refer-
ence images are transformed by the appropriate homogra-
phy H = K (R—tn'/d) K~'. K denotes the intrinsic
matrix of the camera and (R|t) is the relative pose of the
reference view.

In order to utilize the vector processing capabilities of
the fragment pipeline in an optimal manner, the (grayscale)
reference images are warped wrt. four plane offset values d
simultaneously. All further processing works on a packed
representation, where the four values in the color and alpha
channels correspond to four depth hypotheses.

3.2. Image Correlation Function

After a reference image is projected onto the current
plane hypothesis, a correlation score for the current refer-
ence view is calculated and accumulated to the total corre-
lation score of the plane hypothesis. The accumulation of
the single image correlation scores depend on the selected
occlusion handling policy: simple additive blending opera-
tions are sufficient if no implicit occlusion handling is de-
sired. If the best half-sequence policy is employed, additive
blending is performed for each individual subsequence and
a final minimum-selection blending operation is applied.

To our knowledge, all published GPU-based dense depth
estimation methods use the simple sum of absolute differ-
ences (SAD) for image dissimilarity computation (usually
for performance reasons). By contrast, we have a set of
GPU-based image correlation functions available, includ-
ing the SAD, the normalized cross correlation (NCC) and
the zero-mean NCC (ZNCC) similarity functions. The NCC
and ZNCC implementations use sum tables for an efficient
implementation [9]. Small row and column sums can be
generated directly by sampling multiple texture elements
within the fragment shader. Summation over larger regions
can be performed using a recursive doubling approach simi-
lar to the GPU-based generation of integral images [4]. Full
integral image generation is also possible, but precision loss
is oberserved for the NCC and ZNCC similarity functions
in this case.

For longer image sequences one cannot presume con-
stant brightness conditions across all images, hence an op-
tional prenormalization step is performed, which substracts
the box-filtered image from the original one to compen-
sate changes in illumation. If this prenormalization is ap-
plied, the depth maps obtained using the different correla-
tion functions have similar quality.

3.3. Depth Extraction

In order to achieve high performance for depth estima-
tion, we employ a simple winner-takes-all strategy to assign
the final depth values. This approach can be easily and ef-
ficiently implemented on the GPU using the depth test for
a conditional update of the current depth image hypothe-
sis [14].

Unreliable depth values can be masked by a subsequent
thresholding pass removing pixels in the obtained depth
map, which have a low image correlation.

If the resulting depth map is converted to 3D geome-
try, staircasing artefacts are typically visible in the obtained
model. In order to reduce these artefacts an optional se-
lective, diffusion-based depth image smoothing step is per-
formed, which preserves true depth discontinuities larger
than the steps induced by the discrete set of depth hypothe-
ses.

4. Depth Integration

In order to create true 3D models the set of generated
depth maps must be combined into a single representation.
Our method to create proper 3D models is based on an im-
plicit volumetric representation, from which the final sur-
face can be extracted by any implicit surface polygonization
technique. The principles of robust fusion of several depth
maps in the context of laser-scanned data was developed by

Curless and Levoy [2] and Hilton et al. [5]. We apply essen-
tially the same technique on depth maps obtained by dense
depth estimation procedures. The basic idea of volumetric
depth image integration is the conversion of depth maps to
corresponding 3D distance fields' and the subsequent ro-
bust averaging of these distance fields. The resolution and
the accuracy of the final model are determined by the quality
of the source depth images and the resolution of the target
volume.

Instead of using an implicit representation of the surfaces
induced by the depth images, one can merge a set of polyg-
onal models directly [10]. Such an approach is sensitive to
outliers and mismatches occuring in the depth images. A
volumetric approach can combine several surface hypothe-
ses and perform a robust voting in order to extract a more
reliable surface. On the other hand, a volumetric range im-
age fusion approach limits the size of 3D features found in
the final model dependent on the voxel size.

Our implementation of the purely software based ap-
proach, which is based on [2], uses compressed volumet-
ric representations of the 3D distance fields and can handle
high resolution voxel spaces. Merging (averaging) of many
distance fields induced by the corresponding depth maps is
possible, since it is sufficient to traverse the compressed dis-
tance fields on a single voxel basis. Nevertheless our orig-
inal implementation has substantial space requirements on
external memory and consumes significant time to generate
the final surface (usually in the order of several minutes).
Hence this approach is not suitable for immediate visual
feedback to the user. At least for fast and direct inspection
of the 3D model it is reasonable to develop a very efficient
volumetric range image integration approach again acceler-
ated by the computing power of modern graphics hardware.
Many steps in the range image integration pipeline are very
suitable for processing on graphics hardware and significant
speedup can be expected.

The overall procedure traverses the voxel space defined
by the user slice by slice and generates a section of the final
implicit 3D mesh representation in every iteration. Conse-
quently, the memory requirements are very low, but imme-
diate postprocessing (e.g. filtering) of the generated slices is
limited. Although the general idea is very close to [2], sev-
eral modifications are required to allow an efficient GPU
implementations in the first instance. More importantly,
the sensitivity to gross outliers frequenlty occuring in in-
put depth maps is reduced by a robust voting approach. The
details of our implementation are given in the next sections.

!Neither our approach nor [2] calculate true 3D distance fields, but only
(optionally weighted) signed distances along predefined directions are em-
ployed.

4.1. Selecting the Volume of Interest

In general it is not possible to determine the volume of
interest for reconstruction automatically. In case of small
objects entirely visible on each of the source images, the
intersection of the viewing frustra can serve as indicator
for the volume to be reconstructed. Larger objects only
partially visible in the source images (e.g. large buildings)
require human interaction to select the reconstruction vol-
ume. Consequently, there exists a user interface for man-
ual selection of the reconstructed volume. This application
displays a set of e.g. 3D feature points generated by the
image orientation procedure or 3D point clouds generated
from dense depth maps. The user can select and adjust the
3-dimensional bounding box of the region of interest. Ad-
ditionally, the user specifies the intented resolution of the
voxel space, which is set to 2563 voxels in our experiments.

4.2. Depth Map Conversion

With the knowledge of the volume of interest and its ori-
entation, the voxel space is traversed slice by slice and the
values of the depth images are sampled according to the
projective transformation induced by the camera parameters
and the position of the slice. Since the sampled depth val-
ues denote the perpendicular distance of the surface to the
camera plane, the distance of a voxel to the surface can be
estimated easily as the difference between the depth value
and the distance of the voxel to the image plane (see also
Figure 2). This difference is an estimated signed distance
to the surface; positive values indicate voxels in front of the
surface and negative values correspond to voxels hidden by
the surface.

The source depth maps contain two additional special
values: one value (in our implementation chosen as -1)
indicates absent depth values, which may occur due to
some depth postprocessing procedure eliminating unreli-
able matches from the depth map. Another value (0 in our
implementation) corresponds to pixels outside some fore-
ground region of interest, which is based on an optional sil-
houette mask in our workflow [7].

Consequently, the processed voxels fall into one of the
following categories:

1. Voxels that are outside the camera frustum are labeled
as culled.

2. Voxels with an estimated distance D to the surface
smaller than a user-specified threshold T, s are la-
beled as near-surface voxels (|D| < Tgyyr).

3. Voxels with a signed distance greather than this thresh-
old are considered as definitely empty (D > Ty).

4. The fourth category includes occluded voxels, which
have a negative distance with a magnitude larger than
the threshold (D < =Ty,).

5. If the depth value of the back-projected voxel indicates
an absent value, the voxel is labeled as unfilled.

6. Voxels back-projecting into pixels outside the fore-
ground regions are considered as empty.

These categories are illustrated in Figure 2. The threshold
Tsury specifies essentially the amount of noise that is ex-
pected in the depth images.

Culled region
Outside silh.™>

Camera
center

../ Occluded region

Outside silh.

Figure 2. Classification of the voxel accord-
ing to the depth map and camera parame-
ters. Voxels outside the camera frustum are
initially labeled as culled. Voxels close to the
surface induced by the depth map are near-
surface voxels (on both sides of the surface,
indicated by shaded regions). Voxels with
a distance larger than a threshold are either
empty or occluded, depending on the sign of
the distance.

In many reconstruction setups it is possible to classify
culled voxel depth values immediately. If the object of in-
terest is visible in all images, culled voxels are outside the
region to be reconstructed and can be classified as empty
instantly. Declaring culled voxels as unfilled may gener-
ate unwanted clutter due to outliers in the depth maps. If
the object to be reconstructed is only partially visible in the
images, voxels outside the viewing frustum of a particular
depth map do not contribute information and are therefore
labeled as unfilled. The choice between these two policies
for handling culled data is specified by the user. Conse-
quently, the 6 branches described above correspond to four
voxel categories.

A fragment program determines the status of voxels and
updates an accumulated slice buffer for every given depth
image. This buffer consists of four channels in accordance
to the categories described above:

1. The first channel accumulates the signed distances, if
the voxel is a near-surface voxel.

2. The second channel counts the number of depth im-
ages, for which the voxel is empty.

3. The third channel tracks the number of depth images,
for which the voxel is occluded.

4. The fourth channel counts the number of depth images,
for which the status of the voxel is unfilled.

Thus, a simple but sufficient statistic for every voxel is accu-
mulated, which is the basis for the final isosurface determi-
nation. Algorithm 1 outlines the incremental accumulation
of the statistic for a voxel, which is executed for every pro-
vided depth image. The accumulated statistic for a voxel is a
quadruple comprising the components as described above.
In addition to the user-specified parameter T, ¢, another
threshold 7T,.. can be specified, which determines the bor-
der between occluded voxels and again unfilled voxels lo-
cated behind the surface. This threshold is set to 10 - T’ ¢
in our experiments.

4.3. Isosurface Determination and Extrac-
tion

After all available depth images are processed, the target
buffer holds the coarse statistic for all voxels of the cur-
rent slice. The classification pass to determine the final sta-
tus of every voxel is essentially a voting procedure. This
step assigns the depth distance to the final surface to every
voxel, such that the isosurface at level O corresponds with
the merged 3D model. For efficiency the voting procedure
uses only the statistics acquired for the current voxel, but
does not inspect neighboring voxels. Algorithm 2 presents
the utilized averaging procedure to assign the signed dis-
tance to the final surface.

Up to now the discussed steps in the volumetric range
image integration pipeline, depth map conversion and fu-
sion, run entirely on graphics hardware. After the GPU-
based computation for one slice of the voxel space is fin-
ished, the isovalues of the current slice are transformed into
a triangular mesh on the CPU [6] and added to the final
surface representation. This mesh can be directly visual-
ized and is ready for additional processing like texture map
generation. Instead of generating a surface representation
from the individual slices a 3D texture can be accumulated
alternatively, which is suitable for volume rendering tech-
niques. The main portion of this approach is performed

Algorithm 1 Procedure to accumulate the statistic for a
voxel

Algorithm 2 Procedure to calculate the final surface dis-
tance for a voxel

Procedure stat = AccumulateVoxelStatistic

Input: Camera image plane imagePlane, near-surface thresh-
old Tsurf, Toce > Tsury, #Images

Input: depth image D, projective texture coordinate stq, 3D
voxel position pos

Input: Voxel statistics: stat = (> D;, #Empty, #Occluded,
#Un filled) (a quadruple)

st « stq.xy/stq.z {Perspective division}
if st is inside [0, 1] x [0, 1] then
depth «— tex2D(D, st) {Gather depth from range image}
if depth > 0 then
dist «— depth — imagePlane - pos {Calculate signed
distance to the surface}
if dist > Tsurf then
increment # Empty {Too far in front of surface}
else if dist < —T,.. then
increment #Un filled {Very far behind the surface}
else if dist < —T,.,s then
increment #Occluded {Too far behind the surface}
else
> D; « > D; + dist {Near-surface voxel }
end if
else
if depth = 0 then
stat — (0, #Images + 1,0,0) {Declare voxel defi-
nitely as empty }
else
increment #Un filled
end if
end if
else
{Execute one of the following lines, depending on handling
of culled voxels: }
increment # Empty, or {Handle culled voxel as empty }
increment #Un filled { Alternatively, handle culled voxel as
unfilled}
end if
Return stat

again entirely on the GPU and does not involve substan-
tial CPU computations. In constrast to a slice-based incre-
mental isosurface extraction method, this direct approach
requires the space for a complete 3D texture in graphics
memory. Since modern 3D graphics hardware is equipped
with large amounts of video memory, the 16MB required by
a 256 voxel space are affordable. Rendering an isosurface
directly from the volumetric data requires additional calcu-
lation of surface normals, which are directly derived from
the gradients at every voxel. By using a deferred rendering
approach, computation of the gradient can be limited to the
actual surface voxels and the additional memory consump-
tion is minimal.

Procedure result = AverageDistance

Input: User specified constants: # RequiredDe finite,
RequiredOccluded, Unknown Label

Input: Voxel statistics: > D;, #Empty, #Occluded,
#Un filled

#Definite «— #Images — #Occluded — #Un filled
if # De finite < # RequiredDe finite then
if #Occluded > # RequiredOccluded then
result «— —oo
else
result < UnknownLabel
end if
else
#NearSurface «— #Images — #Empty — #Un filled
if #NearSur face > # Empty then
result — > D;/#NearSur face
else
result «— 400
end if
end if
Return result

4.4. Implementation Remarks

Tracking the statistic for each voxel in the current slice
requires a four channel buffer with floating point precision
to accumulate the distance values for near-surface voxels.
By normalizing the distance of these voxels from [T, T
to [—1, 1] a half precision buffer (16 bit floating point for-
mat) is usually sufficient. Furthermore, the final voxel val-
ues can be transformed to the range [0, 1] and a traditional
8 bit fix-point buffer offers adequate precision. Using low-
precision buffers decreases the volume integration time by
about 30%.

5. Results

This section provides visual and timing results for some
real datasets. The timings are given for a PC hardware
consisting of a Pentium4 3GHz processor and an NVidia
Geforce 6800 graphics card. All source views are resized to
512 x 512 pixels beforehand, and the obtained depth images
have the same resolutions (unless noted otherwise). Par-
tially available foreground segmentation data is not used in
these experiments.

The first dataset depicted in Figure 3(a) shows one
source image (out of 47) displaying a small statue. The im-
ages are taken in a roughly circular sequence around the
statue. The camera is precalibrated and the relative poses
of the images are determined from point correspondences
found in adjacent views. From the correspondences and the

camera parameters a sparse reconstruction can be triangu-
lated, which is used by a human operator to determine a
3D box enclosing the voxel space of interest. The exten-
sion of this box is used to determine depth range used in
the subsequent plane-sweep step, which took 53s to gen-
erate 45 depth images in total (Figure 3(b)). In the depth
estimation procedure 200 evenly distributed depth hypothe-
ses are tested using the SAD for a 5 x 5 window. In order
to compensate illumination changes in several view triplets,
the source images were normalized by subtracting its lo-
cal mean image. Black pixels indicate unreliable matches,
which are labeled as unfilled before the depth integration
procedure. These depth maps are integrated in just over 4
seconds to obtain a 2563 volume dataset as illustrated in
Figure 3(c). The isosurface displayed in Figure 3(d) can
be directly extracted using a ray-casting approach on the
GPU [8]. Almost all of the clutter and artefacts outside the
proper statue are eliminated by requiring at least 7 definite
values for the statistic of a voxel.

The result for another dataset consisting of 43 images is
shown in Figure 4(b), for which one source image is de-
picted in Figure 4(a). The same procedure as for the previ-
ous dataset is applied, from which a set of 41 depth images
is obtained in the first instance. Plane-sweep depth estima-
tion using the ZNCC correlatio with 200 depth hypotheses
requires 97.7s in all to generate the depth maps. The subse-
quent depth image fusion step requires 4s to yield the volu-
metric data illustrated in Figure 4(b).

Note that these timing reflect the creation time for rather
high-resolution models. If all resolutions are halved (256 x
256 x 100 depth images and 128 volume resolution), the
total depth estimation time is 13s and the volumetric inte-
gration time is less than 1s for this dataset. We believe that
these timing results allow our method to qualify as an inter-
active modeling approach.

The visual result for another dataset consisting of 16
source views is shown in Figure 4(c) and (d). Depth esti-
mation for 14 views took 34.2s using a 5x5 ZNCC with a
best-half-sequence occlusion strategy (200 tentative depth
values). Without an implicit occlusion handling approach
parts of the sword are missing. Volumetric integration re-
quires another 1.8s to generate the isosurface shown in Fig-
ure 4(d).

6. Summary and Conclusions

In this work we demonstrated, that generating proper 3D
models from a set of depth images can be achived at interac-
tive rates using the processing power of modern GPUs. The
quality of the obtained 3D models depends on the grade of
the source depth maps and on the redundancy of data, but
the voting scheme is robust in case of outliers usually gen-
erated by pure local depth estimation procedures.

Future work needs to address the depth map generation
in particular. A variational approach to depth estimation
accelerated by the GPU is already available, which pro-
vides very good depth maps for datasets suitable for a varia-
tional method. However, many real-world datasets consist-
ing of many images contain some variations in illumination
and lighting conditions, therefore variational approaches
based on the constant intensity assumption fail for many
real datasets.

On the other hand, a purely local winner-takes-all ap-
proach to depth estimation is very unreliable in low-textured
regions. We have started preliminary work on a GPU based
scanline optimization procedure in order to enhance the
quality of the depth maps. The major obstacle so far is the
huge size of the disparity space image utilized in the basic
dynamic programming approaches to depth extraction.

Further work needs to be done to obtain cleaner isosur-
faces suitable for subsequent processing. In particular, the
remaining clutter caused by severe mismatches could be re-
moved by detecting isolated near-surface voxels.

Acknowledgments

This work has been done in the VRVis research cen-
ter, Graz and Vienna/Austria (http://www.vrvis.at), which
is partly funded by the Austrian government research pro-
gram Kplus.

References

[1] N. Cornelis and L. Van Gool. Real-time connectivity con-
strained depth map computation using programmable graph-
ics hardware. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 1099-1104, 2005.
[2] B. Curless and M. Levoy. A volumetric method for build-

ing complex models from range images. In Proceedings of
SIGGRAPH 96, pages 303-312, 1996.

[3] M. Gong and R. Yang. Image-gradient-guided real-time
stereo on graphics hardware. In Fifth International Confer-
ence on 3-D Digital Imaging and Modeling, pages 548-5535,
2005.

[4] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and
A. Lastra. Fast summed-area table generation and its appli-
cations. In Proceedings of Eurographics 2005, pages 547—
555, 2005.

[5]1 A. Hilton, A. J. Stoddart, J. Illingworth, and T. Windeatt.

Reliable surface reconstruction from multiple range images.
In European Conference on Computer Vision (ECCV), pages

117-126, 1996.

[6] W. Lorenson and H. Cline. Marching Cubes: A high reso-
lution 3d surface construction algorithm. In Proceedings of
SIGGRAPH 87, pages 163-170, 1987.

[71 M. Sormann, C. Zach, J. Bauer, K. Karner, and H. Bischof.
Automatic foreground propagation in image sequences for
3d reconstruction. In Proc. 27th DAGM Symposium, pages
93-100, 2005.

(a) One source image

(b) One depth image

(c) Direct volume rendering

(d) Shaded isosurface

Figure 3. Visual results for a small statue dataset generated from a sequence of 47 images. The total
time to generate the depth maps and the final volumetric representation is less than 1 min.

(8]

(9]

(10]

(1]

(a) One source image (of 43)

(b) Shaded isosurface (102s)

(c) One source image (of 16)

(d) Shaded isosurface (36s)

Figure 4. Source views and isosurfaces for two real-world datasets.

S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A sim-
ple and flexible volume rendering framework for graphics-
hardware-based raycasting. In Proceedings of Volume
Graphics, pages 187-195, 2005.

D.-M. Tsai and C.-T. Lin.
lation for defect detection.
24(15):2625-2631, 2003.

Fast normalized cross corre-
Fattern Recognition Letters,

G. Turk and M. Levoy. Zippered polygon meshes from range
images. In Proceedings of SSIGGRAPH '94, pages 311-318,
1994.

J. Woetzel and R. Koch. Real-time multi-stereo depth esti-
mation on GPU with approximative discontinuity handling.

[12]

[13]

[14]

In Ist European Conference on Visual Media Production
(CVMP 2004), pages 245-254, 2004.

R. Yang and M. Pollefeys. Multi-resolution real-time stereo
on commodity graphics hardware. In Conference on Com-
puter Vision and Pattern Recognition, 2003.

R. Yang, M. Pollefeys, and S. Li. Improved real-time stereo
on commodity graphics hardware. In CVPR 2004 Workshop
on Real-Time 3D Sensors and Their Use, 2004.

R. Yang, G. Welch, and G. Bishop. Real-time consensus
based scene reconstruction using commodity graphics hard-
ware. In Proceedings of Pacific Graphics, pages 225-234,
2002.

