
Scanline Optimization for Stereo On Graphics Hardware

Christopher Zach Mario Sormann Konrad Karner

VRVis Research Center
Graz, Austria
zach@vrvis.at

Abstract

In this work we propose a scanline optimization proce-
dure for computational stereo using a linear smoothness
cost model performed by programmable graphics hard-
ware. The main idea for an efficient implementation of this
dynamic programming approach is a recursive scheme to
calculate the min-convolution in a manner suitable for the
parallel stream computation model of graphics processing
units. Since many image similarity functions can be effi-
ciently calculated by modern graphics hardware, it is rea-
sonable to address the final disparity extraction by graphics
processors as well. Our timing results indicate that the pro-
posed approach is beneficial for larger image resolutions
and disparity ranges in particular.

1. Introduction

Utilizing modern programmable graphics processing
units (GPU) for non-graphical computations has gained in-
terest in the last years for several reasons: at first, the
raw computational power of GPUs has increased much
more than for traditional CPUs, partially because the spe-
cific programming model of GPUs enables strong paral-
lelism to be employed. The underlying stream computa-
tion model is perfectly suited for several numerical appli-
cations. Additionally, the intrinsic texture mapping capa-
bilities allow at least a linearly filtered subpixel access to
image data, which is of substantial interest in image pro-
cessing and early vision applications. Finally, the program-
ming interfaces and feature sets of graphics hardware have
recently stabilized, which allows easier developement of
GPU-accelerated methods.

Depth and disparity estimation using the GPU as parallel
processing unit is usually restricted to a final winner-takes-
all extraction method, or alternatively a refinement proce-
dure iteratively modifying the depth map is employed. Ex-
act or approximate global inter- or intrascanline methods

are almost always performed by traditional CPUs due to the
required in-place (or destructive) value updates only poorly
supported by GPUs.

In this work we propose a GPU-based computational
stereo approach using scanline optimization to achieve opti-
mal intrascanline disparity maps. Since we employ a linear
discontinuity cost model, the central part of the procedure is
the calculation of the appropriate min-convolution, which is
usually implemented as two pass method using destructive
array updates. We replace the in-place updates by a recur-
sive doubling scheme suited for stream programming mod-
els. Consequently, the entire dense estimation pipeline from
matching cost computation to global optimization to obtain
the disparity resp. depth map is performed by the GPU and
only the control flow is maintained by the CPU.

2. Related Work

An introduction to the computational model of graphics
processing units and an overview of non-graphics related
applications using the GPU can be found in [9]. Employing
programmable hardware as a parallel stream processor and
the mapping of a high level parallel language to GPUs is
discussed in [2].

Using the efficient image interpolation capabilities and
the parallel computation model of modern, programmable
GPUs for real-time or near real-time multi-view depth
estimation is addressed by several authors. Many of
these approaches are based on a plane-sweep strategy typ-
ically combined with a winner-takes-all depth extraction
method [13, 12, 11]. The initial depth map obtained by
plane-sweeping can be refined incorporating adjacency in-
formation to generate higher quality depth images [3].

After computing the matching costs and an optional spa-
tial aggregation step, the depth values are typically ex-
tracted by a winner-takes-all approach, which can be ef-
ficiently performed by the GPU using the z-buffer capa-
bility. Global, energy-based approaches to computational
stereo are infrequently addressed: variational methods for

depth estimation on the GPU are described in [8] and [14].
Depth estimation on the GPU using the dynamic program-
ming paradigm seems to be only addressed by Gong and
Yang [6]. Their proposed approach is based on the Potts dis-
continuity cost model, which substantially simplifies (and
accelerates) the dynamic programming step. They com-
pared a pure GPU-based implementation with a mixed one,
which uses the GPU only for dissimilarity calculation and
aggregation. The authors concluded, that the mixed imple-
mentation is substantially faster than the pure GPU version.
Timing results for a pure CPU version were not presented.

3. Scanline Optimization and Min-Convolution

Scanline optimization [10] searches for a globally opti-
mal assignment of disparity values to pixels in the current
(horizontal) scanline, i.e. it finds

arg min
dx

W∑
x=1

(D(x, dx) + λV (dx, dx−1)) ,

where D(x, d) is the image dissimilarity cost and V (d, d′)
is the regularization cost. As in all dynamic programming
approaches to stereo, different scanlines are treated inde-
pendend from the neighboring ones (which may result in
vertical streaks visible in the disparity image).

The optimal assignment can be efficiently found using
a dynamic programming approach to maintain the minimal
accumulated costs sumCost(x, d) up to the current posi-
tion x:

sumCost(x + 1, d) = D(x + 1, d) +
min
d1

(sumCost(x, d1) + V (d, d1)) .

In a linear discontinuity cost model we have V (d, d1) =
λ|d− d1| and the calculation of

min
d1

(sumCost(x, d1) + λ|d− d1|)

for every d can be performed in linear time using a forward
and a backward pass to compute the lower envelope [5].
The linear-time procedure to calculate the min-convolution
is given in Algorithm 1.

This procedure is not directly suitable for GPU imple-
mentation, since it relies at first on in-place array updates
and secondly, a linear number of passes is required to up-
date the entire array h.1

The basic idea to enable a GPU implementation of
min-convolution is utilizing a recursive doubling approach,

1Using the depth test with the same depth buffer as texture source and
target buffer would allow the direct implementation, but this approach re-
sults in undefined behaviour according to the specifications. Such an ap-
proach would have additional disadvantages, mainly the reduced ability to
utilize the parallelism of the GPU.

Algorithm 1 Procedure to calculate the lower envelope ef-
ficiently
Procedure Min-Convolution
Input: Output h[]

for d = 1 . . . k do
h[d]← sumCost(x, d)

end for
{Forward pass}
for d = 2 . . . k do

h[d]← min(h[d], h[d− 1] + λ)
end for
{Backward pass}
for d = k − 1 . . . 1 do

h[d]← min(h[d], h[d + 1] + λ)
end for

which is outlined in Algorithm 2. Recursive doubling [4] is
a common technique in high-performance computing to en-
able parallelized implementations of sequential algorithms.
This technique is frequently used in GPU-based applica-
tions to perform stream reduction operations like accumu-
lating all values of a texture image [7].

If we focus on the forward pass in Algorithm 2, the pro-
cedure calculates the result of the forward pass for subse-
quently longer sequences ending in d. Initially, h+

0 [d] con-
tains the min-convolution of the single element sequence
[d, d]. In every outer iteration with index L the handled
sequence is extended to [d − 2L, d] and its length is dou-
bled. Note, that h+[d] is defined to be∞ (i.e. a large con-
stant), if d is outside the valid range [1 . . . k]. After all it-
erations, h+[d] contains the correct result of the forward
pass, which can be easily shown by induction. The same
argument applies to the backward pass, hence this proce-
dure yields to the desired result. In addition to the lower
envelope h the disparity values for which the minimum is
attained are tracked in the array disp[].

Note that the updates in the loops over d are independent
and can be performed as parallel loop. In GPGPU terminol-
ogy, the bodies of these loops are computational kernels [2].
Additionally, the scanlines of the images are treated inde-
pendently, therefore the min-convolution can be performed
for all scanlines in parallel.

Figure 1 gives an illustration of the first few iterations in
the forward pass of Algorithm 2. Since the next iteration
of the outer loops in the min-convolution algorithm refers
only to values generated in the previous iteration, only two
arrays must be maintained (instead of a logarithmic number
of arrays). The role of this two arrays is swapped after every
iteration; the destination array becomes the new source and
vice versa. In GPU terminology, these arrays correspond to
render-to-texture targets, and alternating the roles of these
textures is referred as ping-pong rendering.

2

Algorithm 2 Procedure to calculate the lower envelope us-
ing recursive doubling
Procedure Min-Convolution using Recursive Doubling
{Forward pass}
for d = 1 . . . k do

h+
0 [d]← sumCost(x, d)

disp[d]← d
end for
for L = 0 . . . dlog2(k − 1))e do

for d = 1 . . . k do
d1 ← d− 2L

h+
L [d]← min(h+

L−1[d], h+
L−1[d1] + λ 2L)

disp[d]← arg mind(h+
L−1[d], h+

L−1[d1] + λ 2L)
end for

end for
{Backward pass}
for d = 1 . . . k do

h−0 [d]← h+
L [d]

end for
for L = 0 . . . dlog2(k − 1))e do

for d = 1 . . . k do
d1 ← d + 2L

h−L [d]← min(h−L−1[d], h−L−1[d1] + λ 2L)
disp[d]← arg mind(h−L−1[d], h+

L−1[d1] + λ 2L)
end for

end for
Return h−log2(k−1) and disp

E’’

E’

EDCBA

A’

A’’

D’C’B’

B’’ D’’C’’

min(D+1,E)

min(C’+2,E’)min(A’+2,C’) min(B’+2,D’)

min(C+1,D)min(B+1,C)min(A+1,B)

B’

A

A’

Figure 1. Graphical illustration of the forward
pass using a recursive doubling approach.

The full linear discontinuity cost model is often not ap-
propriate and a truncated linear cost model with V (d, d1) =
λ min(T, |d − d1|) is preferable. If T is chosen to be a
power of two, the truncated cost model can be incorpo-
rated without an additional performance penalty into Algo-
rithm 2 by replacing the λ 2L smoothness cost term in the
min-convolution algorithm by λ min(T, 2L). For other val-
ues of T an additional pass over the sumCost(x, ·) array is
required [5]. We restrict our implementation to the pure lin-
ear model resp. to the truncated model with power-of-two
thresholds.

4. Overall Procedure

This section describes the basic procedure for scanline
optimization on the GPU, which consists of several steps.
The outline of the overall procedure is presented in Algo-
rithm 3. The input consists of two rectified images with
resolution W ×H . The range of potential disparity values
is [dmin, dmax] with k elements.

The procedure traverses vertical scanlines positioned at
x from left to right. At first the dissimilarity of the current
scanline at x in the left image with the set of vertical scan-
lines [x + dmin, x + dmax] is calculated, resulting in a tex-
ture image with dimensions H and k. The dissimilarity is
either a sum of absolute differences aggregated in a rectan-
gular window or the sampling insensitive pixel dissimilarity
score proposed in [1].

If the first scanline is processed, the texture stor-
ing sumCost is initialized with the dissimilarity score.
For all subsequent scanlines the lower envelope of
sumCost is computed using Algorithm 2 to obtain
mind1 (sumCost(x− 1, d1) + λ|d− d1|) for every row y
and disparity value d. The computation of the lower enve-
lope keeps track of the disparity value, where the mininum
is attained (we refer to Section 5.2 for a detailed description
of the efficient disparity tracking). These tracked disparities
are read back into main memory for the subsequent optimal
disparity map extraction. Afterwards, the sumCost array
is incremented by the dissimilarity score of the current ver-
tical scanline.

If the final scanline is reached, the total accumu-
lated sumCost is read back in order to determine
the optimal disparities for the last column given by
arg mind sumCost(W,d). With the knowledge of the dis-
parities for the final column, the disparities for previous
columns can be assigned by a backtracking procedure.

5. GPU Implementation Enhancements

The basic method outlined in the last section does not
utilize the free parallelism of fragment program operations,
which work on four component vectors simultaneously.
Consequently, the performance of the method can be sub-
stantially improved if this inherent parallelism is taken into
account.

5.1. Fewer Passes Through Bidirectional
Approach

Essentially, W passes of the min-convolution procedure
are required to obtain the final sumCost values and the cor-
responding disparity map. This number can be effectively
halved, if scanline optimization is applied at two opposing
horizontal positions simultaneously finally meeting in the

3

Algorithm 3 Outline of the scanline optimization procedure
on the GPU
Procedure Scanline optimization on the GPU

for x = 1 . . .W do
Compute the image dissimilarity for the vertical
scanline at x and all possible disparities, resulting in
scoreTex
if x = 1 then
sumCostTex := scoreTex

else
Calculate the lower envelope h of sumCostTex
resulting in lowerEnvTex.
Read back tracked disparities from
lowerEnvTex.
sumCostTex := lowerEnvTex + scoreTex

end if
if x = W then

Read back the accumulated cost for the final
column from sumCostTex.

end if
end for
Extract final disparity map by backtracking

central position. More formally, let sumCostfw(x, d) be
the accumulated cost starting from x = 1 and sumCostbw

the cost beginning at x = W , which are computed simu-
latenously using parallel fragment operations. If we assume
even W , in every iteration the values for sumCostfw(x, d)
and sumCostbw(W − x + 1, d) are determined. The itera-
tions stop at x0 := W/2 + 1 and the total cost for optimal
paths with disparity d at position x0 is

sumCostfw(x0, d) + sumCostbw(x0, d)−D(x0, d).

Hence the initial disparity assigned to x0 is the disparity at-
taining the minimum of this sum and the complete disparity
map can be extracted by the backtracking procedure as al-
ready outlined. Since multi-pass rendering comes with sub-
stantial costs, this modification of the procedure reduces the
total runtime by approximately 45% for 384× 288 images.

5.2. Disparity Tracking and Improved Par-
allelism

Using a bidirectional approach does not only reduce the
number of passes, but the parallelism of the fragment pro-
cessor is employed to some extent – two sumCost val-
ues are handled in parallel (sumCostfw and sumCostbw).
Since GPUs are designed to operate on vector values with
four components, an additional performance gain can be ex-
pected if four sumCost values are stored in the color chan-
nels for every pixel.

Note that the calculation of the lower envelope for
sumCost is not enough, since the appropriate disparity val-
ues attaining the minimum must be stored as well in order
to enable an efficient backtracking phase. If one assumes
integral disparity values, image dissimilarity scores and an
integral smoothness weight λ, then sumCost and h are in-
teger numbers as well. Hence, the associated disparity can
be encoded in the fractional part of h. Furthermore, no addi-
tional operations are needed to track the disparities attaining
the minimal accumulated costs. Of course, in case of ties in
the min-convolution procedure, disparities with smaller en-
coded fractions are prefered (which is as good as any other
strategy).

Encoding the disparity value in the fractional part of
floating point numbers limits the image resolution in or-
der to avoid precision loss. If the dissimilarity score is an
integer from the interval [0, T], then the total accumulated
cost is at most (W/2 + 1)× T , where W is the source im-
age width. If the dissimilarity score is discretized into the
range [0, 255], 16 bit of the mantissa are required to encode
sumCost for half PAL resolution (W = 384), which leaves
enough accuracy to encode the disparities in the fractional
part. The sign bit of the floating point representation can be
additionally incorporated by centering the range of dissimi-
larity scores around 0.

Utilizing this compact representation for accumulated
cost/disparity pairs allows us to handle two horizontal scan-
lines in parallel, thereby reducing the effective image height
to the half for the min-convolution. Figure 2 illustrates the
parallel processing of two vertical scanlines in the bidirec-
tional approach, and the assignment of the RGBA channels
to pixel positions.

R

B A

G

B

R G

A

R

B

G

A

Figure 2. Parallel processing of vertical scan-
lines using the bidirectional approach for op-
timal utilization of the four available color
channels. The arrows indicate the progres-
sion of the processed scanlines in consecu-
tive passes.

4

5.3. Readback of Tracked Disparities

After the lower envelope is computed, the encoded
tracked disparities are read back into main memory to be
available for the final back tracking procedure. The tracked
disparity values encoded in the fractional part of the lower
envelope are extracted directly on the GPU into an 8-bit
framebuffer (which is efficient, since fragment programs on
NVidia hardware support native instructions to get the frac-
tional part of a floating point number). The tracked dispar-
ities are now read back as byte channels. We discovered,
that this approach is the fastest, since the usually expensive
conversion from floating point numbers to integers is per-
formed on the GPU without a performance penalty and the
amount of data to be read back is substantially reduced.

6. Results

At first we give timing results for CPU and GPU im-
plementation of scanline optimization software. The CPU
version is a straighforward C++ implementation using the
min-convolution as described in Algorithm 1. The dispar-
ity map is determined for successive scanlines. Code opti-
mization is left to the compiler. The GPU implementation
is based on OpenGL using the frame buffer extension and
the Cg language.

The timing tests are performed on two hardware plat-
forms: the first platform is a PC with a 3 GHz Pentium 4
CPU (CPUA) and an NVidia Geforce 6800 graphics board
(GPUA) running Linux. The C++ source is compiled with
gcc 3.4.3 and -O2 optimization. The second system is a
PC with an AMD Athlon64 X2 4400+ CPU (CPUB) and a
Gefore 7800GT graphics hardware (GPUB). The employed
compiler is gcc 4.0.1 again with -O2 optimization.

Table 1 displayed the obtained timing results. Tsukuba
1x denotes the original well-known dataset with 384× 288
image resolution and 15 possible disparity values. Tsukuba
2x and 4x denote the same dataset, which is resized to
768 × 288 resp. 1536 × 288 pixels. The possible dispar-
ity range consists of 30 and 60 values, respectively. We se-
lect horizontal stretching of the image to simulate sub-pixel
disparity estimation.

The Pentagon dataset is another common stereo dataset
with 512 × 512 pixels resolution and 16 potential disparity
values (Pentagon 1x). Resizing the images to 1024 × 1024
resolution yields the Pentagon 2x dataset (32 disparities).
The image similarity function in all datasets is the SAD us-
ing a 3×1 window calculated on grayscale images. In order
to avoid the memory consuming 3D disparity image space
the image dissimilarity is calculated on demand for the cur-
rent vertical scanline.

The results in Table 1 clearly indicate that the multi-
pass GPU method is significantly slower than the CPU ver-

CPUA GPUA CPUB GPUB

Tsukuba 1x 0.0462 0.1180 0.0373 0.0678
Tsukuba 2x 0.1891 0.2911 0.1387 0.1565
Tsukuba 4x 0.7257 1.0082 0.5655 0.4566
Pentagon 1x 0.1261 0.1877 0.0953 0.1165
Pentagon 2x 0.9458 1.0381 0.7065 0.4930

Table 1. Average timing result for various
dataset sizes in seconds/frame.

sion for small image resolutions. For higher resolutions the
speed is roughly equal resp. the GPU version shows better
performance depending on the hardware. Note that most
time is actually spent in the scanline optimization proce-
dure itself; only about 15-20% of the frame time is spent to
calculate this particularly simple image dissimilarity. Ad-
ditionally, the CPU-based backtracking part to extract the
optimal disparities has a negligible impact on the total run-
time.

The required time grows almost linearly on the CPU with
increasing resolution, which is in contrast to the GPU curve.
In theory, the 4 times stretched Tsukuba dataset should re-
quire the 16-fold runtime (fourfold number of disparities
and horizontal pixels). The CPU version matches this ex-
pectation largely (15.1 and 15.7-fold runtime), whereas the
GPU shows a sublinear behaviour (8.5 resp. 6.7-fold run-
time). At low resolutions the setup times for frame buffers
etc. become a more dominant fraction of the total runtime.

In order to provide a visual proof for the correctness of
the proposed GPU implementation, the disparity maps for
the Tsukuba dataset at different resolutions are shown in
Figure 3.

7. Discussion

From the timing results presented in the previous section
it can be concluded, that a GPU-based scanline optimization
procedure is mostly suitable for larger images and disparity
ranges, but not truly appropriate for realtime applications
in particular. For small image resolutions the overhead of
multipass rendering is still too significant to take advantage
of the processing power of modern GPUs. Additionally, a
scanline optimization procedure using a linear smoothness
cost model is better dedicated for larger disparity ranges,
where a (potentially truncated) linear model is preferable
over the Potts model. If the disparity range contains only a
few values, enforcing smooth disparity maps is futile, since
consecutive values in the disparity range typically corre-
spond to substantial depth discontinuties. Hence, a linear
model is not effective in case of few potential disparities and
a different approach like the near-realtime reliable dynamic
programming (RDP) approach [6] is better suited. On the

5

(a) 1x (b) 2x (c) 4x

Figure 3. Disparity images for the Tsukuba dataset for increasing horizontal resolutions generated
by the GPU-based scanline approach.

contrary, we believe that the Potts model used in the RDP
approach is not appropriate for high-quality reconstruction
applications. Consequently, future investigations will ad-
dress non-realtime, but still interactive multi-view model
generation.

A mixed computation approach with the GPU calculat-
ing and aggregating the similarity scores and the CPU per-
forming the final depth extraction is possible as well. Sev-
eral image resampling operations like distortion removal
and source image rectification can be performed efficiently
by the GPU due to its dedicated texturing hardware. A
mixed approach has the disadvantage that a significant
amount of data is transfered between the GPU and the CPU,
which may require additional data conversion. In our setting
with the simple 3 × 1 SAD window the performance of a
mixed approach (0.106s for the Tsukuba 1x dataset) is only
slightly faster than the pure GPU method, but considerably
slower than the pure software implementation. Conversely,
if image dissimilarity calculation is more demanding and
can be efficiently performed by the GPU, a pure GPU-based
pipeline for dense stereo might be beneficial, since the CPU
is free to perform other tasks (e.g. data transfer from a video
camera, or high level interpretation of the obtained dispar-
ity maps). Definite timing results and conclusions require
further investigations.

8. Summary and Future Work

In this paper we propose a scanline optimization proce-
dure for disparity estimation suitable for stream architec-
tures like modern programmable graphics processing units.
Although the direct implementation of scanline optimiza-
tion using destructive (i.e. in-place) value updates must be
replaced by a more expensive recursive approach, the huge
computational power of current GPUs turns out to be ben-
eficial for larger image resolutions and disparity ranges.
Consequently, the entire disparity estimation pipeline com-

prising of matching score computation and global disparity
extraction can be performed on graphics hardware, thereby
avoiding the relatively costly data transfer between the CPU
and the GPU.

Future work will focus on the incorporation of the pro-
posed method into our high-performance multi-view 3D
reconstruction workflow, which uses currently a winner-
takes-all depth extraction approach. Two items need to be
addressed in particular: at first, the relatively small number
of disparity values is replaced by a larger number of depth
hypotheses in order to obtain highly accurate models. To-
gether with the increased image resolutions in this setting
the disparity/depth encoding scheme may require an adap-
tion. Additionally, the simple SAD like dissimilarity mea-
sure needs to be replaced by a correlation function, which
is more robust under changing lighting conditions (like the
normalized cross correlation). The efficient calculation of
such similarity measures without generating the full dispar-
ity space image is one goal of future studies.

Acknowledgments

This work has been done in the VRVis research cen-
ter, Graz and Vienna/Austria (http://www.vrvis.at), which
is partly funded by the Austrian government research pro-
gram Kplus.

References

[1] S. Birchfield and C. Tomasi. A pixel dissimilarity measure
that is insensitive to image sampling. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20(4):401–406,
1998.

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan. Brook for GPUs: Stream
computing on graphics hardware. In Proceedings of SIG-
GRAPH 2004, pages 777–786, 2004.

6

[3] N. Cornelis and L. Van Gool. Real-time connectivity con-
strained depth map computation using programmable graph-
ics hardware. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1099–1104, 2005.

[4] P. Dubois and G. H. Rodrigue. An analysis of the recursive
doubling algorithm. High Speed Computer and Algorithm
Organization, pages 299–307, 1977.

[5] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient be-
lief propagation for early vision. In IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR 2004), pages 261–268, 2004.

[6] M. Gong and Y.-H. Yang. Near real-time reliable stereo
matching using programmable graphics hardware. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 924–931, 2005.

[7] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and
A. Lastra. Fast summed-area table generation and its appli-
cations. In Proceedings of Eurographics 2005, pages 547–
555, 2005.

[8] J. Mairal and R. Keriven. A GPU implementation of varia-
tional stereo. Technical Report 05-13, CERTIS, 2005.

[9] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. E. Lefohn, and T. J. Purcell. A survey of
general-purpose computation on graphics hardware. In Eu-
rographics 2005, State of the Art Reports, pages 21–51,
2005.

[10] D. Scharstein and R. Szeliski. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. Int.
J. Comput. Vision, 47(1-3):7–42, 2002.

[11] J. Woetzel and R. Koch. Real-time multi-stereo depth esti-
mation on GPU with approximative discontinuity handling.
In 1st European Conference on Visual Media Production
(CVMP 2004), pages 245–254, 2004.

[12] R. Yang, M. Pollefeys, and S. Li. Improved real-time stereo
on commodity graphics hardware. In CVPR 2004 Workshop
on Real-Time 3D Sensors and Their Use, 2004.

[13] R. Yang, G. Welch, and G. Bishop. Real-time consensus
based scene reconstruction using commodity graphics hard-
ware. In Proceedings of Pacific Graphics, pages 225–234,
2002.

[14] C. Zach and K. Karner. PDE-based depth estimation on the
GPU. Technical report, VRVis Research Center, 2005.

7

