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Abstract

In this paper we propose a novel framework for effi-
ciently extracting foreground objects in so called short-
baseline image sequences. We apply the obtained segmen-
tation to improve subsequent 3D reconstruction results. Es-
sentially, our framework combines a graph cut based opti-
mization algorithm with an intuitive user interface. At first a
meanshift segmentation algorithm partitions each image of
the sequence into a certain number of regions. Additionally
we provide an intelligent graphical user interface for easy
specification of foreground as well as background regions
across all images of the sequence. Within the graph cut op-
timization algorithm we define new energy terms to increase
the robustness and to keep the segmentation of the fore-
ground object coherent across all images of the sequence.
Finally, a refined graph cut segmentation and several ad-
justment operations allow an accurate and effective fore-
ground extraction. The obtained results are demonstrated
on several real world data sets.

1. Introduction

Robust and accurate foreground/background detection in
image sequences is a crucial step in many applications for
computer vision and 3D reconstruction [20]. A detailed 3D
reconstruction of a complex object requires many images,
which in turn demands to segment those images, which can
be a tedious and time consuming process.

However, an automatic segmentation procedure is still
a challenging problem because of the ambiguity between
foreground and background regions. Due to this fact hu-
man assistance in combination with a well designed graph-
ical user interface can be essential to obtain a robust and
accurate foreground segmentation. Basically, this paper ad-
dresses the problem of extracting the foreground object in
an image sequence, which is embedded in an arbitrary en-
vironment. The main contribution of this work, in contrast

to video segmentation [18], is to deal with a highly vary-
ing background as well as foreground as typically provided
in image sequences used for 3D reconstruction. Thus, we
propose a feasible multiple view segmentation framework
based on graph cut optimization. Its power can be derived
from the fact that labeled image sequences simplify the cor-
respondence problem dramatically and therefore, dense 3D
reconstruction results of complex objects can be substan-
tially improved.

The structure of our system can be roughly separated
into the following major tasks. At first, an automatic pre-
processing step is initiated to segment each image of the
sequence in a certain number of regions by applying mean
shift analysis. Since we apply the graph cut optimization
on these generated regions, we are able to process large im-
age sequences in acceptable time. Subsequently, a graph
cut based optimization framework is combined with a novel
graphical user interface, which provides a robust and ac-
curate extraction of a foreground object, whose background
can not be removed in a simple way. Moreover, experiments
demonstrate that our method produces proper segmentation
results, while requiring only little effort from the user.

2. Related Work

Current state of the art foreground object extraction
methods can be roughly divided into two main categories:
boundary-based segmentation methods and region-based
segmentation methods. In the following we focus on those
methods which are closely related to our multiple view seg-
mentation framework.

2.1. Boundary-Based Segmentation

In general, boundary-based methods are highly assisted
by a human operator. These methods allow a user to trace
the foreground object roughly with any input device, e.g.
a mouse, whereas the system optimizes the initial object
boundary. One of the most popular approaches in this field



are intelligent scissors introduced by Mortenson and Barrett
[12] and JetStream proposed by Pérez et. al. [13]. The main
limitation of these method is the huge amount of necessary
user input, especially for highly textured regions, to obtain
a satisfying result.

2.2. Region-Based Segmentation

In region-based methods the human operator selects a
region inside the foreground object, allowing the system to
give the user a foreground suggestion, which can be fur-
ther modified by selecting additional regions. The simplest
region-based segmentation approach is the magic wand,
which is part of Adobe Photoshop [14] for many years. This
methods utilizes a user-specified point or region inside the
object, whereas the system computes a region set of con-
nected pixels that have similar color statistics to the selected
one.

Recently developed approaches utilize more sophisti-
cated probabilistic color models and optimization tech-
niques to improve the segmentation results. Well known
in this field are graph cut methods, originally invented by
Boykov and Jolly [1] and all its derivatives [11, 15]. These
methods are based on pixel labeling by energy minimiza-
tion. The user selects some foreground and background pix-
els, the so called seed points, with an input device and the
system determines the optimal boundary using a minimum-
cut/maximum-flow algorithm. The obtained segmentation
can be further enhanced by selecting more seed points.

More recently, graph cut algorithms also have been ap-
plied to video sequences, introduced by Li et. al. [10] and
Wang et. al. [18]. In contrast to our approach they as-
sume a static background, a slightly varying foreground and
only minor changes between successive frames, typically
provided by video sequences. However, this work is com-
parable with an earlier approach of foreground extraction
to improve a subsequent 3D reconstruction as proposed by
Sormann et. al. [17], but utilizes a combination of the mean
shift operator with the well known intelligent scissors tech-
nique.

In our system, mean-shift segmentation is applied to
each image of the sequence to achieve interactive feedback
for a human operator. Mean-shift analysis was originally
invented by Fukunaga and Hostetler [8] and recently suc-
cessfully applied to image segmentation and tracking by
Comaniciu and Meer [4]. The meanshift analysis approach
is defined as a gradient ascent search for maxima in a den-
sity function, defined over a high dimensional feature space.
The feature space includes a combination of the spatial co-
ordinates and all its associated attributes that are considered
during the analysis.

Shape priors combined with graph cuts, as proposed by
Freedman and Zhang [6], can further improve segmentation

results. Originally, shape priors are often combined with
level set methods [3], which represents a complete different
technique for image segmentation. Level set methods are
based on front propagation by solving corresponding par-
tial differential equations. Cremers et. al. [5] proposed a
variational approach, in which, besides a level set function
for segmentation, a new function called labeling function
is introduced to indicate the regions in which shape priors
should be enforced. We borrow the idea of shape priors to
increase the robustness of our multiple image segmentation
system.

3. Multiple View Segmentation

The framework of our system is shown in Figure 1. Basi-
cally our system proceeds along three major steps, namely
an automatic preprocessing step, a coarse graph cut based
segmentation task and finally a refined graph cut based seg-
mentation procedure. Additionally, we assume that the
input images are taken with short baseline, resulting in
smooth transitions of the foreground object between each
pair of successive images.

In the preprocessing step the image sequence is divided
into a certain number of regions by applying a mean shift
segmentation algorithm. Due to the fact that the graph is
build on these pre-computed regions, instead of image pix-
els we improve the efficiency and ensure instant feedback
during the segmentation procedure. The second task is as-
sisted by a human operator utilizing our novel user inter-
face, where a user can easily indicate foreground as well
as background regions, simultaneously in all images of the
sequence. Afterwards, an coarse graph cut based segmenta-
tion algorithm is performed considering previous computed
foreground/background color signatures and gradient infor-
mation between neighboring regions. Additionally, to in-
crease the robustness, we embed a shape prior in the opti-
mization framework. Since mean shift segmentation pro-
vides an acceptable set of object boundaries, we achieve an
appropriate segmentation result where the foreground ob-
ject is extracted almost correct. Nevertheless, in the final
stage a refined pixel-based graph cut segmentation is per-
formed in a small band around the coarse boundary. For
the remaining misclassified regions, for example if the fore-
ground/background color difference is negligible small, the
user is still in control and able to override the obtained seg-
mentation result.

3.1. Automatic Preprocessing

Since we process large image sequences for dense 3D
reconstruction, a pixel-based segmentation, as proposed by
Boykov and Jolly [1] is computational impossible. There-
fore we pre-segment each image of the sequence with the



Figure 1. Overview of our multiple view seg-
mentation pipeline: First, the input image se-
quence is over-segmented during the auto-
matic preprocessing stage. Then, based on
human assistance, a coarse graph cut opti-
mization procedure is initiated. The final task
consists of an automatic refinement of the
foreground object boundary.

meanshift segmentation algorithm and generate the graph
for the obtained regions. As shown in Li et.al. [11] such a
pre-processing clearly improves the interactive min-cut op-
timization and instant visual feedback is achievable. More-
over, we build a list of all pairs of adjacent mean shift re-
gions and pre-compute the link costs between each pair of
neighboring regions. Further details on link costs will dis-
cussed in Section 3.3.

3.2. User Interface Design

The basic idea of our user interface relies on the fact
that the image sequence is considered as a 3D image cube,
which is similar to a 3D video cube as proposed by Klein et.
al. [9]. They visualized a video in form of a 3D volume. Our
user interface design is inspired by this approach, which al-
lows an instant and simultaneous access to all images of the
sequence. Consequently, we provide three views to real-
ize a simple and fast indication of foreground/background

regions within the image sequence.

Figure 2. Illustration of our implemented user
interface, which splits the image stack into
three views, namely a xy-viewer (top left), a
xs-viewer (bottom-left) and a ys-viewer (top
right). The xy-viewer is represented by a
standard image viewer, whereas the xs/ys-
viewer represents a cut through the image
stack at a defined position. The blue curves
indicates the user selected region of interest,
which can be verified in the xy-viewer (shown
as blue overlay). The marked foreground re-
gions are highlighted as a green polygon in
the ys-viewer.

The image sequence is visualized as a 3D texture, where
the horizontal and vertical dimensions of the images are
covered by the X- respectively Y-axis, whereas the Z-axis
represents the stack of input images. Figure 2 shows our
implemented user interface, which contains three types of
windows: xy-viewer (top left), xs-viewer (bottom left) and
a ys-viewer (top right). In contrast to the xy-viewer, which
represents a standard image viewer, the xs/ys-viewer cov-
ers a cut at a defined position through the image stack. The
cut position can be interactively changed via sliders of the
xy-viewer, which allow a cut at any position through the im-
age stack. This enables a simultaneous access to all input
images for a human operator.

The required input data to initiate the coarse graph cut
optimization are confident background regions, based on a
region of interest covering the desired object, as well as a
certain number of reliable foreground regions. For the re-



gion of interest the user simply draws curves (blue curves)
over the xs-viewer, respectively ys-viewer, which enclose
the desired foreground object. Each curve in the xs-viewer
and ys-viewer defines a set of points in the corresponding
xy-viewer to build our required region of interest for the
complete image stack. Since the user can move through
the image stack, the correctness of the obtained background
regions can be easily verified at any time during the label-
ing procedure, shown as blue overlay in the xy-viewer in
Figure 2. On the other hand, the foreground regions are
extracted directly from the input viewers, exemplary illus-
trated as green polygon in the ys-viewer of our user inter-
face.

After all, the user initiates the coarse graph cut optimiza-
tion, which extracts the foreground object in all images with
reasonable speed. Naturally, if the segmentation result is
not satisfying the user can add more foreground regions and
perform graph cut optimization again.

3.3. Coarse Graph Cut Optimization

The multiple view segmentation problem is treated as
a binary labeling problem of the input image stack. Basi-
cally, each image is represented by a graph G = 〈V,E〉,
where V is the set of all nodes represented by the mean
shift regions and E is the set of all adjacent nodes, re-
spectively all adjacent mean shift regions. As known, the
labeling problem is to assign each region a unique label
r ∈ {0(background), 1(foreground)}. In general, the
solution can be obtained by energy minimization formu-
lated as a graph cut problem, discussed by Boykov and Kol-
mogorov [2] in more detail. For our graph cut optimization
the labeling problem is solved by minimizing the following
energy function E(X):

E(X) =
∑
r∈V

Ei(xr) + λ1

∑
(r,s)∈E

Ei(xr, xs)

+λ2

∑
(r,s)∈E

Es(xr, xs)
(1)

where Ei(xr) encodes the color similarity of region r to
the foreground/background color signature generated from
previous selected foreground/background regions. The sec-
ond energy term Ei(xr, xs) measures the color gradient be-
tween adjacent nodes r and s. The third term Es(xr, xs)
incorporates a shape prior obtained from previous image in
the graph cut optimization process. The weighting terms
are set in practice to λ1 = 0.7 and λ2 = 0.3. An outline of
our developed graph cut nodes is illustrated in Figure 3.

3.3.1 Likelihood Energy Ei(xr)

The likelihood energy encodes the similarity of the color
of a node xi to the selected foreground seed regions and

Figure 3. Outline of our implemented graph
cut nodes and their internal relationships.
According to the energy term Ei(xr) all re-
gions are connected to the virtual back-
ground (x = B) and foreground (x = F ) node
called source and sink respectively. Fur-
thermore Ei(xr, xs) link neighboring regions
(green edges), whereas Es(xr, xs) incorpo-
rate the shape prior energy obtained from the
previous segmented image to the current re-
gions (red edges), which enforces temporal
coherence.

background seed regions, denoted F and B respectively. So
far the user had already indicated these two sets of regions
in the image sequence, as discussed in Section 3.2. All
other regions are marked as uncertain regions, labeled U .
The basic idea behind our similarity estimation is to build a
color signature of the known background as well as of the
known foreground, similar to the one described in Fried-
land et.al. [7]. Essentially, the known regions are clustered
in the CIELAB space with a two stage k-d tree algorithm,
as proposed by Rubner et. al. [16]. The CIELAB color
space is explicitly designed to approximate human color
discrimination. In the first stage, initial clusters are found
by subdivision and stops when a cell becomes smaller than
a predefined threshold. Due to the fact that a cluster may
be distributed over a few cells the second stage recombines
them. Finally, the obtained color signatures for foreground
SF

j and background SB
k are used to compute the likelihood

energy Ei(xr) as follows:

r ∈ F r ∈ B r ∈ U

Ei(xr = F ) 0 ∞ dF
r

dF
r +dB

r

Ei(xr = B) ∞ 0 dB
r

dF
r +dB

r



Assignments of 0 and ∞ enforce consistent segmenta-
tion according to user input, whereas the distance dF

r =
min‖C(r) − SF

j ‖ encodes the minimum distance of the
color of region C(r) to the foreground color signature, re-
spectively dB

r = min‖C(r)− SB
k ‖ is defined accordingly.

3.3.2 Prior Energy Ei(xr, xs)

The prior energy Ei(xr, xs) measures the gradient along
the foreground object. To increase the robustness, we ex-
tend the energy term, as proposed in former approaches as
follows:

Ei(xr, xs) =
1

1 + κ
) (2)

κ = λ3 · Crs + λ4 · ∇rs (3)

Here Crs is the L2-Norm of the color difference of two re-
gions r and s and∇rs represents the local gradient intensity
on the shared boundary between region r and s. Note, that
the prior energy is non-zero only when the selected nodes
are set to contrary labels, e.g. xr = B and xs = F . In all
our experiments the weighting factors are fixed to λ3 = 0.6
and λ4 = 0.4.

3.3.3 Shape Prior Energy Es(xr, xs)

Freedman and Zhang [6] already introduced a segmentation
framework for still images, which incorporates shape pri-
ors in a graph cut based algorithm. We adopt their idea
and extend it to the more challenging problem of multi-
ple view segmentation. Consequently, in our framework
the shape prior energy is designed to keep the segmentation
of the foreground object coherent across all images of the
sequence. We embed the shape knowledge as shape prior
energy to the graph cut optimization process, which clearly
increases the robustness of our multiple view segmentation
framework.

Basically, we specify the shape prior as a regular un-
signed distance function and propagate as reference shape
the extracted contour of the previous image to the current
segmentation procedure. Due to the fact that the coarse
graph cut optimization is performed on image regions we
further convert the pixel-based distance function to a region-
based distance function, based on simple averaging of the
distance values on the region boundary. In case of varying
positions of the foreground object in the image sequence,
a translation of the template, utilizing our current region of
interest, might be necessary.

Obviously, for the first image of the sequence no refer-
ence shape can be extracted and the shape prior energy is set
to zero. Now, the shape prior energy is defined as follows:

Es(xr, xs) =
∑

r,s∈E

Ψtrans(
r + s

2
) (4)

where Ψtrans tends to be small near the shape template and
thus incorporates shape coherence between adjacent image
pairs in the graph cut optimization process.

As mentioned, the objective function of Equation 1 is
finally minimized using the min-cut algorithm in [2]. Fig-
ure 4 illustrates all implemented energy terms, visualized
on an image of the equestrian statue.

(a) (b)

(c) (d)

Figure 4. Illustration of implemented energy
terms, visualized on one image of the eques-
trian statue data set. (a) Foreground likeli-
hood energy Ei(xr = F ). (b) Background like-
lihood energy Ei(xr = B). (c) Prior energy
Ei(xr, xs) (d) Shape prior energy Es(xr, xs).
Note, that all energies are globally minimized,
utilizing graph cut optimization, which allows
us to separate the foreground object in a
complex moving background.

3.4. Refined Graph Cut Optimization

Since the coarse graph cut optimization is based on mean
shift regions, the boundary of the extracted foreground ob-
ject is usually somehow jagged. Additionally, there can be
still some missegmentation, especially around low contrast
edge boundaries. The refined graph cut optimization is de-
signed to refine the obtained coarse segmentation and fur-
ther provide simple tools to correct produced missegmenta-
tion.



(a) (b)

Figure 5. Illustration of refined graph cut seg-
mentation in a small band around the initial
segmentation, showing a statue of St. Bar-
bara. (a) Only pixels in the red band are con-
sidered for the pixel based graph cut opti-
mization. (b) Close-up of (a) showing fore-
ground seeds (green) and background seeds
(blue).

Unlike the first stage, we perform a pixel based graph cut
within a narrow band of the coarse boundary to refine the
border. First of all, the coarse boundary is simplified into
a editable polygon. Then, we build in a small band around
the simplified polygon a pixel-based graph:

E(X) =
∑

p∈VB

E(xp) + λ1

∑
(p,q)∈EB

E(xp, xq) (5)

where VB are all pixels in the small band and EB represents
the eight-neighborhood between pixels. In our experiments
the width of the band is fixed to eight pixels. Likelihood en-
ergy E(xp) and prior E(xp, xq) are defined as in the coarse
graph cut optimization, except that the regions are replaced
by pixels. The seed pixels to compute the foreground as
well as background color signature are acquired from the
inner boundary band, respectively from the outer boundary
band, as illustrated in Figure 5. λ1 is identical to the weight-
ing term in Equation 1.

4. Experiments

All presented experiments are performed on a 3.4 GHz
PC with 2GB main memory and a GeForce 7800 GT with
256MB graphics memory. The image sequences are taken
with a calibrated digital consumer camera. The image res-

olution of the demonstrated data sets is fixed to 2032x1352
pixels.

Table 1 illustrates the complexity and processing perfor-
mance of four real world image sequences. The automatic
preprocessing time was approximately 35-45% of the over-
all segmentation time, whereas the time for coarse and re-
fined graph cut optimization is acceptably small. Human
operator time correlates directly with the complexity of the
scene, thus complex background or low contrast edges typ-
ically yield to more user interaction.

Figure 6(a) shows the garden gnome data set. The gar-
den gnome is approximately 23cm tall with a diameter of
10cm. As the image sequence consists of high contrast
edges and large color differences between foreground and
background, almost no human assistance was necessary to
achieve a reasonable segmentation result. More challeng-
ing data sets are illustrated in Figure 6(b-d). In the case
of the statue of St.Barbara our framework has to deal with
quite similar foreground and background colors, thus more
human assisted overriding operations are performed. This
statue is 55cm tall with a diameter of 13cm at the pedestal.
The ceremonial room statue exhibits a very complex back-
ground and partially low contrast edges. Similar problems
are obtained for the equestrian statue data set. Both objects
are approximately 2.5m high.

As already mentioned, sometimes our multiple view seg-
mentation framework fails and produces incorrect segmen-
tation results. Therefore we provide several simple tools,
which allow a user to directly control the object bound-
ary. As in other approaches we allow direct vertex editing
and overriding operations. If a user prefers boundary based
techniques, we incorporate the so called live wire brush,
which replaces a specified segment of the objects bound-
ary. Such a tool can be especially useful for thin structures,
where a direct boundary control is clearly helpful. The last
column of Table 1 reports the used time for these operations.

As soon as the foreground object is extracted an optional
GPU-based dense matching [19] is initiated. Moreover, af-
ter volumetric range image integration we obtain a complete
3D model of the extracted foreground object. On the right
hand side of Figure 6 generated depth maps as well as the
complete 3D reconstructions are shown.

5. Conclusion

In this work we present a graph cut based foreground
extraction framework, that performs well in terms of effi-
ciency, robustness and accuracy. The primary purpose of
our method is the improvement of our 3D reconstruction
results. Moreover, the tedious task of an interactive seg-
mentation of all images are clearly reduced, since our novel
user interface provide a direct access to all images across
the sequence.



Dataset Images Pre-Pr. [sec.] C. Min-Cut [sec.] R. Min-Cut [sec.] U. S. [min.] U. O. [min.]
Garden gnome 21 ≈ 195 8.4 13.23 ≈ 3 ≈ 1
St. Barbara 42 ≈ 380 21.1 27.3 ≈ 4 ≈ 10
Ceremonial statue 19 ≈ 175 12.35 12.73 ≈ 3 ≈ 8
Equestrian statue 55 ≈ 500 30.25 34.1 ≈ 4 ≈ 16

Table 1. Illustration of complexity and processing performance of four real world data sets. In con-
trast to coarse min-cut (C. Min-Cut) and refined min-cut (R. Min-Cut), automatic preprocessing (Pre-
Pr.) takes 35-45% of the overall processing time. The rest of the processing time is assigned to
user interaction indicating foreground/background seeds (U. S.) with our previous discussed user
interface and overriding operations (U. O.) to correct segmentation errors.

Though the results are very promising, there are several
improvements than can be made to our approach. In order
to further increase the robustness, incorporation of the rela-
tive pose information of the cameras might help to achieve
this goal. Another interesting problem for future work is
to develop 3D adjustment tools, in order to correct faulty
segmentation over several images simultaneously.
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Figure 6. Original image on the left, multiple view segmentation results in the middle and achieved
3D reconstruction on the right. (a) Garden gnome image sequence. (b) Statue of St. Barbara. (c)
Ceremonial room statue. (d) Equestrian statue.


