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Scalable Hybrid Unstructured and Structured Grid Raycasting

Philipp Muigg, Markus Hadwiger, Helmut Doleisch, Helwig Hauser

Abstract — This paper presents a scalable framework for real-time raycasting of large unstructured volumes that employs a hybrid
bricking approach. It adaptively combines original unstructured bricks in important (focus) regions, with structured bricks that are
resampled on demand in less important (context) regions. The basis of this focus+context approach is interactive specification of a
scalar degree of interest (DOI) function. Thus, rendering always considers two volumes simultaneously: a scalar data volume, and the
current DOI volume. The crucial problem of visibility sorting is solved by raycasting individual bricks and compositing in visibility order
from front to back. In order to minimize visual errors at the grid boundary, it is always rendered accurately, even for resampled bricks.
A variety of different rendering modes can be combined, including contour enhancement. A very important property of our approach
is that it supports a variety of cell types natively, i.e., it is not constrained to tetrahedral grids, even when interpolation within cells is
used. Moreover, our framework can handle multi-variate data, e.g., multiple scalar channels such as temperature or pressure, as well
as time-dependent data. The combination of unstructured and structured bricks with different quality characteristics such as the type
of interpolation or resampling resolution in conjunction with custom texture memory management yields a very scalable system.

Index Terms —Volume Rendering of Unstructured Grids, Focus+Context Techniques, Hardware-Assisted Volume Rendering
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1 INTRODUCTION

Unstructured grids are an important volumetric representation that
is especially common in the field of computational fluid dynamics
(CFD), e.g., simulations of engineering problems computed with fi-
nite volume methods. Real-world simulation grids are often comprised
of a variety of cell types, such as tetrahedra, hexahedra, octahedra,
and prisms. However, most rendering approaches convert general un-
structured grids into tetrahedral grids in a pre-processing stage and
only handle tetrahedra during actual rendering. This subdivision of
more complex cells into linear subcells, however, naturally prevents
interpolation of aC1-continuous function within non-tetrahedral cells.
Thus, it is desirable for many real-world applications to avoid tetra-
hedralization for rendering, which is a major goal of our rendering
method. Naturally, another challenge for rendering is the number of
cells, which can easily be several hundred thousand or even millions
of cells. Avoiding tetrahedralization also reduces the number of cells
that need to be rendered significantly. Figure 2 shows a dataset of a
generator that contains six million cells of mixed type (for one time
step), which can be rendered interactively by our system.

The four main approaches for GPU-based rendering of unstructured
grids arecell projectionvia the projected tetrahedra algorithm [22],
raycasting[29], resamplinginto a structured grid followed by render-
ing this grid instead of the original unstructured grid [33], andpoint-
based approaches[35]. One of the most important problems when
rendering unstructured grids is to obtain a correct visibility order. Cell
projection and point-based approaches require explicit visibility sort-
ing to be performed, which is a major bottleneck of these methods.
Raycasting approaches implicitly produce a correct visibility order,
and thus do not need to perform explicit cell sorting at all. This prop-
erty is a huge advantage of raycasting approaches and makes them
competitive with cell projection when for the latter not only the time
for projection and rendering but also for sorting is considered. Our
framework employs raycasting as basic rendering method, but in con-
trast with similar approaches does not require the entire grid to be
resident in GPU memory due to bricking.

Another important problem is how data interpolation is performed.
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Although CFD simulations are commonly computed on a per-cell ba-
sis (cell-centered data), visualization with interpolation usually builds
on data values given at the vertices of the grid (vertex-centered data).
If necessary, conversion between these different representations can be
performed. The main problem, however, is how to perform interpola-
tion when rendering general unstructured cell types. Cell projection
is usually restricted to tetrahedral cells and thus linear interpolation,
i.e., barycentric interpolation within individual tetrahedra. An impor-
tant goal of our work is to be able to render the original cells, and
thus also to perform consistent interpolation in these cells. A power-
ful method for interpolating general polygons aremean value coordi-
nates[8], which have been extended for closed triangular meshes [13]
and for general polyhedra [17]. Our method offers different interpo-
lation options and builds on mean value coordinates for high-quality
interpolation in general cells.

The approach presented in this paper renders large, and possibly
time-dependent, unstructured grids in real-time by performing raycast-
ing through a hybrid unstructured and structured brick subdivision of
the original unstructured grid. We employ afocus+contextapproach
where the goal is to render as many bricks as possible using the orig-
inal cells, especially bricks in thefocus, and render less important
bricks in thecontextusing a structured grid obtained via on-the-fly re-
sampling. Focus and context regions are selected via interactive speci-
fication of a degree of interest (DOI) function [5]. DOI values in[0,1]
are specified for each grid vertex or cell, and constitute an additional
volume that is always used during rendering in addition to measured
or simulated data values such as temperature or pressure. That is, our
system handles multi-variate scalar data and at any one time renders
one selected scalar channel such as temperature in conjunction with
the scalar DOI function. The original grid cells are never subdivided
into tetrahedra, but are rendered directly using one of several options
for data interpolation. Scalability is mainly achieved by combining:
• Unstructured and structured bricks (hybrid rendering)
• Different structured brick resolutions
• Different interpolation options and adaptive sampling rate
• Distinguishing between focus and context regions
• Custom dynamic texture memory management

Furthermore, although we are focusing on rendering on a single GPU,
our method would also be easily parallelizable by distributing individ-
ual bricks to multiple GPUs [25].

To summarize, the major contributions of this paper are:
• Hybrid raycasting through unstructured and structured bricks
• On-demand resampling steered by interactive focus+context

specification
• Rendering of original cell types with interpolation
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Fig. 1. Overview of our hybrid raycasting pipeline. In a pre-processing step, the grid is subdivided into a kD-tree hierarchy of bricks. Given the
current degree of interest (DOI) function, bricks are classified for rendering as unstructured bricks, resampled into structured bricks, or “empty”
bricks that will be rendered as grid boundary only. Direct volume rendering of bricks proceeds in front to back order with one raycasting pass per
brick, determining ray start positions based on depth peeling, and also rendering the grid’s boundary geometry in correct visibility order.

• Exact grid boundary visualization

• Scalability in image quality and memory consumption

2 RELATED WORK

The most common object-order methods for rendering unstructured
grids are based on the Projected Tetrahedra algorithm [22], which sam-
ples tetrahedra only at their bounding faces. Depending on graphics
hardware features, the volume rendering integral can be solved using
improved accuracy [24], with the best results generally achieved by
pre-integration [20]. However, a major performance bottleneck of all
PT variants is the need for explicit visibility sorting. A variety of pow-
erful sorting approaches have been developed [34, 24, 23], including
hybrid CPU/GPU methods such as HAVS [4]. An explicit sorting step
is also required by most point-based methods for rendering unstruc-
tured grids [35]. Point-sampling strategies have also been employed
successfully for simplification of very large unstructured grids [27].
However, the sorting step required by all object-order methods can
only be neglected when commutative blending modes such as purely
emissive volumes [30] are used. In contrast, image-order approaches
such as raycasting [29, 11] are usually slower in pure rendering per-
formance than cell-projection techniques, but compensate for this fact
by the lack of an explicit sorting step. Raycasting approaches are also
very flexible, e.g., with respect to adaptive sampling, and are a natu-
ral choice when complex non-linear interpolation techniques such as
mean value coordinates [13] are desired. For structured grids, GPU
raycasting approaches have also been shown to work very well [15].
In order to tackle very large volumes, many approaches employ a hier-
archical subdivision, e.g., octrees for a multi-resolution representation

vortex core

cool air

warm air

Fig. 2. The SimVis system in conjunction with our raycasting method
showing high/low temperature (red/green) regions and low pressure
(yellow) regions within the Generator dataset which contains approx.
106 cells.

and rendering of structured grids [16, 32, 2]. Client/server architec-
tures also are a very powerful approach to rendering very large un-
structured grids [3]. Another possibility to render unstructured grids is
to resample them into a structured representation for rendering, which
can also be performed hierarchically [18]. Powerful resampling algo-
rithms have been developed, especially in order to leverage the ras-
terization power of GPUs [28, 33]. A recent approach is to use a re-
sampling strategy on-the-fly during rendering [10]. Many cell sorting
and also raycasting techniques require non-convex grids to be convex-
ified [14, 19] before they can be rendered. Our approach circumvents
this by using a depth peeling approach [7, 1].

The hybrid renderer discussed in this paper has been implemented
as a plugin for the SimVis system [5]. Here multiple linked views
are used to concurrently show, explore and analyze different aspects
of multi-variate data. 3D views of the volume can be used to visu-
alize features which can be specified interactively in several types of
attribute views, e.g., scatterplots or histograms. The user chooses to
visually represent selected data attributes in such a view, thereby gain-
ing insight into the selected relations within the data. Then, the in-
teresting subsets of the data are brushed directly on the screen. The
result of such a brushing operation is reintegrated within the data in
the form of a DOI volume. This DOI attribution is used in all views
of the analysis setup to visually discriminate the interactively speci-
fied features from the rest of the data in a focus+context visualization
style which is consistent in all (linked) views. In the SimVis system
smooth brushing [6] (enabling fractional DOI-values) as well as the
logical combination of brushes for the specification of complex fea-
tures (based on multiple data attributes and derived information) are
supported. As a part of this system the presented raycasting method
fully complies to the feature-based focus+context visualization con-
ventions used throughout SimVis.

3 HYBRID RAYCASTING

Figure 1 shows an overview of our hybrid raycasting pipeline. It
consists of three major stages. The first stage (Section 3.1) is a pre-
processing stage that subdivides the entire unstructured grid into a kD-
tree hierarchy by clipping grid cells against kD-tree leaf boundaries,
which determines the bricks used in the interactive stages.

The second stage (Section 3.2) must be invoked whenever the de-
gree of interest (DOI) specification or selection of scalar data chan-
nel such as “temperature” changes, which is done interactively by the
user. According to the DOI, bricks are classified in order to deter-
mine their importance and corresponding rendering quality and style.
Furthermore, the scalar data in a brick also influence the choice of
rendering quality. With regard to quality, the major choice is whether
a brick should be rendered in its original unstructured form, or as a
lower-quality structured brick. The latter are obtained by on-demand
resampling whenever a brick that has not been resampled before is re-
quired in structured form. Finally, when the DOI for all values in a
brick is zero, it is classified as “empty” brick, which means that only
its contained geometric grid boundary is rendered. Note that brick
classification is not necessary for every rendered frame, but only when
the user actually modifies the DOI or selects a different data channel
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to display.
The final stage renders all bricks in front-to-back visibility order by

rendering the contained mesh boundary and performing direct volume
rendering of the mesh interior. This stage is invoked whenever a new
view needs to be generated. In order to generate the final image, the
kD-tree is traversed in front-to-back visibility order, raycasting each
encountered brick in turn and performing compositing in the output
image buffer. As illustrated in Figure 3, viewing rays can traverse dif-
ferent brick types, and the sampling pattern and kind of interpolation
along each ray is adapted to the current underlying brick type. Espe-
cially due to the hybrid nature of our pipeline, the transition between
individual bricks must be handled with care (Section 3.3). Raycasting
of individual bricks depends on the underlying type, such as unstruc-
tured bricks (Section 3.4) or structured bricks (Section 3.5). For each
brick, the front-most mesh surface in the brick is rasterized first, in or-
der to obtain ray start positions. The mesh surface itself is rendered as
well, and direct volume rendering with one of several user-selectable
optical models is performed in the interior of the mesh between any
two successive mesh boundary intersections. This ensures that the
original mesh boundary is rendered accurately and consistently every-
where and independent of actual brick types. Non-convex parts of the
mesh are handled using a depth peeling approach. For empty bricks,
the mesh boundary is rendered using regular depth peeling [7]. For un-
structured bricks, the raycaster is started multiple times in order to cast
each depth layer individually and perform proper compositing [31].

3.1 Spatial Subdivision

Using a spatial subdivision scheme to cope with large datasets is a
common approach, when dealing with structured data volumes. But
until now subdivision has only been used on unstructured data which
has been resampled to a structured grid [18]. The hybrid raycasting
method proposed in this paper is based on a kD-tree decomposition
of the original unstructured data volume into bricks, which allows for
several optimizations. We decided to use a kD-tree, since it provides
better control over the number of entries in its child nodes than com-
parable subdivision schemes like Octrees. It is important to note, that
every brick’s contents have to be properly clipped to its boundaries in
order to guarantee correct composition of the individual brick render-
ings. Depending on the bricks representation three different clipping
methods are used: A CPU based cell intersection algorithm yielding
the intersection polygon for structured bricks, a GPU based intersec-
tion approach based on clipping a quad to a cell’s interior for unstruc-
tured bricks and simple clipping planes for the boundary of empty
bricks. The depth of the kD-tree is determined by limiting the number
of cells and vertices within a brick to 64K, which allows for mem-
ory savings when storing unstructured grid topology. If time-varying
meshes, as described in Section 5.2, have to be visualized the brick
decomposition is performed for every timestep (this is not necessary
for time-dependent data specified on static grids).

An important advantage of the spatial subdivision is that we are now
able to apply straight forward optimizations commonly used by brick
based structured volume visualization approaches to unstructured data
as well. We perform view frustum culling on the individual bricks, and
empty bricks are skipped entirely (by the volume renderer), helping us
to distribute resources only among visible portions of the data. Besides
these obvious advantages of using a spatial subdivision, it also helps
us dealing with highly non convex meshes more efficiently. Many
datasets from the engineering field have very complex surface geome-
tries (see Section 5.1), which would require a high number of render-

Celltype Faces Vertices Min. No. of Tetrahedra
Tetrahedron 4 4 1
Pyramid 5 6 2
Prism 5 6 3
Octahedron 8 6 4
Hexahedron 6 8 5

Table 1. Cell types supported by the SimVis system.

s

barycentric interpolated sample
mean value interpolated sample
linearly approximated sample
trilinearly interpolated sample

Fig. 3. This illustration shows two different view rays through an unstruc-
tured (left) and structured (right) brick. The different sampling types are
represented by the colored dots along the rays.

ing passes, when treated as one entity. But with the introduction of a
spatial subdivision scheme the number of depth peels, which have to
be used to produce a correct visualization can be reduced greatly be-
cause of the implicit visibility order of the bricks within the kD-tree.

3.2 Brick Classification

Since every brick of the data volume is treated separately by the ren-
derer it is possible to distribute processing and memory resources bet-
ter, favoring important portions of a dataset over less interesting re-
gions. In order to determine the importance of a brick’s contents
we propose to combine three different simple measures, which can
be evaluated efficiently. The first measure is the average DOI value
within a brick, which represents the interest, a user has specified for
its contents. Additionally the entropy of the histograms of the DOI
and the scalar fields within a brick are added to the measure in order
to reflect its information content. All three measures result in values
in [0, 1] and are weighted equally. Now the individual bricks can be
sorted based on their importance and texture memory resources can be
distributed based on this order. The original unstructured grid data of
a brick is used as long as enough memory is available. If bricks exist,
whose contents wont fit into the portion of texture memory allocated
for unstructured data, a small 3D-texture is allocated and resampling
is performed. Since empty bricks do not need any volumetric repre-
sentation they are ignored by the memory management system.

3.3 Inter-Brick Ray Propagation

An important issue in bricked volume rendering is that the transition
between individual bricks does not introduce visual artifacts. Natu-
rally, this issue is especially important in a hybrid bricking scheme
such as the one presented here. Specifics of raycasting unstructured
and structured grids, respectively, are described in the two following
sections, whereas this section highlights common details and describes
how rays are propagated from brick to brick.

Each ray cast through a brick starts either at the front-most mesh
boundary contained in the brick, or at the intersection of the brick
boundary with the interior of an unstructured cell. This is true for both
unstructured and structured bricks, and ray start positions are obtained
via rasterization of either mesh boundary faces or cell/brick-boundary
intersection geometry. Compositing is performed in front-to-back or-
der using two compositing buffers that are used alternately (ping-pong
blending).

Figure 3 shows the two most important cases for ray traversal from
one brick to the next. In a single rendering pass, each ray stops either
when the mesh interior is exited, which may happen multiple times in
a single brick due to non-convex mesh geometry and depth peeling,
or when a back-face of the brick bounding box is hit. Depending on
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these cases, raycasting in the next brick continues either at the exact
same location where the previous ray segment has stopped (lower ray
in Figure 3), or continues where the ray re-enters the mesh interior
(upper ray in Figure 3). This property is consistent between brick
transitions of the same type (e.g., unstructured to unstructured) and
mixed type (shown in Figure 3).

Within a brick, non-convex mesh geometry is handled via depth
peeling, and thus raycasting may be performed in multiple rendering
passes. In principle, each subsequent pass continues at the next ray
entry position behind the depth, where the previous pass has stopped,
until the last depth layer has been traversed. The number of required
rendering passes is determined via OpenGL occlusion queries, which
determine whether rendering an additional depth layer is necessary.
Note that the maximum number of depth layers within a single brick
is much lower than for the entire grid. Thus, bricking significantly
reduces the number of rendering passes due to depth peeling and thus
alleviates its potential performance impact.

3.4 Unstructured Bricks

Our raycasting algorithm for unstructured bricks is based on the work
of Garrity [9] and Weiler et al. [29, 31] for tetrahedral meshes. How-
ever, we perform direct raycasting of non-tetrahedral cells without per-
forming a (often ambiguous) tetrahedral decomposition, which usu-
ally introducesC1 discontinuities of the interpolated scalar within a
cell. Figures 4 (a) and (b) show volume renderings of two different
tetrahedral subdivisions of an octahedron, with color representing the
influence of the top-most vertex. In contrast, Figure 4 (c) uses our
algorithm without decomposition, and interpolation using mean value
coordinates.

Data and Memory Management: Raycasting of one brick is
performed for small submeshes of the whole dataset, which have to be
represented efficiently in texture memory. We employ a custom mem-
ory manager to distribute texture resources between bricks. Figure 5
shows the three different types oftexture setswe are using to store
the data of unstructured bricks: thecell texture set, cell face texture
set, andcell vertex texture set. The cell texture set stores the number
of faces of each cell. For cell-centered data, it also stores the per-cell
DOI and the data scalar. The cell face texture set stores the neighbor-
ing cells’ indexes, face plane equations, and vertex indexes. The cell
vertex texture set stores vertex(x,y,z) position, and per-vertex DOI
and data scalar. Each texture set is comprised of one or more 2D tex-
tures of size256× rmax, wherermax is the maximum allowed size of
a 2D texture (or less). Using textures of width256allows to quickly
obtain 2D coordinates from a 1D index by using the lower 8 bits di-
rectly for indexing within a row, and the higher bits for addressing the
row relative to a row base index known for each brick. For each brick
as many consecutive rows as necessary are allocated, forcing an inte-
gral number of rows to make address computations simpler. I.e., the
number of allocated rows in the cell texture set for a brick containing
n cells isdn/256e, where in our implementationn = 64K.

In order to avoid storing an additional index that points from cell
data to face data, we use a simple trade-off: In each brick we know the
maximum number of faces per cell, and allocate this maximum num-

(a) (b) (c)

Fig. 4. Comparison of the influence of the top-most vertex of an octahe-
dron in two different tetrahedralizations (a) and (b), and the original cell
using mean value interpolation (c).

Cell Texture Set Cell Face Texture Set Vertex Texture Set

Fa
ce

 C
o

u
n

t

C
e

ll D
O

I

C
e

ll S
ca

la
r

V
e

rte
x S

ca
la

r

V
e

rte
x D

O
I

V
e

rte
x P

o
sitio

n

C
e

ll N
e

ig
h

b
o

rs

Fa
ce

 P
la

n
e

s

Fa
ce

 V
e

rtice
s 1

, 2

Fa
ce

 V
e

rtice
s 3

, 4
8Bit Fixed Point

16/32Bit Floating Point

Luminance

Alpha

RGB

Fig. 5. Different texture sets and the textures contained within them.

ber of entries for all cells in the brick. As shown in Table 3 this is fea-
sible since cells with a high number of faces are more commonly used
within unstructured meshes in order to reduce the number of volume
elements which have to be simulated. Thus,d(n · fmax)/256e rows
have to be allocated in the cell face texture set for a brick with cells
containing a maximum number offmaxfaces. Indexing within this data
structure is straight-forward: a linear transformation of the index used
for the cell texture set suffices. Each face data item stores four vertex
indexes that can be used to look up the corresponding vertex data in
the cell vertex texture set. Overall, this data organization scheme is
designed for fast and simple access to the data and topology of the un-
derlying mesh. At most one indirection has to be used to retrieve the
complete data for one cell.

Raycasting: The raycasting process itself consists of two ma-
jor parts: ray propagation through the grid, and sampling the scalar
function within a cell in order to evaluate the volume rendering inte-
gral. Rays are started by rasterizing the surface of the mesh in order to
write encoded cell indices into the red and green color channels. Since
we limit the maximum number of cells per brick to 64K, two channels
with 8 bits each are sufficient. Additionally, the face through which a
ray enters a cell is encoded in the blue channel. If a cell is clipped by
the brick boundary, this is indicated in the blue channel as well. Dur-
ing ray propagation, only cell-centered and cell face information is
used, which can be directly addressed allowing for rapid evaluation of
the face through which a ray exits the current cell. This is achieved by
intersecting the ray with all face planes and choosing the intersection
closest to the entry point in the ray’s direction [9].

Sampling and Interpolation: The volume rendering integral
is approximated by sampling the DOI and scalar data volumes within
each cell and compositing the corresponding opacities and colors ac-
cording to one of several optical models (Section 4). In contrast with
approaches for tetrahedral cells, sampling a single cell multiple times
is necessary in order to handle complex cell types (Table 1). In order
to obtain scalar values at arbitrary positions within a cell, we employ
mean value coordinates for interpolation as introduced by Floater [8],
and generalized to triangular meshes by Ju et al. [13]. The following
important properties make this kind of interpolant ideal for our pur-
poses:

1. Convergence toward 2D barycentric interpolation on cell faces.
2. Proper reconstruction of linear functions sampled at cell vertices.
3. Efficient evaluation without much cell topology information.

The first property guarantees that the interpolated function

f̂ (x) =
∑i wi(x) fi
∑i wi(x)

, (1)

with scalar valuesfi at the cell vertices, and interpolation weightswi ,
is C0-continuous across cell boundaries. Close to a cell face, only
the vertices of this face contribute to the interpolation. The second
property implies that the linearity of 3D barycentric interpolation of
a tetrahedral decomposition of a more complex cell is not lost. For a



MUIGG et al.: HYBRID UNSTRUCTURED AND STRUCTURED GRID RAYCASTING

linear functionfl (x) sampled at the vertices, the interpolated function
f̂l (x) = fl (x). Since the weightswi(x) have to be evaluated efficiently
in order to allow for interactive frame rates, and texture memory is
limited as well, the third property is also of very high importance. All
vertex weights can be computed by treating each cell face separately
without considering adjacent faces. Each vertex weightwi can be split
up into components̃w jk

that are contributed by the facesj that contain
the vertex at indexk. Now w̃ jk

can be evaluated for positionx as

w̃ jk
(x) =

n jk
·m j

n jk
· (p jk

−x)
. (2)

Here,p jk
is the position of vertexk in face j, andn jk

the normal of the
plane defined by the positionx and verticesk+1 andk+2 of face j.
The vectorm j is the so called mean vector of facej which can be
computed as

m j =
3

∑
k=1

θ jk
n jk

. (3)

Figure 6 illustrates the nomenclature used in greater detail. For a more
elaborate description of mean value coordinates see the original publi-
cation by Ju et al. [13], who additionally propose several optimizations
to enhance the numerical robustness of their approach in the vicinity
of the polyhedron’s faces and vertices.

Evaluating all contributions of the vertices of all cell faces to one
sample position means iterating over all faces, which implies that their
vertex data either have to be stored temporarily while sampling a cell,
or have to be read from the corresponding textures for each sample.
In order to avoid re-computations, as well as too many temporaries,
we use the following optimization: Instead of computing all samples
one by one, the contribution of each face to all samples is computed at
once. Thus, only the data corresponding to one face and three scalar
values per sample have to be stored temporarily while sampling a cell:
the current scalar value, DOI value, and the accumulated weight which
is used to homogenize the samples after all faces of a cell have made
their contributions.

Sample Distribution: Since the computation of mean value co-
ordinates for a sample is expensive (it involves several cross products,
normalizations, and an inverse trigonometric function to compute the
arc lengthθ jk

), it is desirable to distribute mean value samples care-
fully. Thus, mean value interpolation is only used in a cell’s interior,
distributing the samples equally along the ray segment within it. Sim-
ple barycentric interpolation is applied to compute scalar values at the
ray-face intersections. In order to further improve the image qual-
ity without sacrificing much performance, additional samples can be
computed between the positions of the already computed samples by
linearly interpolating between them. If only one scalar volume is used,
pre-integration methods from tetrahedral grid raycasting could be ap-
plied [20] instead of computing multiple linearly interpolated samples.

In order to steer the performance/image quality of the visualiza-
tion, two parameters are used by the raycaster for unstructured bricks:
The maximum length of a ray segment which can be approximated
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Fig. 6. Mean value coordinates are based on the projection of all faces
of a polyhedron onto a unit sphere centered at the position for which the
coordinates are computed [13].

linearly (l l ), and the maximum length of a ray segment along which
a scalar is considered to be constant (lc). Thusbsl /l l c mean value
samples are computed for a ray segment within a cell, wheresl is
the length of the ray segment. We have chosen to distribute the sam-
pling positions evenly to avoid mean value coordinate computations
near the face through which the view ray exits, which degenerates to-
wards barycentric interpolation anyway. The parameterlc is used to
determine how many samples should be taken in-between two mean
value/barycentrically interpolated values by interpolating linearly, as
shown in Figure 3. Againbsc/lcc equally-distributed samples are com-
puted and evaluated, wheresc is:

sc =
sl⌊

sl /l l
⌋
+1

. (4)

Both parameters can be used to specify several special cases that can
either be used to render preview images or to produce high quality pre-
sentation visualizations. By settingsl larger than the diameter of the
largest cell’s bounding sphere, only barycentric samples are computed
at the cell’s faces. This reduces rendering complexity tremendously
and results in highly interactive framerates even for large datasets. In
order to create very high quality images,sl can be specified far smaller
than the largest cell, andsc larger thansl , which forces the raycaster
to perform only mean value interpolation.

3.5 Structured Bricks

If the brick classification step (Section 3.2) determines that a brick
should be rendered in structured form, all unstructured cells contained
in or intersected by the brick will be resampled into a single 3D tex-
ture. The resampling resolution depends on the number of unstruc-
tured cells in the brick instead of its volume. For this purpose, a uni-
form distribution within the brick is assumed in order to guarantee
memory savings over the unstructured representation. Forn cells in
the brick, we use a power-of-two resolution that is not smaller than
3
√

n for the longest brick axis.
In this work, we are not focusing on the actual algorithm used for

resampling, as any existing method could be used for this purpose,
e.g. [33]. Currently, we are using a very simple and fast CPU-based
resampling algorithm that still achieves good results. Basically, the
scalar values at the resampling locations are determined by Gaussian
splats positioned at the cell centers. The size of these splats is chosen
according to the cell size, and modified if necessary such that even
cells that are much smaller than a single voxel still contribute to the
eight surrounding voxels.

Raycasting of the resulting structured bricks is performed by ras-
terizing the mesh boundary in order to obtain ray start and end posi-
tions respectively. In order to handle non-convex grids and skip all
empty space, we use a modified depth peeling approach [31], where
the number of raycasting passes is determined by the number of depth
layers. Depth peeling also makes rendering the geometric grid bound-
ary in correct visibility order straight-forward. The main difference
to regular volume raycasting [15] is that rays are started and stopped,
respectively, at exactly those positions where a ray enters and exits the
unstructured mesh, respectively. The mesh boundary is rendered into
two floating point textures: The first one for the position of the ray
entry point, and the second one for the ray exit point. Depth peeling is
also performed separately for ray entry and ray exit positions, respec-
tively. The main reason for this is that common simulation approaches
such as coupled heat transport and flow simulation result in meshes
where interface faces are duplicated, i.e., both the front-face and the
back-face are present in the mesh. Section 5 describes an example.
The sampling rate for structured bricks is chosen to be consistent with
unstructured brick rendering. The parameterlc described in the pre-
vious section that determines the maximum distance between two lin-
early interpolated samples in unstructured bricks also determines the
sampling rate of structured bricks. As shown in Figure 3 and described
in Section 3.3, the actual positions of samples are chosen such that the
visibility of the brick boundary between different brick types is mini-
mized.
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(a) (b)

(c) (d)

Fig. 7. Two different boundary rendering techniques (surface and sil-
houette enhancement) combined with two different optical volume mod-
els (standard DVR and smooth iso-surfaces) to four different rendering
modes. High turbulent kinetic energy (TKE) is brushed and pressure
mapped to color in the DVR images and used as parameter for the iso-
surface visualizations.

4 RENDERING MODES

The hybrid raycasting method proposed in this paper has to deal with
two different data volumes simultaneously: the scalar field of the un-
derlying dataset (e.g., temperature), and the scalar DOI function spec-
ified by the user. In order to visualize this multi-volume, several ren-
dering modes can be selected by specifying a boundary visualization
technique, and an optical model for direct volume rendering. Figure 7
illustrates all four combinations of two different optical models and
boundary visualization techniques. Table 2 summarizes the major pa-
rameters and the underlying data required. The most common render-
ing mode uses an emission/absorption optical model without gradient-
based shading. In order to compute a colorc(x) at positionx based
on the scalar data volume in combination with the DOI function, the
following transfer function is used:

c(x) = DOI(x) · tf w
(
s(x)

)
+

(
1−DOI(x)

) ·cl . (5)

The opacity is linearly derived from the DOI function:

α(x) = DOI(x) · fα . (6)

Figure 7 (a) and (b) show this optical model applied to a small cool-
ing jacket dataset in which regions of high turbulent kinetic energy
have been selected smoothly. Color values represent the correspond-
ing pressure within the volume. The context luminancecl is set to zero
to emphasize the structure of the selected data region.

The second optical model shown in Figures 7 (c) and (d) creates vi-
sualizations that resemble smooth iso-surfaces. The windowed scalar
data interval fromtf min to tf max is used to determine the opacity of a
sample through the following equation:

λ (x) = DOI(x) · t01

(
scl(x)

)
(7)

Rendering Mode Parameters Available Data
fα global opacity of focus DOI(x) DOI function
cα global opacity of context s(x) scalar field
cl global luminance of context v view direction
bc boundary color ns surface normal
tf (s) user-defined transfer function
tf min lower windowing bound
tf max upper windowing bound

tf w(s) = tf ( s−tf min
tf max−tf min

); windowedtf

Table 2. User-definable parameters, and the data available to the differ-
ent boundary and volume rendering algorithms.

α(x) = λ (x) · fα , (8)

wheret01(·) is a tent function centered at0.5 in the interval[0,1], and
scl(x) is the scalar values(x) mapped and clamped from the interval
[tf min, tf max] to [0,1]. These equations have to incorporate the DOI
function in order to ensure that bricks withDOI(x) = 0 for all x also
use a constant opacity of zero. For such bricks only the boundary
will be rendered. Thus, the smooth iso-surface created by this optical
model can additionally be clipped smoothly by specifying an adequate
DOI function. The equation for assigning color values to a sample is
similar to equation 5:

c(x) = λ (x) · tf w
(
s(x)

)
+

(
1−λ (x)

) ·cl . (9)

By usingλ (x) to modulate the resulting color the lack of proper shad-
ing of the smooth surface can be somewhat compensated. Rays only
touching the surface will gather more dark samples (ifcl is set to zero)
than rays intersecting it, which results in dark silhouettes. This “shad-
ing” approach is similar to limb darkening [12].

It is important to note that besides the optical model for volume
rendering the boundary visualization is of very high importance to the
overall visualization approach presented in this paper. Datasets from
the engineering field very often contain complex surfaces which can be
of high interest to the user if they interact with the simulated phenom-
ena. Therefore, we have decided to treat the mesh surface as context
information which can be visualized using different boundary visu-
alization techniques. Figures 7 (a) and (c) show silhouette boundary
visualizations, whereas Figures 7 (b) and (d) have been created using
simple shaded transparent surface rendering.

Silhouette rendering is realized by directly assigningbc to the color
of the boundary sample and computing the corresponding opacity as
follows:

α = (ns ·v)4 ·cα . (10)

With this approach only a minimal amount of the data volume is ob-
structed by the boundary visualization, which, however, still provides
proper contextual cues to relate the selected flow features to the overall
geometry of the dataset.

If the surface of a dataset is extremely complex and the silhouette
visualization becomes too cluttered, semi-transparent surface render-
ing can be used. Then, a simple diffuse lighting equation is evalu-
ated based on the surface normal and directional light sources in and
against the viewing direction. Thecα parameter is directly used as
opacity. Even though this boundary visualization technique obstructs
the data volume stronger than the silhouettes, the visualization result
is less cluttered. This allows the user to make a trade-off between a
clear visualization of flow features with minimal geometrical context,
or a less clear feature visualization that is embedded better in the sur-
rounding mesh. Which approach should be favored highly depends on
the inspected dataset and the features of interest.

5 APPLICATION RESULTS

In this section some example applications of the hybrid raycasting al-
gorithm in conjunction with the SimVis system are presented. Two
very different datasets are used to demonstrate the power of our ren-
dering approach. Furthermore some image quality and performance
considerations are presented.

Due to space limitations some of the presented images for this
application section are rather small, higher quality images as well
as some further results and the accompanying video are available
from the project homepage atwww.vrvis.at/via/research/
hybridRC .

5.1 Large Data
The generator dataset is courtesy of Arsenal Research, Vienna Austria
and Traktionssystem Austria. It contains one sixth of the geometry of a
generator (the remaining five sixth are symmetrical). The data volume
itself consists of two parts: the solid portion of the generator and the
air surrounding it. Both parts are separate meshes which touch each
other on a common surface. The problem, which has been modeled
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Dataset Tet. Pyra. Prism. Hexa. Overall Tetrahedralized Bricks Interact. Static. Presentation
Generator 55.4% 0.6% 23.9% 20.1% 6,729,806 15,405,842 284 940ms 2969ms 22s
Large Cooling Jacket 0.2% 5.2% 9.3% 85.3% 1,537,898 7,149,388 57 262ms 1109ms 2430ms
Two Stroke Engine 0.8% 4.3% 8.4% 86.5% 149,864 700,091 8 50ms 153ms 153ms
Small Cooling Jacket 0.2% 1.3% 2.1% 98.4% 76,816 377,170 2 53ms 784ms 784ms

Table 3. Various datasets used throughout this paper.

within the dataset, is the cooling of the generator. Thus heat transport
and dissipation has been simulated for the solid portion of the dataset,
while air temperature and flow has been computed for the surrounding
air.

The grid itself poses multiple challenges to the visualization sys-
tem. First of all the mesh surface has a very high depth complexity,
which means, that many depth layers have to be rendered to produce
the final visualization. Even when decomposed into 284 bricks every
brick contains between 2 to 8 depth layers (depending on the view
port). On average 5 depth layers have to be rendered. Since nearly
all state of the art methods can only handle tetrahedral volume cells
the generator dataset would have to be tetrahedralized to be visualized
with them, which would result in a cellcount of over 15 million as
shown in Table 3.

The setup within the dataset assumes, that air is being sucked
through the generator from one end to the other, while the central part
of it, which is called the rotor, is rotating. This rotation induces electric
current in the surrounding coils, which are thus heated up. In order to
increase the efficiency of the generator it is necessary to provide effi-
cient cooling, which means, that the air flow around the winding heads
surrounding the rotor has to be optimized. Figure 8 (a) gives a rough
overview over the dataset geometry by showing only the solid portions
of the generator with color representing the temperature. As expected
the winding heads at the air inlet are cooler than at the air outlet.

Figure 2 shows a result image from a complete visualization session
using the SimVis system in conjunction with the hybrid raycasting al-
gorithm. It is comprised of four different selections which are com-
bined by using a fuzzy or operation and maps temperature to color.
The first selection specifies the solid portions of the dataset which are
used to provide additional context to the user. Additionally cold por-
tions of air have been selected. Here it is notable that a great amount

rotor

air inlet

air outlet

winding heads

cooling ducts

stagnant hot air

fast cool air

vortex core

(a)

(b)DOI

scalar

Fig. 8. (a) An overview over the Generator dataset depicting the dif-
ferent parts of the simulated volume. Standard DVR and the surface
rendering technique have been combined to create this image. (b) The
same selections as shown in Figure 2 but velocity magnitude mapped
to color.

exhaust system

combustion chamber

intake

ca = 190° ca = 215°

ca = 240° ca = 265° ca = 345°

ignition

lost fuel

scavengable fuel

exhaust closed

gasoline direct injection

DOI

scalar

Fig. 9. Two Stroke Engine dataset shown at different timesteps which
are denoted by the current crank angle (ca).

of relatively cool air moves (very rapidly as depicted in Figure 8 (b) )
through the openings left and right of the rotor. These air masses
mainly contribute to the cooling of the winding heads at the air in-
let and are sucked into a vortex at the air outlet. The third selection
consists of warm portions It can be observed that cool air which is
sucked through the cooling ducts at the top of the dataset is heated
up rather quickly and stagnates in the space above the winding heads,
which can be confirmed in Figure 8 (b), which shows the same selec-
tion as Figure 2, but with flow velocity mapped to color (the green
region above the winding heads represents hot and slow air). In order
to visualize the vortex, which is located behind the air outlet the fourth
selection marks low pressure as important. As concluded by Trenker
et al. [26] (who used the SimVis system in conjunction with an early
prototype implementation of the hybrid raycasting method) it is desir-
able to deflect this vortex to pass through the winding heads at the air
outlet (probably by moving the outlet itself) to avoid the stagnation of
hot air and thus provide better cooling for the overall machine.

5.2 Time-Dependent Data
The Two Stroke Engine dataset is courtesy of the Institute for Inter-
nal Combustion Engines and Thermodynamics, Technical University
Graz, Austria. It contains the simulation of a loop scavanged two
stroke engine for which the fuel injection and combustion process has
been modeled. An in depth analysis of this dataset has been performed
by Schmidt et al. [21] who compare two different fuel injection pres-
sures (in the simulated engine gasoline direct injection is used) with
respect to the fuel distribution within the combustion chamber at the
ignition time and the loss of combustable mixture through the exhaust.
Since the flow in the intake (through which fresh air is sucked into the
combustion chamber, if the intake ducts are not blocked by the piston)
and exhaust ducts is essential to the functioning of the engine those
parts have been modeled additionally to the combustion chamber as
shown in Figure 9 (top left).

The machinery modeled in the Two Stroke Engine dataset is not
static (the piston is moving up and down) which means that the un-
derlying volume mesh changes over the simulated time span: vertex
positions are modified and the overall mesh topology changes in or-
der to account for the degeneration of cells. The fuel injection itself
starts at 165◦ crank angle (ca) whereas the ignition is performed at
345◦ ca. The scalar values of highest importance in this dataset are
the equivalence ratio, which is the ratio between fuel and air and the
reaction progress variable, which represents the progress of the com-
bustion (zero representing unburnt and one fully burnt mixture). Thus
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Figure 9 shows a smooth selection of optimal equivalence ratio (from
0.7 to 1.4) which is additionally restricted by marking only portions
of the data, where no burning has occurred (reaction progress variable
equaling zero).

In Figure 9 different timesteps, denoted by the current crank an-
gle (ca), of these selections are shown. At ca = 190◦ the gasoline
injection is nearly completed and the air intake ducts and exhaust sys-
tem opening are being closed by the piston. Successively some of
the gasoline starts leaking through the exhaust as shown at ca = 215◦.
Here only portions of a lean mixture are lost which is indicated by
the green color. At ca = 240◦ some gasoline is being sucked into the
intake system, which will be scavenged in the next combustion cycle.
Additionally portions of very rich mixture (indicated by red) move
down towards the exhaust opening and are sucked out just before it is
closed at ca = 265◦. The final image taken at ca = 345◦ depicts the
gasoline distribution shortly after the ignition, showing that the igni-
tion spark itself is located well within a region of good equivalence
ratio (indicated by yellow). Additionally it can be noted that the over-
all distribution of burnable mixture within the combustion chamber is
highly uneven leading to higher emissions and lower efficiency in this
case (Schmidt et al. [21] have shown that higher injection pressure can
lead to a more homogenous gasoline distribution within the combus-
tion chamber). It is obvious that especially for simulations like this,
the proper visualization of mesh boundaries is of very high importance
since they indicate the moving parts of machinery which strongly in-
fluence complex flow conditions within the simulated domain.

5.3 Quality and Performance Considerations

There is a huge set of different parameters which can be used to steer
the memory consumption, the speed and the image quality of the pre-
sented visualization approach. In order to guarantee responsiveness
during an analysis and exploration session two different sets of param-
eter settings can be chosen: one being applied during interaction and
one if a static image should be generated. Additionally it is possible to
progressively update the display during the generation of a static im-
age (everyn’th brick the accumulated color and opacity information
is copied to the front buffer). In Table 3 some performance measures
are presented for the different datasets shown in this paper. Differ-
ent quality settings have been used to measure rendering performance
during interaction, for a static image and for the dataset without us-
ing resampling (here a brick always forces the memory manager to
allocate texture memory, even if data from another brick has to be
overwritten). During interaction only one depth peel for every brick is
rendered, and the unstructured brick sampling settings are configured
to perform only barycentric interpolation at the cell boundaries. Addi-
tionally the result image resolution is reduced to2562 (instead of5122

for the static measurements). In the static case the sampling settings
for the unstructured bricks are set tol l = cmax/4 andlc = cmax/16with

(a)

(b)

(c)

(a) original

(a) hybrid

(b) original

(b) hybrid

(c) original

(c) hybrid

Fig. 10. Overview and magnifications of the Large Cooling Jacket
dataset comparing the low quality resampled to the original unstructured
representation. Resampled bricks are shown in red in the overview.

cmax being the maximum diameter of a cell’s bounding sphere. Thus
a maximum of four mean value samples are computed per cell per
ray. These settings are equal to those used to create the “Presentation”
column of Table 3 resulting in the same measures for datasets which
completely fit into the texture memory allocated for unstructured data.
All test have been carried out on an AthlonX2 4400+ with 4GB of ram
and a Geforce 8800GTX with 768MB video memory.

Besides the rendering performance itself the brick boundaries are
of high importance when image quality has to be considered (espe-
cially between structured and unstructured bricks). Figure 10 shows
some comparisons between a high quality visualization using only un-
structured bricks and the default still image settings mentioned above
(in order to reduce obstructions the boundary visualization is set to
completely transparent). The overview in the top/left corner indicates
resampled bricks in red. In Figure 10 (a) barely any difference be-
tween resampled and original mesh can be seen, whereas Figure 10
(b) shows the low pass filtering effect of the resampling process. Ad-
ditionally Figure 10 (c) shows a slight discontinuity between the re-
sampled and original mesh. It should be noted that the previously
mentioned effects mostly occur if high frequency transfer functions
and DOI specifications are used. But since the SimVis framework em-
phasizes the smoothness of flow features (through smooth brushing)
and the resampling process can be steered by interactively modifying
the DOI specification the application of resampling to unimportant re-
gions is feasible.

6 CONCLUSIONS AND FUTURE WORK

We have presented a scalable hybrid GPU raycasting algorithm for un-
structured grids. Our method directly renders complex cell types with-
out tetrahedralization, where non-tetrahedral cells employ mean value
interpolation for chosen samples and interpolate linearly in-between.
We employ bricking, resampling, and custom texture memory man-
agement in order to sustain interactive performance and make optimal
use of the available amount of texture memory. It is a hybrid approach
in the sense that it combines unstructured and structured grid raycast-
ing, as well as image space methods (raycasting) and object space ap-
proaches (bricking). Different volume rendering styles are combined
with surface rendering methods to create highly parameterizable visu-
alizations that are based on two concurrent data volumes: a degree of
interest (DOI) function specified in the SimVis system, and a scalar
data volume. We also pay special attention to accurately rendering the
surface mesh of the original grid at all times. Apart from better in-
terpolation quality, avoiding tetrahedralization also balances the addi-
tional amount of work required by mean value interpolation as well as
the additional memory for storing a variety of cell types. Converted to
tetrahedral meshes, our datasets would contain twice to four times as
many cells. The effectiveness and scalability of our approach has been
demonstrated by applying it to two very different real-world datasets:
the first one contains a large and highly complex mesh, and the other
one is time-dependent and emphasizes its geometric boundary.

There are several interesting areas for future work. The interpo-
lation scheme could be extended to completely arbitrary polyhedra,
which are becoming more common in real-world simulation grids.
Moreover, new surface and volume rendering models could be inte-
grated easily. The current resampling process could be greatly im-
proved by implementing GPU-based methods. Finally, resampled
bricks do not necessarily have to be seen as low-quality substitute
of unstructured bricks. If adequate pre-filtering is performed during
resampling, rendering those bricks where a single image pixel cov-
ers many cells in structured form could provide a way for performing
anti-aliasing for high-quality rendering.
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