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Abstract

Recent results on stereo indicate that an accurate seg-
mentation is crucial for obtaining faithful depth maps. Vari-
ational methods have successfully been applied to both im-
age segmentation and computational stereo. In this paper
we propose a combination in a unified framework. In partic-
ular, we use a Mumford-Shah-like functional to compute a
piecewise smooth depth map of a stereo pair. Our approach
has two novel features: First, the regularization term of
the functional combines edge information obtained from the
color segmentation with flow-driven depth discontinuities
emerging during the optimization procedure. Second, we
propose a robust data term which adaptively selects the best
matches obtained from different weak stereo algorithms. We
integrate these features in a theoretically consistent frame-
work. The final depth map is the minimizer of the energy
functional, which can be solved by the associated functional
derivatives. The underlying numerical scheme allows an ef-
ficient implementation on modern graphics hardware. We
illustrate the performance of our algorithm using the Mid-
dlebury database as well as on real imagery.

1. Introduction

In the last 20 years, the computation of visual correspon-
dences in one or more stereo image pairs has been a chal-
lenging task for the vision community. Many different al-
gorithms have been proposed in order to cope with typical
stereo problems such as large untextured areas, occlusions
and varying radiance.

In order to get faithful depth maps one has to find a

model which can deal with both smooth objects and sharp
depth discontinuities. On the other hand depth discontinu-
ities often coincide with the edges of the image.

In their celebrated paper [17], Mumford and Shah pro-
posed a variational segmentation model which intents to
decompose an image into distinct region using piecewise
smooth functions. Originally the model was developed for
image segmentation but the concept of piecewise smooth
functions also fits perfectly to depth maps.

The contribution of this paper is to unify the segmenta-
tion and depth processes in a theoretically consistent varia-
tional framework. More precisely, we propose a Mumford-
Shah like functional which uses a common discontinuity set
for both the image intensity function and the depth map.
Weak edges at depth discontinuities will therefore be en-
forced as well as the image edges will mainly influence
the depth map. In addition, we propose a robust data term
which is insensitive to outliers and can deal with multiple
depth hypotheses obtanied from different matching algo-
rithms. The final depth map is computed by minimizing
the energy functional. Therefore, we develop a simple and
robust fixed point algorithm (merely two update equations
have to be implemented) which can be computed within a
few seconds on modern graphics hardware.

The structure of the paper is as follows. Section 2 re-
views some recent developments of stereo algorithms, in-
troduces the Mumford-Shah segmentation model and dis-
cusses different approximations of the Mumford-Shah func-
tional. In Section 3 we develop the joint image and depth
segmentation functional and we show how to robustly in-
tegrate multiple depth hypotheses. In Section 4 we pro-
pose a simple algorithm to compute the depth map. We
also give some details concerning implementation issues.



In Section 5 we evaluate the performance of our method
using the Middlebury database. In addition, we apply our
method to challenging real world data sets showing the ex-
cellent performance of our method. In the last section we
give some conclusions and suggest possible directions for
future investigations.

2. Related Work
2.1. Computational Stereo

Calculating depth maps from a set of images is today
still an active and challenging research topic. According
to the well-known standard benchmark suite for compu-
tational stereo [21, 22], most of the high-quality methods
are based on global 2D Markov random field optimiza-
tion approaches like graph cuts [4] or loopy belief propa-
gation [28]. The top-ranked methods include explicit treat-
ment of potentially occluded regions and, often more im-
portantly, a reasoning mechanism to detect image edges or
segments reflecting depth discontinuities (e.g. [13, 27, 35]).
Most of these methods use simple image similarity mea-
sures, often based only on (sampling invariant) single pixel
comparisons [2]. The reason for their good performance on
the benchmark dataset lies in their sophisticated depth ex-
traction procedure incorporating multiple stages.

The approach proposed in [36] takes a very different
route: a simple winner-takes-all depth extraction method
is combined with an advanced image similarity score. The
utilized large aggregation window yields very discrimina-
tive descriptors for image similarity. The foreground fatten-
ing effect is avoided by incorporating a weighted support
approach, which implicitly leads to aggregation windows
with irregular, context dependent shape. The application of
the adaptive window shapes substantially improves the re-
sult near depth discontinuities. Different approaches using
similar ideas are presented in [3] and [32].

Another line of methods aiming at increasing the accu-
racy near depth discontinuities without reducing the perfor-
mance in smooth regions uses variable-sized support win-
dows for the similarity score [14, 33]. Conceptually, a
number of disparity hypotheses for every pixel is generated,
and the final disparity value is selected from this hypothe-
ses. In [33], the determination of the correct window size
is highly coupled with the depth extraction procedure for
highest efficiency.

Most of the computational stereo methods employ an op-
timization framework suited for Markov random field prob-
lems. There are only a few approaches based on variational
principles. Several methods are based on optical flow ap-
proaches incorporating the epipolar constraint to reduces
the search space (e.g. [19, 23, 25, 26]). These methods
evolve a depth map in order to minimize an energy func-
tional. One drawback of these approaches is the necessity

to provide derivatives of the similarity function. A suitable
regularization scheme allows depth discontinuities based on
image gradients. In [20] the probabilities of the disparity
hypotheses for every pixel are evolved using non-linear dif-
fusion methods, hence it is closer to the Markov random
field formulations.

2.2. Variational Image Segmentation

Besides the computation of visual correspondence, an-
other fundamental low level tasks is to segment the image
domain into distinct surface patches belonging to distinct
objects. A variety of ways to define the task of segmentation
have been proposed e.g. [6, 10, 17], but what is common to
these algorithms is that they try to minimize the same seg-
mentation energy [ | 5]. The calculus of variations provides a
uniform framework where energy minimization finds a pre-
cise language by means of variational principles.

In their seminal paper [ | 7] Mumford and Shah proposed
a segmentation model which is based on piecewise smooth
approximations of the intensity function. The model has
successfully been utilized for several applications e.g. active
contour models [9], edge detection [5], image regularization
[31], image decomposition [24], inpainting [12] and regis-
tration [11]. Moreover, the Mumford-Shah functional has
strong connections to concepts such as statistical estimation
via maximum likelihood [8]. Its neuronal plausibility has
been discussed in [ 8]. This emphasizes the universality of
the Mumford-Shah functional for computer vision applica-
tions.

The original Mumford-Shah (MS) segmentation model
is defined as

Fus = / (u—g)>dQ+ a/ |Vu|?dQ + Blength(T) ,
Q Q\r

where ¢ is the observed image, u is a piecewise smooth
approximation, I is a set containing edges in u, « and /3 are
tuning parameters. It was shown that there exist a simple
relation between (o, 3) and (scale, contrast) [17], in fact

scale = /o, contrast = \/203/Va .

In its original setting, the Mumford-Shah functional is
hard to minimize, due to the lack of convexity and regular-
ity of the edge-length term. A first solution was given by
Ambrosio and Tortorelli [1] by approximating the original
functional by simpler elliptic variational problems. They
proposed to replace the edge set I' by means of a 2D func-
tion z and designed the so-called phase field energy F, .
which additionally depends upon a scale parameter . The
remarkable property associated with this formulation is that
as ¢ — 0, I, . approaches the length of I'. However, this
approximation works well only if the scale of ¢ is in the
order of one pixel.



In [7] Chambolle presented a different approach based
on a non-local approximation of the Mumford-Shah func-
tional. The major advantage of this formulation is that the
explicit computation of the edge set I' is avoided by us-
ing a family of continuous and non-decreasing functions
f:]0,4+00) — [0, 400) satisfying

- f(®) :

tli%{r t L tilinoo JH=1.

While Chambolle uses functions of the form f(t) =
arctan(t), it was later shown that f(¢) = log(1 + ¢) is a
better choice, since it is less sensitive to local minima and
requires a smaller number of iterations to converge [16].
In the discrete setting, the non-local approximation of the
Mumford-Shah functional yields
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a. = elog L, the convolution term p(¢) takes constantly the
value (/2 — 1)/2 and N (z) is the set of nearest neighbors
such that |£|.c = 1. For further information we refer to
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3. Our Approach

In this section we describe the extension of the non-
local approximation of the Mumford-Shah functional (1) to
a joint color-depth segmentation functional. We propose a
robust data term which can deal with multiple depth hy-
potheses. For minimization we derive the functional deriva-
tives (Euler-Lagrange equations in the continuous setting).

3.1. Joint Color-Depth Segmentation

A color image can be described by three channels (e.g.
RGB, LAB). Thus, the most obvious way is to extend the
scalar valued variables u and g of (1) to vector valued vari-
ables u = (u1,uz2,u3)” and g = (g1, 92,93)". We denote
the squared Lo norm of a vector x as ||x||3. We point out
that more sophisticated norms can be used which may im-
prove the segmentation results [5].

As mentioned in the introduction, our major aim is to
unify the discontinuities of the color segmentation process
with those of the depth process. The simplest extension is
to treat the depth map in the same way as the color image.
Therefore, we introduce a piecewise smooth depth map d

and an initial depth map dy. The initial depth map could
be provided by any local matching algorithm (e.g. using a
simple correlation window).

We introduce two additional parameters. The first pa-
rameter v € (0,1) weights the influence of the color and
depth gradients to the common discontinuity set. If y — 1
the discontinuities are mainly influenced by the color gradi-
ents. If v — 0 the discontinuities are mainly affected by the
depth discontinuities. We found that v = 0.9 yields good
results in most cases. The second parameter ¢ is used to
control the smoothness of the depth map.

In this setting, the discrete energy enabling joint color
and depth segmentation is given by:

Se=e > U(a) + ) ), )
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where the data term ¥ (x) is given by
U(z) =7 u@) —g@)l; + (1-)3ld(@) —do(@)|” -
3)

The regularization term ®(z) is given by

)= > Aclog(1+BeG(z,8), 4
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where joint color depth gradients are given by
G(z,€) = Veu(2)[3 + (1 —7)|Ved()[* .

Optimizing this energy results in piecewise smooth color
and depth images.

Fig. 1 shows the optimization result of our energy (2)
applied to a stereo pair of the Middlebury database [22].
The initial depth map was obtained from a winner takes all
strategy applied to a 3 x 3 sum of absolute intensity val-
ues (SAD) correlation window. As expected, the result-
ing approximations of the color image and the depth map
yield piecewise smooth functions. One can also see that the
discontinuities of the color image well correspond to the
discontinuities of the depth map. Nevertheless, in areas of
many wrong initial matches, our first model does not yield
good results. The error norm measuring the deviations from
the initial depth map is a quadratic one which does not al-
low for outliers. In the next section we show how to resolve
this problem by means of a robust error norm.

3.2. Selection from Multiple Depth Hypotheses

If a set of n initial depth maps d((f) is provided, the
depth segmentation procedure can be extended by sim-
ply summing up the according data terms. We presume,
that the initial depth maps will often disagree, in particular
near to depth discontinuities and occlusions. Consequently,
the deviation of the depth process d from the initial maps
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Figure 1. Optimization result of S. using the quadratic data term.
(a) Left input image (b) Ground truth. (c) Joint color-depth edge
set (black pixels indicate strong edges). (d) Initial Match obtained
from 3 x3 SAD. (e) Piecewise smooth approximation of the left in-
put image. (f) Piecewise smooth approximation of the depth map.

déi) must be quantified in a robust manner, and the term
|d(x) — do(2)]? in (3) needs a suitable adaption. We select

the robust distance function ¢(s) = % [30]. Hence, we
replace (3) by the robust data term
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Fig. 2 shows the optimization result for the previous ex-
ample but now using the robust data term. We used two
initial depth hypotheses. The first one is the same as in
the previous example. The second one is obtained from
a 3 x 3 sum of absolute differences of gradients (GRAD)
correlation window, which is more invariant to illumination
changes. One can see that the robust data term substantially
improves the results. The reason for the improvement is
twofold. First, the robust distance function allows for out-
liers. Indeed, Fig. 2(c) and Fig. 2(d) show the implicitly
detected outliers of the robust error norm. The outliers cor-

respond to black pixels. Second, using multiple hypotheses
allows the algorithm to select the most confident matches.

© ()
Figure 2. Optimization result using the robust data term of two
depth hypotheses. (a) Initial depth map obtained from 3 x 3 SAD.
(b) Initial depth map obtained from 3 x 3 GRAD. (c) Outlier de-
tected in SAD matches. (d) Outlier detected in GRAD matches.
(e) True depth map. (f) Depth map obtained from joint depth and
color segmentation.

3.3. Minimization of the Energy

It is well known that discrete energies such as (2) can be
minimized by finding the zeros of the functional derivatives.
Since the energy S, is highly non-convex, only a good local
minimum can be computed.

Taking the functional derivatives of (2) with respect to u
and d one arrives at

d(x) = (ulr)—g(®)) (6)
- D nel@)Veul@)

EEN (z)
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where the diffusion weights are given by

7%
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and the weights derived from the robust data term

5
(1 + ’d(x) - dg”(z)f)Q

vi(z) =

4. Implementation

Based on the functional derivatives (6) and (7) we ap-
ply a semi-implicit linearization technique and arrive at the
following simple update equations.

X k T uk T
ut1() = & H?Jﬁ%ﬁ‘i/j’é(m; e

and

v () dy) (@) + Y pli () dF ( + <€)
S vE(@) + X, ik (@) '
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These equations can be solved alternately using simple fixed
point iterations. Note that at each iteration k + 1 the update
equations solve a linear diffusion equation whose nonlinear
coefficients iz (x) and v;(z) depend on the previous iterate
k. This scheme is commonly known as lagged diffusivity
fixed point iteration and was introduced in [34] by Vogel
and Oman for total variation denoising. The scheme works
robustly and almost linear convergence is achieved.

Our minimization procedure is as follows. The initial

depth maps dg’) are computed using a weak matching al-
gorithm. The color image u is initialized with the source
image g. In our examples we used the LAB color space
which has been designed to correlate with human color dis-
crimination performance. The initial depth map d is set to
the median of the single depth hypotheses. Finally the fixed
point algorithm is iterated until convergence.

Instead of adjusting the parameters « and (3 directly, we
specify scale and contrast and use the relations (1) for
conversion. We are using normalized image coordinates,
i.e. Q@ =10,1] x [0, 1]. The grid size parameter is set to one
pixel, i.e. ¢ = 1/ max(w, h), where w and h are the width
and height of the image.

d"(z) =

Update equations (8) and (9) are perfectly suited for an
accelerated implementation on programmable graphics pro-
cessing units (GPU). Every iteration of the update equations
can be performed on the GPU using a single pass. Since
GPUs currently cannot update elements in-place, the im-
plementation uses alternating render targets, and the result-
ing numerical procedure resembles Jacobi iterations (rather
than the faster Gauss-Seidel scheme). All reported results
were obtained using one GPU core of a Nvidia GeForce
7950 GX2 graphics card. The achieved performance was
approximately 500 iterations per second for a 450 x 375
color image. We fixed the maximum number of iterations
to 2500 and therefore the stereo results were obtained after
approximately 5 seconds.

5. Results
5.1. Benchmark Datasets

The datasets from the Middlebury stereo vision page [21]
currently constitute the standard benchmark suite for com-
putational stereo approaches. In our experiments, the initial
matches consist of four depth maps: the first map is gen-
erated using absolute differences of the gradients within a
3 x 3 window. The other depth maps are calculated us-
ing local adaptive support windows [36]. The employed
window shapes are 5 x 5, 7 x 7 and 9 x 9 pixels. Depth
map extraction is performed by a winner-takes-all method.
All results were computed using the following parameters:
v=0.9, 5§ = 1.0, scale = 10/512, contrast = 7.

Fig. 3 displays the obtained depth maps and the differ-
ence to the ground truth (with error threshold set to 1) us-
ing our approach with constant parameter settings. Table 1
gives details about stereo results of the Middlebury data set
for both the initial and the final depth maps. From this we
can see an average reduction of the error by 11.5% using a
threshold of 1.0 and 13.96% using a threshold of 0.5.

The most difficult stereo pair for our algorithm is the
Tsukuba data set, where our approach performs substan-
tially inferior than on the other datasets. In contrast, the
Teddy and Cones image pairs are handled very well, and the
obtained results can easily compete with those generated by
sophisticated global methods. The intrinsic subpixel esti-
mation and smoothing property of our approach yields to
highly accurate depth maps, which is indicated by the eval-
uation results using an error threshold of 0.5.

5.2. Real Datasets

In this section we present the results for two real-world
datasets not part of a benchmark suite. Since both datasets
are captured in an outdoor setting, we employ the normal-
ized cross correlation as similarity score to compensate for
changes in exposure time. The initial weak depth maps
are obtained using different support window sizes (5, 7, 9



(a) Tsukuba (b) Venus

(c) Teddy (d) Cones

Figure 3. Depth images and error maps generated for the well-known stereo vision benchmark datasets.

Table 1. Stereo results using the Middlebury stereo vision benchmark datasets.

Tsukuba Venus Teddy Cones Avg. Rank

threshold || 1.0 | 0.5 1.0 | 05 || 1.0 | 05 | 1.0 | 0.5 1.0 | 0.5
initial 14.1 | 28.8 || 19.8 | 28.1 || 17.7 | 25.1 || 8.67 | 143 || 29.0 | 27.1
final 286 | 183 | 1.10 | 3.45 || 6.63 | 11.2 || 3.67 | 7.52 || 13.6 | 9.4

and 11 pixels width and height). All initial depth maps are
computed using a GPU-accelerated plane-sweep approach
to depth estimation using a triplet of source images with a
small baseline in-between.

The first dataset depicted in Fig. 4 represents an outdoor
statue featuring several depth discontinuities. The start-
ing depth map d° is the median of the depth hypotheses
(Fig. 4(b)) illustrates the typical foreground fattening effect
induced by larger support windows. The depth discontinu-
ities in the final depth result (Fig. 4(c)) are much closer to
the true ones. In Fig. 4(d) the corresponding 3D geometry
is displayed as a colored point cloud. Since the edges in the
color image are rather weak, a low setting of contrast is
required to preserve the depth discontinuities.

Another triplet of source images is shown in Fig. 5(a)—
(c). The columns in front of the facade are good indicators
for depth discontinuities displayed in Fig. 5(g) (with the ex-
ception of the small region above the entrance, where the
color image and the initial depth map do not provide suf-
ficiently large edges to separate the column and facade re-
gions).

6. Conclusion

We presented a novel computational stereo approach,
which combines a highly successful image segmentation
method with a robust voting scheme to integrate several

weak depth images into a common depth estimate. Selec-
tive spatial smoothing as induced by the joint color/depth
segmentation guides the voting procedure in order to re-
move outliers present in all supplied weak depth maps.

Although the proposed energy functional and the nu-
merical scheme may appear somewhat complex at the first
glance, the essence of the method is very simple and can be
effectively accelerated by graphics processing units.

There are several directions for potential future enhance-
ments. Using global values of scale and contrast for the
entire images yields non optimal segmentation results in
many real-world cases. A scheme to determine these values
adaptively depending on the local image content is expected
to prove beneficial [31].

Currently we do not consider the certainty of the depth
hypotheses as outlined e.g. in [29]. A possible direction is
the incorporation of a certainty measure based on the match-
ing cost distribution into the robust data term (5).
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(a) Middle image (b) Initial depth (c) Final depth (d) 3D model
Figure 4. The result for a statue dataset (y = 0.9, § = 1.0, scale = 10/512, contrast = 2).

(b) Middle (key) image (c) Right image

(e) Final edges (f) Initial depth (g) Final depth (h) 3D model
Figure 5. The result for a facade dataset. (y = 0.9, § = 1.0, scale = 7/512, contrast = 7)
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