
High-Quality Multimodal Volume Rendering for Preoperative

Planning of Neurosurgical Interventions

Johanna Beyer, Markus Hadwiger, Stefan Wolfsberger, Katja Bühler

Abstract— Surgical approaches tailored to an individual patient’s anatomy and pathology have become standard in neurosurgery.
Precise preoperative planning of these procedures, however, is necessary to achieve an optimal therapeutic effect. Therefore, multiple
radiological imaging modalities are used prior to surgery to delineate the patient’s anatomy, neurological function, and metabolic
processes. Developing a three-dimensional perception of the surgical approach, however, is traditionally still done by mentally fusing
multiple modalities. Concurrent 3D visualization of these datasets can, therefore, improve the planning process significantly. In
this paper we introduce an application for planning of individual neurosurgical approaches with high-quality interactive multimodal
volume rendering. The application consists of three main modules which allow to (1) plan the optimal skin incision and opening
of the skull tailored to the underlying pathology; (2) visualize superficial brain anatomy, function and metabolism; and (3) plan the
patient-specific approach for surgery of deep-seated lesions. The visualization is based on direct multi-volume raycasting on graphics
hardware, where multiple volumes from different modalities can be displayed concurrently at interactive frame rates. Graphics memory
limitations are avoided by performing raycasting on bricked volumes. For preprocessing tasks such as registration or segmentation,
the visualization modules are integrated into a larger framework, thus supporting the entire workflow of preoperative planning.

Index Terms—Multimodal Volume Rendering, Hardware Assisted Raycasting, Surgery Planning.

1 INTRODUCTION

Minimally invasive neurosurgical procedures are constantly gaining
importance with the aim to minimize surgical trauma, shorten recov-
ery times and reduce postoperative complications. For surgery of
deep-seated structures, neurosurgical keyhole procedures are becom-
ing standard, where a small opening in the skull is sufficient to gain
access to a much larger intracranial region via an endoscope or operat-
ing microscope. In contrast, interventions in areas directly below the
skull require a larger and individually tailored opening of the cranial
bone. For both approaches (i.e., surgery of deep-seated structures and
near the brain’s surface), orientation is necessary to perform the skin
incision and bone cover removal at the optimal location. For deep-
seated targets, further orientation is crucial to find the structures of
interest while additionally preserving the surrounding tissue.

Preoperative planning enables the surgeon to identify anatomical
landmarks and critical structures (e.g., large vessels crossing the path
of the operating microscope or critical cranial nerves) and in deter-
mining the optimal position of incision prior to surgery. It is during
this planning session that the physician decides upon the optimal ap-
proach by adapting the general surgical plan to the individual patient’s
anatomy. The medical doctor uses this knowledge during surgery to
determine the current location in the skull and the subsequent optimal
course of action. Therefore, the success of a surgery, especially in key-
hole approaches, depends largely on accurate preoperative planning.

Up to now, the standard approach of presurgical planning is per-
formed using stacks of raw images obtained from medical scanners
such as CT (Computed Tomography) or MRI (Magnetic Resonance
Imaging). In the field of neurosurgery, MR scans are the medium of
choice for depicting soft tissue such as the brain, whereas CT scans are
superior in picturing bony structures. Functional MR (fMR) images
depict neural activity, Positron Emission Tomography (PET) shows
metabolical activity and Digital Subtraction Angiography (DSA) de-
picts vessels in high quality. However, a mental combination of all
these datasets and a correct 3D understanding by simple slice-by-slice
analysis is very difficult, even for the skilled surgeon.

• Johanna Beyer, Markus Hadwiger and Katja Bühler are with the VRVis

Research Center, E-mail: {beyer,msh,buehler}@vrvis.at.

• Stefan Wolfsberger is with the Department of Neurosurgery, Medical

University Vienna, E-mail: stefan.wolfsberger@meduniwien.ac.at.

Manuscript received 31 March 2007; accepted 1 August 2007; posted online

27 October 2007.

For information on obtaining reprints of this article, please send e-mail to:

tvcg@computer.org.

3D visualization alleviates this problem by enhancing the spatial
perception of the individual anatomy and, therefore, speeding up the
planning process. Considering the neurosurgical background, a pre-
operative planning application has to meet certain requirements: First
of all, it should provide a high-quality, interactive and flexible 3D vi-
sualization of the volumetric datasets using direct volume rendering
(DVR). The main advantage of DVR compared to surface rendering
lies in the increased amount of information that can be conveyed in
one image, as the entire volumetric dataset is used to create the fi-
nal rendering. Next, a preoperative planning application should offer
multimodal visualization of datasets from different imaging modali-
ties such as CT, MRI, fMRI, PET or DSA. Interactive manipulation
of the visualization such as simulated surgical procedures, endoscopic
views or virtual cutting planes should be available and, finally, an in-
tuitive workflow is necessary, which is integrated into an application
framework and ready for use by surgeons or medical staff.

This paper describes an application for preoperative planning of tai-
lored neurosurgical procedures. Our application consists of a multi-
volume rendering framework for the concurrent and fused visualiza-
tion of multimodal datasets (see Figure 1 for several examples), in-
cluding three main tasks:

• Planning of the surgical approach to access the brain, by simu-
lating the skin incision and removal of the cranial bone without
any prior segmentation.

• Visualization of superficial brain areas, including information
from additional volumes such as DSA, fMR or PET to provide
further insight into the data.

• Visualization of deep-seated structures of the brain for (keyhole)
surgery, by including segmentation information.

All visualization modules are integrated into a framework that is de-
signed to support surgeons in the task of preoperative planning, includ-
ing a preprocessing stage for registration and optional segmentation of
the different datasets.

Rendering performs real-time GPU raycasting with perspective
projection, in general using a single raycasting pass for 32-bit
floating point computations and blending. We employ efficient empty
space skipping, early ray termination, and bricking for memory
management of multiple volumes. Raycasting is performed through
several volumes at the same time, potentially taking into account
multiple volumes at a single sample location.

(a) (b) (c) (d)

Fig. 1: (a) Visualization of the brain without prior segmentation using our skull peeling algorithm. (b) Multi-volume rendering of segmented
data (green: tumor - MR, red: vessels - MRA, brown: skull - CT). (c) Multi-volume blending (black/white: brain - MR, red: metabolic active
part of tumor - PET, yellow: brain areas active during speech - fMR). (d) Perspective volume rendering for simulating keyhole surgery.

The technical contributions of this paper are:

• Unified handling of multi-volume raycasting and bricking with
and without segmentation masks. For each sample location, the
volume to be sampled is either chosen depending on segmenta-
tion information, or multiple volume samples are blended. We
circumvent GPU memory constraints by bricking each volume
(CT, MR, DSA, PET, fMR), and downloading only active bricks
into 3D cache textures (one per modality or unified). Segmen-
tation information is represented as a bricked object ID volume
over all modalities, which likewise employs a 3D cache texture.

• Skull peeling for selectively removing structures obscuring the
brain (skin, bone) without segmentation (Figure 4). In contrast
to opacity peeling [18], we consider registered CT and MR data
at the same time for more dependable results. The impact of
clipping is resolved consistently. Layers can also be peeled away
selectively by painting 2D clipping areas (Figure 9).

• The result of skull peeling is view-dependent. In order to em-
ploy it for powerful view-independent clipping, we first generate
a view-dependent depth map, which is then transformed into vol-
ume space and resampled into a static segmentation mask.

• Smooth rendering of segmented object boundaries, taking into
account the contributions of multiple volumes. In contrast to our
earlier work [9], we do not propose a general solution, but an
approach that is customized for the needs of our neurosurgery
pipeline that achieves better results in this case. During raycast-
ing, the precise transition between two adjacent materials is re-
classified depending on user-specified iso-values and searching
the object ID and data volumes along the gradient direction.

2 RELATED WORK

Preoperative planning for neurosurgery has been an active research
topic for several years [21, 11, 16], with the main focus often on the
integration of imaging, registration, and segmentation into a planning
workstation [5], but often falling short of a high-quality visualization
of multi-volume datasets. The virtual tumor resection planning of
Serra et al. [21] uses volume slicing with basic support for multiple
volumes. Even though volume slicing approaches achieve a fast and
flexible visualization, they usually do not reach the quality of raycast-
ing methods, especially with respect to close-up perspective views.
Other approaches employ iso-surface rendering [16], or the extraction
of 3D contours that can subsequently be blended into a mono-volume
rendering [11]. This, however, is not optimal for versatile preoperative
planning as it does not offer the amount of flexibility needed by sur-
geons for interactive exploration, e.g., changing the transfer function.

For rendering multimodal data, several methods have been pro-
posed [3, 28, 8, 7]. Their key differences lie in the way how the vol-
umes are combined. Different data intermixing levels (e.g., accumu-
lation level, illumination level, image level) and fusion methods (e.g.,
one or multiple properties per sample) are used depending on the char-
acteristics of the volumes and the desired results. Manssour et al. [14]
use an MRI volume to define the opacity transfer function, while a

PET volume determines the color transfer function. Clusters [28] and
specialized volume rendering hardware [8, 19] have also been used.
Recently, Rößler et al. [19] introduced a slice-based multi-volume ren-
dering method to display a template brain along with patient-specific
fMR data, including advanced clipping techniques and render modes.
All of the above methods, however, do not address the problem of
high-quality rendering of segmented multimodal data. High-quality
renderings of the human brain from cranial MR scans usually require
segmentation. However, this segmentation process, called skull strip-
ping [1, 22], is not trivial and automatic methods often have problems
with noise or require certain MR sequences or scanners. If the brain is
rendered without prior segmentation, it is occluded by surrounding tis-
sue of similar intensity values (e.g., skin). Adjusting the transfer func-
tion alone, including multi-dimensional transfer functions [12], cannot
solve this problem. Methods such as opacity peeling [18] or confocal
volume rendering [15] peel away outer, less important regions of a
volume to visualize the inner structures. These methods, however, are
hard to use in clinical applications because the visual results are very
sensitive to several user-defined parameters. For high-quality render-
ing of segmented data, object boundaries must be determined at the
subvoxel level [23, 9, 24], mostly using linear or cubic filtering. Tiede
et al. [23] propose a CPU-based method for threshold-segmented ob-
jects. They compare the intensity of each sample to the objects in
its 23 neighborhood to assign the object ID. If the objects have not
been segmented via thresholding, trilinear filtering of object masks
is used. They also propose to extend their approach to multimodal
data. Two-level volume rendering [9] is a flexible rendering method
for segmented data with trilinear object boundary filtering and per-
object transfer functions and rendering modes. We build on previous
research in the area of multimodal volume rendering, and especially
GPU-based raycasting. While first approaches were based on slic-
ing [26, 17], GPU raycasting is now a viable and very powerful alter-
native [13]. The basis for our volume rendering framework is a GPU-
based raycaster [20] (requiring Shader Model 3.0) that achieves inter-
active frame rates also for large volumes. However, we have extended
this raycaster considerably in order to support multiple volumes, seg-
mentation masks, flexible per-object as well as view-dependent clip-
ping, and rendering modes tailored for neurosurgical applications.

3 WORKFLOW

For daily use in clinical environments it is crucial for CASP appli-
cations (Computer Aided Surgical Planning) to be integrated directly
into the clinical workflow. CASP applications should support the sur-
geon, who usually has a very tight schedule, by offering an intuitive,
easy-to-use interface. Therefore, we have integrated our rendering
framework as a plugin into the medical workstation and PACS system
Impax 6.0 by Agfa Healthcare1. The complete workflow of our plan-
ning tool can be seen in Figure 2 and contains the following steps: Data
acquisition, registration, segmentation, planning of the skin incision
and bone removal area, brain surface visualization, and surgery plan-
ning for deep-seated structures, tailored to the individual anatomy. The
application consists of a preprocessing stage, which was intentionally

1http://www.agfa.com

Data Aquisition

CT

MR

PET

Registration

Segmentation

Skin Incision and

Bone Removal
Brain Surface

Visualization

Planning of approaches

for deep-seated lesions

Technical Implementation

Blended Multi-Volume Rendering -

Concurrent visualization of multiple volumes in a single rendered image

Skull Peeling -

Using information from CT and MR data to interactively skip structures obscuring the brain

Rendering of Segmented Multi-Volumes -

Smooth transitions between binary masks in multiple volumes

INTERACTIVEPREPROCESSING

Registration and Segmentation

are done directly in a medical

workstation connected to the

PACS.

Fig. 2: Detailed workflow of our neurosurgical planning application.

kept as short as possible, and an interactive stage for rendering. After
acquisition of the radiological images, the different datasets are regis-
tered and segmented directly in the medical workstation before starting
the interactive visualization. Segmentation is not mandatory but helps
later on by giving additional information during the visualization of
deeper structures. Using skull peeling (Section 5.2), the surgeon can
take a look at the brain’s surface and optionally define the area on the
patient’s head for the skin incision and ensuing bone removal. The
superficial brain can be displayed via direct multi-volume rendering
(Section 5.3), showing the brain (MRI) along with other structures
such as vessels (DSA), implanted electrodes (CT), or functional brain
areas (fMRI, PET). Next, the surgeon may navigate the viewpoint
through the keyhole in the cranial bone to access deeper brain struc-
tures, using multi-volume rendering of segmented data (Section 5.4).
Additionally, binary segmented objects can be displayed in high qual-
ity and without staircase artifacts by an on-the-fly subvoxel classifica-
tion algorithm based on raycasting (Section 5.5). During the entire in-
teractive visualization process, tools for further exploration of the data
are available to the surgeon, such as MPR (multiplanar reconstruction)
views, clipping geometry, or endoscopic views.

4 PREPROCESSING STAGE

In the registration module, the different multimodal datasets are
aligned and resampled. We use an automatic registration algorithm
based on mutual information [4] and perform rigid registration (i.e.,
only translation and rotation). The algorithm usually converges after a
few seconds. If the result is not satisfactory, the user can improve the
registration manually by interacting with three orthogonal slice views.
The segmentation module implements manual segmentation, thresh-
olding and watershed segmentation based on markers [6]. Watershed
based on markers is a semi-automatic segmentation algorithm where
the user has to draw initial markers for the different objects into the
volume data. For each voxel its most probable membership to an ob-
ject is calculated. The algorithm completes within seconds, however,
manual refinement of the initial markers is necessary most of the time.
The binary segmented objects are saved in an additional segmentation
volume that defines the object membership of each voxel.

5 VISUALIZATION MODULES

The three visualization modules illustrated on the right-hand side of
Figure 2 constitute the main part of our application. Section 5.1 pro-
vides a technical introduction to our multi-volume rendering system,
which is the basis for all visualization modules. Specifics of the mod-
ules are then described in Section 5.2 for skull peeling in order to per-
form view-dependent clipping of “uninteresting” parts of a volume,
Section 5.3 for multi-volume blending in order to visualize unseg-
mented data, and Section 5.4 for segmented multi-volume rendering
for visualizing segmented objects from multiple modalities. Render-
ing smooth boundaries of segmented volumes is described in Sec-
tion 5.5. General interaction tools which support the surgeon in the
exploration and planning process are explained in Section 5.6.

5.1 Multi-Volume Rendering

A very important issue in multi-volume rendering is how the contri-
butions of different modalities are combined. Our rendering pipeline
offers several options that are part of a single consistent framework.
Contributions of multiple volumes are combined on a per-sample basis

during raycasting. For a given sampling location, either a single vol-
ume is sampled and mapped to optical properties via a transfer func-
tion, or the contributions of multiple volume samples taken at the same
relative location in each modality are blended after separate transfer
functions have been applied.

A single object ID volume guides these choices for combining mul-
tiple volume contributions. Table 1 gives an overview of the most im-
portant texture types that are used in our implementation. Each voxel
is assigned the ID of the segmented object it belongs to (tex objectID),
and each object is assigned the volume it belongs to using a 1D map-
ping (tex volumeID). For example, “bone voxels” would be assigned
to the CT volume, whereas “brain voxels” would be assigned to the
MR volume. Each object can use its own transfer function, which is
determined using its object ID [9]. The mapping of object ID to vol-
ume ID implicitly solves the problem of using different transfer func-
tions for different volumes, as long as each object uses only a single
transfer function. Additionally, special blending object IDs known by
the raycasting shader are used to indicate that for this object a given
configuration of multiple volumes should be blended at each sampling
location, where each volume uses its own transfer function and blend-
ing weight. We currently support only a fixed number of useful con-
figurations, such as blending the MR and the DSA volume used in the
visualization module described in Section 5.3. However, adding addi-
tional configurations is easy, and our system could easily be extended
to full generality using additional look-up textures.

Table 2 illustrates the basic texture look-ups used by multi-volume
rendering. The transfer function TF j in Table 2 is determined by the
object ID, which either means j = o(x) for regular object IDs, or a set
of predefined j’s is used by the shader because o(x) is a blending ob-
ject ID and thus uses multiple transfer functions. Each object can fur-
ther have its own set of up to six axial clipping planes, whose positions
are obtained in the shader by sampling two 1D look-up textures for
minimum and maximum (x,y,z) coordinates, respectively (Table 1).
Note that segmentation information is not strictly required. If no ob-
ject ID volume is available, all parts of our pipeline will implicitly
assume that all voxels belong to the same default object. In this case,
the only option for combining different volumes is blending them.

Data and Memory Management: Another important chal-
lenge in multi-volume rendering is volume data management and cop-
ing with memory consumption. We use a bricked volume rendering
scheme that subdivides each volume into equally-sized (e.g., 163 or
323) bricks and maintains 3D brick cache textures. For rendering, ac-
tive bricks of the volume are held in GPU cache memory, and small 3D

Texture Dim.+ Type Function

tex objectID 3D (I) map sample position to object ID
tex volumeID 1D (I) map object ID to volume ID
tex volumei 3D (I) texture cache for volume i
tex clipmin 1D (RGB) map object ID to clip planes (min)
tex clipmax 1D (RGB) map object ID to clip planes (max)
tex tf 2D (RGBA) packed 1D textures TF j for all j

Table 1: Basic multi-volume rendering textures. Texture type I is
single-channel (intensity), and RGB is three-channel, to store three ax-
ial clipping plane positions (min or max for x, y, and z, respectively).

obtain ... at x as

object ID o(x) = sample
(

tex objectID,x
)

volume ID i(x) = sample
(

tex volumeID,o(x)
)

volume scalar si(x) = sample
(

tex volumei(x),x
)

transfer function TF j(x) = sample
(

tex tf,(si(x), j)
)

Table 2: Basic multi-volume rendering quantities and texture look-ups.

layout textures are used for address translation [10] between “virtual”
volume space and actual cache texture coordinates. Figure 3 shows
an overview of our system. One cache stores segmentation informa-
tion (an object ID per voxel), with its corresponding layout texture.
Each data volume (e.g, CT, PET) has its own layout texture, and ei-
ther also uses an individual cache texture, or references bricks in a
larger unified cache for multiple modalities. Individual caches are less
flexible because their size must be chosen at startup, whereas a uni-
fied cache allows to change the memory limit dynamically for each
modality. However, in this case the GPU must support the texture di-
mensions required by the larger unified cache. In general, raycasting
is performed in a single rendering pass [20] through “virtual” volume
space. At each sampling location, one or multiple address transla-
tions are performed, and the sample from each modality is obtained
from the corresponding cache texture. Although address translation is
a relatively fast process, it can optionally be reduced by using a global
cache layout for all volumes. This, however, leads to a higher num-
ber of active bricks and thus requires bigger caches, since in this case
culling cannot be performed independently for each modality.

5.2 Skull Peeling - Surgical Approach to the Brain

This section describes the skull peeling algorithm for directly display-
ing the unoccluded brain from MR data without the need for prior seg-
mentation. Keeping the requirements for clinical applications in mind,
the intention is to reliably visualize the brain without the need of te-
dious preprocessing or complex user interaction. Naturally, a manual
segmentation of the brain would achieve the best visual results, but
would require a much longer preprocessing time we want to avoid.

Our algorithm is based on the idea of opacity peeling [18], a view-
dependent method for peeling away layers in DVR guided by accumu-
lated opacity. Although opacity peeling quickly generates meaningful
images, a major problem for medical practice is its dependency on the
threshold parameters. Minor changes of these settings can cause ma-
jor changes in the resulting images (such as a shrinking or expanding
brain). Thus, it is an important goal to improve reliability.

Skull Peeling: The skull peeling algorithm simultaneously uses
the information of registered CT and MR volumes in order to remove
areas along the viewing ray which occlude the brain in the MR vol-
ume [2]. While the brain is depicted well in MR scans, CT scans
are superior in depicting bony structures with very high intensity val-
ues. We exploit this knowledge to decide automatically if a sample
lies within a bony area (i.e., the value of the CT dataset is above 1000
Hounsfield units). During raycasting, both the CT and the MR volume
are sampled. When the current ray hits a bone for the first time, the
accumulated opacity and color values from the MR volume are reset
and the ray is advanced until the bony area is exited. At that point,
accumulation starts again in order to reveal the brain. This algorithm
needs no user input and works well in standard cases where the brain
is surrounded by bone (see Figure 1a).

However, when the brain is not surrounded by bone (e.g., after
surgery, or when clipping planes are enabled during rendering) this
algorithm would fail. The ray would hit a bone for the first time after
traversing the brain and everything in front of that hitpoint would be
skipped. We therefore added the following extensions:

• The position of the first hitpoint of the skin (i.e., first sample
with a density higher than air) is saved. If the ray does not hit a
bone within a certain number of steps (defined by threshold T1)
we assume that there is no bone in front of the brain and use the
radiance accumulated from the first hitpoint.

• A second extension to the algorithm was made to improve vi-
sualization near the skull base. When looking at the brain from

objectID

Volume
PET

Virtual

Volumes

GPU

CPU

Cache

Textures

Layout

Lookup

TexturesLUTex objID LUTex CT LUTex PET

CT

PET CacheobjID Cache CT Cache

Optional Unified Cache

Fig. 3: Bricked memory management for multi-volume rendering. No
volume is required to be resident in GPU memory in its entirety. Ray-
casting is performed in “virtual” volume space, with addresses trans-
lated to actual cache texture coordinates using layout look-up textures.

below, along the spinal chord, many small bone pieces occlude
the view of the brain. We introduce a threshold T2 which spec-
ifies the minimum distance two bony areas must have in order
to assume the area in-between to be brain. If this distance is not
reached, the area between these two bone areas is skipped and
not rendered.

Both thresholds have default values that usually work very well and
only need to be adjusted for special cases (e.g., looking at the brain
from below). Figure 4 outlines the standard case of skull peeling and
a case where threshold T1 is needed.

Clipped Skull Peeling: Finding the ideal position for the skin
incision and subsequent bone removal is important for minimizing the
invasiveness of a surgery. For this purpose, we introduce clipped skull
peeling to visualize the simulated surgical approach (Figure 11a). The
user input consists of the surgeon drawing the areas for the skin inci-
sion and subsequent bone removal directly onto the volume-rendered
image of the head. After skin removal, the skull is rendered with
shaded DVR, as this enhances the 3D perception and helps the surgeon
to find anatomical landmark points on the skull, which can be used as
orientation aides during surgery. The result of clipped skull peeling
is generated in three raycasting passes by using the stencil buffer in
order to restrict pixels and thus rays to one of three different cases
with one specific rendering mode each: (1) Everything outside the
specified clipping areas is rendered using unshaded DVR of the MR
volume; (2) Inside the skin incision area the skull is displayed (shaded
DVR of the CT data), but accumulation of color and opacity is started
only after the threshold for bone has been exceeded; and (3) The bone
removal area is skull-peeled. The assignment of these three render-
ing modes to their corresponding pixels is performed as follows: After
clearing the stencil buffer to zero, the polygon that was drawn by the
user to simulate the skin incision is rendered, increasing the stencil
values of the covered pixels to one. Next, the polygon drawn for bone
removal is rendered as well, which increases the stencil values of the

area to be skipped

potential brain area

(might be discarded later)

brain area

Fig. 4: Skull peeling algorithm. The lower ray displays the standard
case where the ray hits the skull prior to the brain. The upper ray
depicts the case where the brain is not covered by bone.

corresponding pixels to two. However, for rendering the bone removal
polygon the stencil function is set such that stencil values are only
modified in areas where the stencil buffer is already one. This ensures
that the bone is only removed in areas where the skin has already been
removed. Then, the three raycasting passes outlined above are per-
formed, restricting rendering to the corresponding pixels by setting
the stencil function accordingly. Note that this algorithm could easily
be extended to more general view-dependent clipping methods.

View-Independent Skull Peeling: The skull peeling algo-
rithm is inherently view-dependent. This, however, implies that the
peeled volume is static with respect to the image plane instead of the
volume, and the part of the volume that is peeled away changes when-
ever the view is changed. We extend skull peeling to a powerful view-
independent approach for volume clipping. During raycasting, a depth
image is generated that stores the depths where rays first hit a part of
the volume that is not peeled away. In order to generate a segmen-
tation mask that corresponds to the peeled area, each voxel position
is transformed according to the view transform into an (x,y) position
and corresponding depth z. Comparing the voxel’s transformed depth
with the depth stored in the depth image at (x,y) determines whether
the voxel is included or excluded from the skull peeling segmenta-
tion mask, which is equivalent to a voxelized selection volume [25].
This process is very similar to shadow mapping [27]. The generated
mask allows to switch back to standard volume rendering with seg-
mented masks, toggling the visibility of the peeled area on demand
while it stays constant with respect to the volume, even when the view
is changed. Therefore, view-independent skull peeling is the first step
for multi-volume brain surface visualization (Section 5.3) as it offers
an unobscured view to the brain.

5.3 Multi-Volume Blending – Brain Surface Visualization

Combining multiple modalities in a single rendering can significantly
increase the understanding of the actual clinical situation. Surgery
at the brain’s surface primarily includes tumor resection, epilepsy
surgery, and vessel surgery (arteriovenous malformation, AVM). For
these cases, after virtually removing the bone cover, the surgeon wants
to see the brain surface with additional information such as DSA or
functional data (i.e., PET or fMRI). For this task, we employ a visual-
ization approach that combines different modalities without requiring
segmented masks. A major motivation for this is that PET data is very
diffuse and cannot be segmented well, fMRI data is almost binary, and
DSA data can be visualized clearly with a simple ramp transfer func-
tion. Also, avoiding the need for segmentation significantly speeds up
the preprocessing phase. Therefore, a method that combines multiple
volumes based on property fusion is a very good choice for visualizing
the brain surface with information from multiple modalities.

Our algorithm only needs two or more registered volumes as input.
It is flexible with regard to the number of volumes that can be visual-
ized concurrently, since our bricking scheme (Section 5.1) makes the
approach scalable. Each volume has its own individual transfer func-
tion. The volume contributions are combined during raycasting by
applying the transfer functions of all volumes at each sample location
and combining the classified values.

(a) (b)

Fig. 5: Multi-volume rendering by blending different modalities. (a)
Blending MR and DSA. (b) Blending MR and fMR.

We have implemented different combination techniques ranging
from simple linear blending to more specialized combination modes.
For blending DSA data with MR or CT, for example, it is sufficient to
only display the DSA data whenever its opacity value lies above a cer-
tain level. Otherwise, the other volumes are blended and displayed.
For visualizing functional data such as PET along with anatomical
data, the PET values can be used for color classification while the
anatomical data determines the opacity values. Figure 5 shows exam-
ples of multi-volume rendering by blending.

5.4 Segmented Multi-Volume Rendering – Deep Lesions

For thorough planning of surgery on deep-seated processes, after skull
peeling and brain surface visualization certain structures need to be
emphasized, e.g., a tumor or the optical nerve. This is achieved by a
prior segmentation of the structures of interest, and individually apply-
ing multiple optical properties such as transfer functions and rendering
modes. In the following, we assume that an object ID volume is avail-
able, which is the combination of multiple binary segmented objects.
Our rendering algorithm for segmented volumes is conceptually based
on two-level volume rendering [9], which allows to define a separate
rendering mode and transfer function for each individual object. How-
ever, we use raycasting instead of slicing, which allows for much more
flexibility such as the mask smoothing described in Section 5.5. Dur-
ing rendering, the object ID of a sample determines the corresponding
rendering mode and transfer function. All 1D transfer functions are
stored in a single 2D texture with one transfer function per row. All
2D transfer functions are stored in a single 3D texture. For multi-
volume rendering, the user additionally chooses a specific volume for
each object ID in order to select the modality that depicts the under-
lying kind of data best. For example, choosing an MRI as underlying
data of a segmented bone is not a good choice, since bone is not de-
picted well by this modality. Using MRI data for the “brain object,”
and CT data for the “bone object” surrounding the brain, however, is
a very good choice. During rendering, a small 1D look-up texture is
used to fetch the corresponding volume ID for each object ID. The
shader then simply samples the volume texture corresponding to the
volume ID of the sample. Figure 6 depicts examples of multi-volume
rendering for segmented data, which also shows that it is possible to
specify per-object clipping planes. The clipping plane equations are
obtained from two 1D textures, as outlined in Section 5.1, and the
shader simply discards fragments that should be clipped. A combina-
tion of multi-volume blending with segmented data is also possible,
which is determined by special blending object IDs, as described in
Section 5.1. In this case, each object can have as many transfer func-
tions as there are volumes, and the result is blended per sample after
all transfer functions have been applied.

5.5 Smooth Rendering of Segmented Multi-Volume Data

The main visual problem of rendering binary segmented objects are
the staircase artifacts that appear at object boundaries (Figure 7a).

(a) (b)

Fig. 6: Multi-volume rendering of segmented data. (a) CT and MR
data for visualization of implanted electrodes for epilepsy surgery. (b)
CT, MR and MRA data for tumor resection planning.

(a) (b) (c)

Fig. 7: (a) Unfiltered object boundaries. (b) Trilinear filtered object
boundaries. (c) Our smooth boundary rendering algorithm.

Especially small objects with narrow diameters such as vessels get a
ragged appearance with clearly discernable object boundaries of voxel
size. For high-quality visualization, the real boundary of the object is
needed with subvoxel accuracy. Approaches such as trilinear filtering
of object boundaries improve visual appearance (Figure 7b) and work
for all kinds of segmented objects [9]. However, trilinear interpolation
does not completely remove all artifacts (especially in close-up views),
as it takes into account only the binary segmentation information and
not the underlying data values. Our approach for smooth rendering of
segmented data (Figure 7c) is based on the assumption that the object
boundary can be described by an iso-value. Values above the specified
iso-value belong to the object whereas values below or equal are out-
side. This works well for segmented vessels as well as other structures
of interest in neurosurgery, such as the bone or implanted electrodes.
We take advantage of this existing iso-value boundary to adjust the
object ID of each sample on-the-fly during rendering.

The algorithm works as follows: First, for each object that should
use improved smooth boundaries, the iso-value corresponding to its
boundary must be specified by the user. Then, for each sample during
raycasting, we take a number of steps (defined by a user-adjustable
parameter) in the positive and negative gradient direction to check if
there is another object nearby. The gradient direction is used since
new structures are most likely to appear in the direction of the greatest
change of intensity. If a sample in the gradient direction belongs to a
different object than the original sample, the original sample is treated
as boundary sample, as below. If the sample is not a boundary sample,
standard raycasting for segmented objects is performed as described
above. For a boundary sample, the following steps are applied: The
intensity of the current boundary sample (Icur) is compared to the pre-
defined boundary iso-value of the current object (Isocur) as well as to
that of the adjacent object found (Isoad j). If the intensity value cor-
responds to the iso-value of the adjacent object, the current sample is
re-classified by changing its object ID (oIDcur) to the adjacent object’s
ID (oIDad j). Figure 8 depicts the different steps of the algorithm, and
Equation 1 summarizes the reclassification step:

oIDcur =

{

oIDad j if
(

Icur > Isoad j

)

∧

((

Isoad j > Isocur

)

∨ (Icur < Isocur)
)

oIDcur else.

(1)

Tiede et al. [23] have presented a similar approach based on threshold-
segmented objects and their corresponding min and max threshold
values. Their approach, however, only takes into account the eight
surrounding voxels of each sample to reassign object memberships,
whereas we search a user-defined length along the gradient direction.
This gives us the possibility to adapt the boundary to our needs. We

51

> 30

> 50

Fig. 8: Smooth object boundary rendering. The density of a sample
is compared to the iso-values of neighboring objects in gradient direc-
tion. The sample is assigned to the object with the closest iso-value.

can, for example, increase the boundary iso-value of a segmented ves-
sel on-the-fly to show only the interior of the vessel, or lower the iso-
value to display the vessel and its vascular hull. The main advan-
tage of our algorithm is that even inexact segmentation masks (e.g.,
slightly too small or too large masks) can be rendered correctly and
with a smooth appearance because the object boundary is adapted to
the actual underlying data. When extending this algorithm to multiple
volumes one has to be careful to always use the correct volume for
iso-value comparison. When comparing the current sample’s inten-
sity value to the adjacent object’s iso-value, the adjacent object’s ID
has to be used to fetch the correct volume for getting the intensity at
the current sample. Figure 7 shows the visual result of our algorithm
compared to standard rendering of segmented masks.

5.6 Interaction Aides

Various features have been implemented to support the surgeon in the
task of preoperative planning:

Transfer Function Specification: Colors and opacities are speci-
fied over the intensity range in a standard graphical TF editor, in which
it is possible to load a set of predefined transfer functions and adapt
them manually to the individual dataset.

Flythrough Navigation / Microscopic & Endoscopic View:
The datasets can be explored by flythrough navigation. To simulate
the operating microscope the viewpoint for rendering can be set inside
the volume and moved around interactively. An endoscopic lens with
an adjustable field of view can be simulated by perspective raycasting.

Slice Views: Next to the 3D visualization window an MPR (mul-
tiplanar reconstruction) can be displayed. The MPR consists of three
orthogonal slice views (axis aligned) displaying the raw data as well
as the segmented objects.

Integration into a PACS: The whole framework is integrated into
Agfa’s Impax 6.0 medical workstation. Impax 6.0 offers a plugin inter-
face which allows to extend the basic functionality of the workstation
to meet the individual demands of the users. Therefore, by integrating
our visualization framework, all other features of the medical work-
station (e.g., additional segmentation possibilities, data access) can be
used in combination with our neurosurgical planning application.

6 RESULTS

We demonstrate the usefulness of our application by presenting two
distinct planning cases as they were performed by a neurosurgeon.
The cases consist of a tumor resection at the frontal lobe near the
brain’s surface and a tumor resection near the pituitary gland. The
first patient underwent CT, MR, PET and fMRI scans, as the tumor
was in the vicinity of the motor language area. First the datasets
were registered and resampled to have the same volume dimensions
(2563). After initial exploration of the datasets (e.g. via skull peel-
ing) and positioning of the patient’s head as done in real surgery, skin
incision and bone removal were performed tailored to the individual
anatomy. Next, the datasets (MR, PET, fMRI) were visualized by
multi-volume blending where the MR data depicts the anatomy, PET
shows the metabolic active parts of the tumor and the fMRI data shows
the brain areas involved in language function, which must be kept in-
tact during surgery. Screenshots from different stages of the planning
process are depicted in Figure 11. The virtual anatomic structures such
as gyri, sulci and blood vessels were found to correlate well with the
intraoperative view (Figure 9), thus allowing the surgeon to preoper-
atively plan the resection borders. Concurrent visualization of fMR
data helped in identifying critical “no-touch” areas at the left resection
border. PET data revealed a focus of high metabolic activity in the
right part of the tumor where consequently a separate specimen was
taken and sent to histology during surgery, leading to additional irra-
diation treatment. The second patient had a deep-seated lesion near
the pituitary gland and underwent CT, MR and MR angiography scans
(dataset size 512x512x164). In this case, after registration, tumor and
vessels were segmented by thresholding. Next, the surgeon used our
multi-volume rendering for segmented masks to gain insight into the
individual anatomy (i.e., position of critical vessels in relation to the

(a) (b)

Fig. 9: Comparison of a skull peeled image (a) with the corresponding
intraoperative view (b). Arrows show points of correspondence.

tumor). After he had a clear perception of the location of the tumor and
other anatomical landmarks he then used the skull peeling algorithm
to plan the optimal position of the surgical approach (Figure 10).

During development we kept a tight feedback loop with the depart-
ment of neurosurgery at the General Hospital Vienna to iteratively re-
fine the system. The skull peeling algorithm was received very well
as it offered a direct view of the brain’s surface instantly, without te-
dious preprocessing. The main drawback is the need of a registered CT
dataset which might not always be available. Multi-volume rendering
by blending also convinced because of its instant visualization with-
out requiring segmentation and its ease of use. However, the optimal
method to blend/combine the different volumes (e.g., linear blending,
taking the first volume to define opacity and a second to define color)
depends strongly on the type of datasets that are visualized. There-
fore, an automatic setting of the combination method depending on
the types of datasets could further improve the usability of the entire
system. The multi-volume rendering of segmented masks was again
perceived as very helpful by the surgeon. A drawback, however, is
the amount of parameters that need to be set for each mask individ-
ually (assigning a volume to the mask, choosing the rendermode and
transfer function, setting the iso-value for smooth object boundaries).
Naturally, these parameters offer a very high flexibility for visualizing
the datasets, however they also reduce the ease of use of the applica-
tion. According to the surgeon, the most tedious part of the workflow
consists of collecting and registering all the different datasets prior to
visualization, especially fMR, PET and DSA data. All things consid-
ered, our surgery planning application was very well perceived and is
now used almost daily in clinical practice.

Additional User Effort: In the routine clinical setting, prepro-
cessing has been shown to take an average of 10 minutes (Table 3), and
initial case setup for visualization up to 3 minutes. After initial explo-
ration, all parameters of a case can be saved in an archived casefile.
Case exploration is interactive and re-loading of archived cases takes
less than 1 minute. The 3D cases are routinely prepared by young
residents and later demonstrated to and discussed with the perform-
ing neurosurgeon: For the resident, this has the advantage of teaching
and training neuroanatomy of the oncoming surgical approach, for the

Preprocessing: (avg 10 min for 3 volumes w/o manual segmentation)

Collection of image data from interdisciplinary PACS 2-10 min

network (radiology, nuclear medicine, neurology)

Image registration 2 min / volume

Threshold segmentation for bone/vessels 1 min / object

Manual segmentation of tumor > 5 min

Volume rendering initialization 1 min

Initial setup at interactive stage: (avg 2 min for 3 volumes and 2 objects)

Skull peeling immediate

Multi-volume blending (TF and blending factor design) 15 sec / volume

Multi-volume rendering of segmented masks 15 sec / object

(setting of volume, transfer function and render mode)

Smooth mask rendering (iso-value adjustment) 15 sec / object

Interactive exploration optional

Loading setup of archived case < 10 sec

Table 3: User effort for initial case setup (parameter setting).

Fig. 10: Planning of a right subfrontal approach for pituitary tumor re-
section. (a) Skin incision. (b) Operating microscope view. (c) Keyhole
approach planning.

advanced surgeon time expenditure is thus very small. The cases are
chosen by the surgeons either on the basis of anatomical difficulty,
individual variations in anatomy, or simply for the convenience of a
preoperative 3D visualization.

Performance: All our visualization algorithms run at interactive
frame rates. Naturally, the frame rates vary depending on the transfer
functions and rendermodes that are used (e.g., unshaded DVR, shaded
DVR). Table 4 gives an overview of the frame rates of both case studies
for the different visualization methods. Timings are for a Pentium 4,
3.2 GHz with 3 GB RAM and an ATI Radeon X1800 graphics card.

Multi-volume rendering by either blending or segmented masks
achieves the highest frame rates. After activating our algorithm for
rendering smooth object boundaries, however, the frame rate drops
significantly due to the complex shader for rendering smooth bound-
aries. This problem can be alleviated by automatically switching back
to normal rendering during user interaction (e.g. while rotating the
view). The frame rates of the skull peeling algorithm can be explained
by the costly branching-statements that have to be performed in the
shader to cover all special cases for peeling the skull correctly. On the
whole, the framerates were found adequate by the users, since minor
viewpoint changes are usually sufficient during preoperative planning.

Memory Usage: The actual memory footprint of our system de-
pends on the cache sizes chosen, and on whether texture dimensions
need to be padded to power-of-two dimensions or not. For example,
Case Study 2 (Table 4) can use caches of size 5122x128 each for the
CT and MR volumes and of size 5122x64 for the MRA volume (all
16-bit voxels), and a 5122x256 cache for the object IDs (8-bit vox-
els). This yields a memory consumption of 224MB, which would
allow this configuration to be rendered even on a 256MB graphics
card. In comparison, the original volumes sum up to 287MB, but if
padding to power-of-two dimensions is required (e.g., Radeon cards)
would actually consume 448MB of GPU memory, which requires at
least a 512MB graphics card. However, it is important to note that our
caching scheme works better with larger volumes (e.g., 5122x300 and
upward), and especially helps to alleviate power-of-two requirements.

7 CONCLUSION AND FUTURE WORK

Our multi-volume rendering system for preoperative planning of neu-
rosurgical interventions was directly inspired by the needs of neuro-

Case Study 1 Case Study 2

Visualization Method CT, MR, fMR, PET CT, MR, MRA

(each 256x256x256) (each 512x512x164)

volumes 2 3 2 3

Skull Peeling 9.5 fps 9 fps 5 fps 4.5 fps

Multi-Volume Blending 23 fps 12 fps 18 fps 12 fps

Segmented Multi-Volumes 35 fps 27 fps 24 fps 20 fps

Smooth Segmented MVs 15 fps 5 fps 6 fps 4 fps

Table 4: Frame rates of the visualization methods (viewport 512x512).

(a) (b) (c) (d)

Fig. 11: Workflow for planning a tumor resection near the brain’s surface. (a) Planning the surgical approach. (b,c,d) Multi-volume blending
for visualization of superficial structures. The visualization includes MR (black/white), PET (red) and fMR (yellow and white) data. The PET
transfer function shows an area of high metabolic activity within a low grade glioma. The fMR spots delineate areas activated during speech.

surgeons to visualize multimodal data fast, in high quality, and with
as little user interaction as possible. The surgical approach to the
brain is simulated by interactively removing surrounding tissue such as
skin and bone from MR data by making use of additional information
present in a registered CT dataset. Further we developed multi-volume
rendering techniques that work either purely on the data or include
additional segmentation masks. Rendering of segmented objects was
improved by an algorithm for smooth rendering of object boundaries.
To encourage use in daily clinical practice, we integrated our multi-
volume visualization system into a medical workstation which offers
registration, segmentation and interactive data exploration possibili-
ties. In our future work we want to incorporate DTI (Diffusion Ten-
sor Imaging) into our multimodal visualization. Displaying neuronal
pathways could further improve the minimal invasiveness and secu-
rity of neurosurgical interventions. As 3D visualization has become
well accepted among neurosurgeons, the next logical step would be
to connect our system to a neuronavigation system for tracking of the
intraoperative position of the surgeon’s instruments. Visualizing the
multimodal datasets in parallel to the real surgery could further help
the surgeon in identifying structures of interest which are not visible
during surgery (e.g. functional areas, optimal skin incision line).

ACKNOWLEDGEMENTS

This research project was funded by the Austrian KPlus project and by AGFA Health-

care Vienna. The datasets are courtesy of the Neurosurgery Department at the Medical

University of Vienna. We would also like to thank Christof Rezk-Salama.

REFERENCES

[1] M. Atkins, K. Siu, B. Law, J. Orchard, and W. Rosenbaum. Difficulties of

T1 Brain MRI Segmentation Techniques. In Proc. of SPIE Med. Imaging,

volume 4684, pages 1837–1844, 2002.

[2] J. Beyer, M. Hadwiger, S. Wolfsberger, C. Rezk-Salama, and K. Bühler.

Segmentierungsfreie Visualisierung des Gehirns für Direktes Volume

Rendering. In Proc. of Bildverarb. für die Medizin, pages 333–337, 2007.

[3] W. Cai and G. Sakas. Data Intermixing and Multi-Volume Rendering. In

Proc. of Eurographics, pages 359–368, 1999.

[4] M. Capek, L. Mroz, and R. Wegenkittl. Robust and Fast Medical Reg-

istration of 3D-Multi-Modality Data Sets. In Proc. of Medicon, pages

515–518, 2001.

[5] S. DiMaio, N. Archip, N. Hata, I. F. Talos, S. K. Warfield, A. Majumdar,

N. McDannold, K. Hynynen, P. R. Morrison, W. M. Wells, D. F. Kacher,

R. Ellis, A. J. Golby, P. M. Black, F. A. Jolesz, and R. Kikinis. Image-

guided Neurosurgery at Brigham and Women’s Hospital: The Integration

of Imaging, Navigation and Interventional Devices. IEEE Engineering in

Medicine and Biology Magazine, 25(5):67–73, 2006.

[6] P. Felkel, R. Wegenkittl, and M. Bruckschwaiger. Implementation and

Complexity of the Watershed-from-Markers Algorithm Computed as a

Minimal Cost Forrest. In Proc. of Eurographics, pages 26–35, 2001.

[7] M. Ferré, A. Puig, and D. Tost. A Framework for Fusion Methods and

Rendering Techniques of Multimodal Volume Data. Computer Animation

and Virtual Worlds, 15:63–77, 2004.

[8] A. Ghosh, P. Prabhu, A. E. Kaufman, and K. Mueller. Hardware As-

sisted Multichannel Volume Rendering. In Proc. of Computer Graphics

International, pages 2–7, 2003.

[9] M. Hadwiger, C. Berger, and H. Hauser. High-Quality Two-Level Volume

Rendering of Segmented Data Sets on Consumer Graphics Hardware. In

Proc. of IEEE Visualization, pages 301–308, 2003.

[10] M. Hadwiger, C. Sigg, H. Scharsach, K. Buhler, and M. Gross. Real-Time

Ray-Casting and Advanced Shading of Discrete Isosurfaces. In Proc. of

Eurographics, pages 303–312, 2005.

[11] P. Jannin, O. Fleig, E. Seigneuret, C. Grova, X. Morandi, and J. Scara-

bin. Multimodal and Multi-Informational Neuro-Navigation. In Proc. of

CARS - Computer Assisted Radiology and Surgery, pages 167–172, 2000.

[12] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional Transfer Func-

tions for Interactive Volume Rendering. IEEE Transactions on Visualiza-

tion and Computer Graphics, 8(3):270–285, 2002.

[13] J. Krüger and R. Westermann. Acceleration Techniques for GPU-based

Volume Rendering. In Proc. of IEEE Visualization, pages 287–292, 2003.

[14] I. H. Manssour, S. S. Furuie, S. D. Olabarriaga, and C. M. Freitas. Vi-

sualizing Inner Structures in Multimodal Volume Data. In Proc. of SIB-

GRAPI, pages 51–58, 2002.

[15] R. Mullick, R. N. Bryan, and J. Butman. Confocal Volume Rendering:

Fast Segmentation-Free Visualization of Internal Structures. In Proc. of

SPIE - Int. Symp. on Optical Science and Technology, 2000.

[16] A. Neubauer, S. Wolfsberger, M. Forster, L. Mroz, R. Wegenkittl, and

K. Bühler. STEPS - An Application for Simulation of Transsphenoidal

Endonasal Pituitary Surgery. In Proc. of IEEE Visualization, pages 513–

520, 2004.

[17] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interac-

tive Volume Rendering on Standard PC Graphics Hardware Using Multi-

Textures and Multi-Stage Rasterization. In Proc. of Graphics Hardware,

pages 109–118, 2000.

[18] C. Rezk-Salama and A. Kolb. Opacity Peeling for Direct Volume Ren-

dering. In Proc. of Eurographics, pages 597–606, 2006.

[19] F. Rößler, E. Tejada, T. Fangmeier, T. Ertl, and M. Knauff. GPU-based

Multi-Volume Rendering for the Visualization of Functional Brain Im-

ages. In Proc. of SimVis, pages 305–318, 2006.

[20] H. Scharsach, M. Hadwiger, A. Neubauer, S. Wolfsberger, and K. Bühler.

Perspective Isosurface and Direct Volume Rendering for Virtual En-

doscopy Applications. In Proc. of Eurovis ’06, pages 315–323, 2006.

[21] L. Serra, R. A. Kockro, C. G. Guan, N. Hern, E. C. K. Lee, Y. H. Lee,

C. Chan, and W. L. Nowinski. Multimodal Volume-based Tumor Neuro-

surgery Planning in the Virtual Workbench. In Proc. of MICCAI, pages

1007–1015, 1998.

[22] T. Song, E. Angelini, B. Mensh, and A. Laine. Comparison Study of

Clinical 3D MRI Brain Segmentation Evaluation. In Proc. of IEEE Engi-

neering in Medicine and Biology Society, pages 1671–1674, 2004.

[23] U. Tiede, T. Schiemann, and K. H. Höhne. High Quality Rendering of

Attributed Volume Data. In Proc. of IEEE Visualization, pages 255–262,

1998.

[24] F. Vega Higuera, P. Hastreiter, R. Naraghi, R. Fahlbusch, and G. Greiner.

Smooth Volume Rendering of Labeled Medical Data on Consumer

Graphics Hardware. In Proc. of SPIE Med. Imaging, pages 13–21, 2005.

[25] D. Weiskopf, K. Engel, and T. Ertl. Interactive Clipping Techniques for

Texture-Based Volume Visualization and Volume Shading. IEEE Trans-

actions on Visualization and Computer Graphics, 9(3):298–312, 2003.

[26] R. Westermann and T. Ertl. Efficiently Using Graphics Hardware in Vol-

ume Rendering Applications. In Proc. of SIGGRAPH, pages 169–178,

1998.

[27] L. Williams. Casting Curved Shadows on Curved Surfaces. In Proc. of

SIGGRAPH, pages 270–274, 1978.

[28] B. Wilson, E. B. Lum, and K. Ma. Interactive Multi-Volume Visualiza-

tion. In Proc. of Int. Conf. on Comp. Science, pages 102–110, 2002.

