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Abstract. Variational methods are among the most successful approaches
to calculate the optical flow between two image frames. A particularly
appealing formulation is based on total variation (TV) regularization
and the robust L1 norm in the data fidelity term. This formulation can
preserve discontinuities in the flow field and offers an increased robust-
ness against illumination changes, occlusions and noise. In this work we
present a novel approach to solve the TV-L1 formulation. Our method
results in a very efficient numerical scheme, which is based on a dual for-
mulation of the TV energy and employs an efficient point-wise thresh-
olding step. Additionally, our approach can be accelerated by modern
graphics processing units. We demonstrate the real-time performance
(30 fps) of our approach for video inputs at a resolution of 320 × 240
pixels.

1 Introduction

The recovery of motion from images is a major task of biological and artificial
vision systems. The main objective of optical flow methods is to compute a
flow field estimating the motion of pixels in two consecutive image frames. Since
optical flow is an highly ill-posed inverse problem, using pure intensity-based
constraints generally results in an under-determined system of equations, which
is generally known as the aperture problem. In order to solve this problem some
kind of regularization is needed to obtain physically meaningful displacement
fields.

In their seminal work [13], Horn and Schunck studied a variational formula-
tion of the optical flow problem.

min
u

{∫
Ω

|∇u1|2 + |∇u2|2 dΩ + λ

∫
Ω

(I1(x + u(x))− I0(x))2 dΩ
}
. (1)

I0 and I1 is the image pair, u = (u1(x), u2(x))T is the two-dimensional dis-
placement field and λ is a free parameter. The first term (regularization term)
penalizes high variations in u to obtain smooth displacement fields. The second
term (data term) is also known as the optical flow constraint. It assumes, that
the intensity values of I0(x) do not change during its motion to I1(x + u(x)).



Since the Horn-Schunck model penalizes deviations in a quadratic way, it has
two major limitations. It does not allow for discontinuities in the displacement
field, and it does not handle outliers in the data term robustly. To overcome
these limitations, several models including robust error norms and higher or-
der data terms have been proposed. Since discontinuities in the optical flow
appear often in conjunction with high image gradients, several authors replace
the homogeneous regularization in the Horn-Schunck model with an anisotropic
diffusion approach [15, 19]. Other proposed modifications substitute the squared
penalty functions in the Horn-Schunck model with more robust variants. Blake
and Anandan [5] apply estimators from robust statistics and obtain a robust and
discontinuity preserving formulation for the optical flow energy. Aubert et al. [3]
analyze energy functionals for optical flow incorporating an L1 data fidelity term
and a general class of discontinuity preserving regularization forces. Papenberg
et al. [16] employ a differentiable approximation of the TV (resp. L1) norm and
formulate a nested iteration scheme to compute the displacement field.

Most approaches for optical flow computation replace the nonlinear intensity
profile I1(x + u(x)) by a first order Taylor approximation to linearize the prob-
lem locally. Since such approximation is only valid for small displacements, ad-
ditional techniques are required to determine the optical flow correctly for large
displacements. Scale-space approaches [1] and coarse-to-fine warping (e.g. [2, 14,
7]) provide solutions to optical flow estimation with large displacements.

In several applications, such as autonomous robot navigation, it is necessary
to calculate displacement fields in real-time. Real-time optical flow techniques
typically consider only the data fidelity term to generate displacement fields [10,
18]. One of the first variational approaches to compute the optical flow in real-
time was presented by Bruhn et al. [8, 9]. In their work a highly efficient multi-
grid approach is employed to obtain real-time or near real-time performance.
The aim of their approach is very similar to our objective: obtaining robust and
discontinuity preserving solutions for optical flow with highly efficient imple-
mentations. Nevertheless, we utilize a completely different solution strategy as
described in the next sections.

2 TV-L1 Optical Flow

In the basic setting two image frames I0 and I1 : (Ω ⊆ R2)→ R are given. The
objective is to find the disparity map u : Ω → R2, which minimizes an image-
based error criterion together with a regularization force. In this work we focus
on the plain intensity difference between pixels as the image similarity score.
Hence, the target disparity map u is the minimizer of∫

Ω

{
λφ (I0(x)− I1(x + u(x))) + ψ(u,∇u, . . .)

}
dx, (2)

where φ (I0(x)− I1(x + u(x))) is the image data fidelity, and ψ(u,∇u, . . .) de-
picts the regularization term inducing the shape prior. λ weights between the



data fidelity and the regularization force. Selecting φ(x) = x2 and ψ(∇u) =
|∇u|2 results in the Horn-Schunck model [13].

The choice of φ(x) = |x| and ψ(∇u)) = |∇u| yields to the following functional
consisting of an L1 data penalty term and total variation regularization:

E =
∫

Ω

{
λ|I0(x)− I1(x + u(x))|+ |∇u|

}
dx. (3)

Although Eq. 3 seems to be simple, it offers some computational difficul-
ties. The main reason is that both the regularization term and the data term
are not continuously differentiable. One approach is to replace φ(x) = |x| and
ψ(∇u) with differentiable approximations φε(x2) =

√
x2 + ε2 and ψε(∇u) =√

|∇u|2 + ε2, and to apply a numerical optimization technique on this slightly
modified functional (e.g. [12, 7]).

In this paper we employ a rather different approach. In [11] Chambolle pro-
posed an efficient and exact numerical scheme to solve the Rudin-Osher-Fatemi
energy [17] for total variation based image denoising. In the following, we will
describe how to adopt this approach for the optical flow case.

2.1 The 1D Stereo Case

In this section we restrict the disparities to be non-zero only in the horizontal
direction, e.g. a normalized stereo image pair is provided. Hence, u(x) reduces
to a scalar u(x), and we use the (sloppy) notation x + u(x) for x + (u(x), 0)T .
The following derivation is based on [4], but adapted to the stereo/optical flow
setting. At first, we linearize image I1 near x + u0, i.e.

I1(x + u) = I1(x + u0) + (u− u0) Ix
1 (x + u0),

where u0 is a given disparity map and Ix
1 is the derivative of the image intensity

I1 wrt. the x-direction. Using the first order Taylor approximation for I1 means,
that the following procedure needs to be embedded into an iterative warping
approach to compensate for image nonlinearities. Additionally, a multi-level ap-
proach is employed to allow large disparities between the images.

For fixed u0 and using the linear approximation for I1, the TV-L1 functional
(Eq. 3) now reads as:

E =
∫

Ω

{
λ|u Ix

1 + I1(x + u0)− u0 I
x
1 − I0|+ |∇u|

}
dx. (4)

In the following, we denote the current residual I1(x + u0) + (u − u0) Ix
1 − I0

by ρ(u, u0,x) (or just ρ(u) by omitting the explicit dependency on u0 and x).
Moreover, we introduce an auxiliary variable v and propose to minimize the
following convex approximation of Eq. 4:

Eθ =
∫

Ω

{
|∇u|+ 1

2θ
(u− v)2 + λ|ρ(v)|

}
dx , (5)



where θ is a small constant, such that v is a close approximation of u. This
convex minimization problem can be optimized by alternating steps updating
either u or v in every iteration:

1. For v being fixed, solve

min
u

∫
Ω

{
|∇u|+ 1

2θ
(u− v)2

}
dx. (6)

This is the total variation based image denoising model of Rudin, Osher and
Fatemi [17].

2. For u being fixed, solve

min
v

∫
Ω

{
1
2θ

(u− v)2 + λ |ρ(v)|
}
dx. (7)

This minimization problem can be solved point-wise, since it does not depend
on spatial derivatives of v.

An efficient solution for the first step (Eq. 6) was proposed in [11], which uses a
dual formulation of Eq. 6 to derive an efficient and globally convergent scheme.
Since this algorithm is an essential part of our method, we reproduce the relevant
results from [11]:

Proposition 1 The solution of Eq. (6) is given by

u = v − θ div p , (8)

where p = (p1, p2) fulfills

∇(θ div p− v) = |∇(θ div p− v)|p , (9)

which can be solved by the following iterative fixed-point scheme:

p k+1 =
p k + τ∇(div p k − v/θ)
1 + τ |∇(div p k − v/θ)|

, (10)

where p 0 = 0 and the time step τ ≤ 1/8.

The next proposition characterizes the minimizer of the second part (Eq. 7):

Proposition 2 The solution of the minimization task in Eq. 7 is given by the
following thresholding step:

v = u+

λ θ Ix
1 if ρ(u) < −λ θ (Ix

1 )2

−λ θ Ix
1 if ρ(u) > λθ (Ix

1 )2

−ρ(u)/Ix
1 if |ρ(u)| ≤ λ θ (Ix

1 )2.
(11)

This means, that the image residual ρ(v) is allowed to vanish, if the required
step from u to v is sufficiently small. Otherwise, v makes a bounded step from
u, such that the magnitude of the residual decreases.

The proposition above can be shown directly by analyzing the three possible
cases, ρ(v) > 0 (inducing v = u−λ θ Ix

1 ), ρ(v) < 0 (v = u+λ θ Ix
1 ) and ρ(v) = 0

(v = u− ρ(u)/Ix
1 ).



2.2 Generalization to Higher Dimensions

In this section we extend the method introduced in the previous section to optical
flow estimation, i.e. an N -dimensional displacement map u is determined from
two given N -D images I0 and I1. The first order image residual ρ(u,u0,x) wrt.
a given disparity map u0 is now I1(x+u0)+〈∇I1, u−u0〉−I0(x). Additionally,
we write ud for the d-th component of u (d ∈ {1, . . . , N}).

The generalization of Eq. 5 to more dimensions is the following energy:

Eθ =
∫

Ω

{∑
d

|∇ud|+
∑

d

1
2θ

(ud − vd)2 + λ|ρ(v)|

}
dx. (12)

Similar to the stereo setting, minimizing this energy can be performed by alter-
nating optimization steps:

1. For every d and fixed vd, solve

min
ud

∫
Ω

{
|∇ud|+

1
2θ

(ud − vd)2
}
dx. (13)

This minimization problem is identical to Eq. 6 and can be solved by the same
procedure. Note, that the dual variables are introduced for every dimension,
e.g. Eq. 8 now reads as

ud = vd − θ div pd. (14)

2. For u being fixed, solve

min
v

∑
d

1
2θ

(ud − vd)2 + λ |ρ(v)| . (15)

The following proposition generalizes the thresholding step from Proposition 2
to higher dimensions:

Proposition 3 The solution of the minimization task in Eq. 15 is given by the
following thresholding step:

v = u +

λ θ∇I1 if ρ(u) < −λ θ |∇I1|2
−λ θ∇I1 if ρ(u) > λθ |∇I1|2
−ρ(u)∇I1/|∇I1|2 if |ρ(u)| ≤ λ θ |∇I1|2.

(16)

This proposition essentially states, that theN -dimensional optimization prob-
lem can be reduced to a one-dimensional thresholding step, since v always lies
on the line l⊥ going through u with direction ∇I1 (for every x). This can be seen
as follows: The first part in Eq. 15,

∑
d(ud − vd)2/2θ, is basically the squared

distance of v to u, and the second part, λ |ρ(v)|, is the unsigned distance to the
line l : ρ(w) = 0, i.e. I1(x + u0) + 〈∇I1, w − u0〉 − I0(x) = 0. If we consider
all vµ with a fixed distance µ to u, then the functional in Eq. 15 is minimized
for the vµ closest to the line l (with minimal normal distance). This is also
valid for the true minimizer, hence the optimum for Eq. 15 is on l⊥. In addi-
tion, the one-dimensional thresholding step in gradient direction can be applied
(Proposition 2), resulting in the presented scheme.



3 Implementation

This section gives details on the employed numerical procedure and on the GPU-
accelerated implementation for the proposed TV-L1 optical flow approach. Al-
though the discussion in Section 2.2 is valid for any image dimension N ≥ 2, our
GPU-based implementation is specifically tailored for the case N = 2.

3.1 Numerical Scheme

The generally non-convex energy functional for optical flow (Eq. 3) becomes a
convex minimization problem after linearization of the image intensities (Eq. 4),
but this linearization is only valid for small displacements. Hence, the energy
minimization procedure is embedded into a coarse-to-fine approach to avoid
convergence to unfavorable local minima. We employ image pyramids with a
downsampling factor of 2 for this purpose. Beginning with the coarsest level,
we solve Eq. 3 at each level of the pyramid and propagate the solution to the
next finer level. This solution is further used to compute the coefficients of the
linear residual function ρ by sampling I0 and I1 using the corresponding pyra-
mid levels. Hence, the warping step for I1 takes place only once per level. ∇I1
is approximated by central differences. At the beginning of a new level, v is ini-
tialized with u, and all pd are set to 0. At the coarsest level, the displacement
field u starts with 0.

Avoiding poor local minima is not the only advantage of the coarse-to-fine
approach. It turns out, that the filling-in process induced by the regulariza-
tion occurring in textureless region is substantially accelerated by a hierarchical
scheme as well.

The minimization procedure alternates one step of the fixed-point scheme to
update all pd (and therefore u, Eq. 10) with the thresholding step from Propo-
sition 3 to improve v. The implementation of the fixed-point update (Eq. 10)
uses backward differences to approximate div p and forward differences for the
numerical gradient computation in order to have mutually adjoint operators [11].

3.2 Acceleration by Graphics Processing Units

Numerical methods working on regular grids, e.g. rectangular image domains,
can be effectively accelerated by modern graphics processing units (GPUs). We
employ the huge computational power and the parallel processing capabilities of
GPUs to obtain a fully accelerated implementation of our optical flow approach.
The GPU-based procedure is essentially a straightforward Cg implementation
of the numerical schemes (Eqs. 10 and 16) with few modifications described as
follows.



If we write down the alternating minimization steps explicitly, iteration k
performs the following updates on u, v and pd:

1a. vk+1 ← TH(uk)

1b. uk+1
d ← vk+1

d − θ div pk
d for d ∈ {1, 2}

2. pk+1
d ← pk

d + τ/θ∇uk+1
d

1 + τ/θ|∇uk+1
d |

for d ∈ {1, 2},

(17)

where TH(·) denotes the thresholding step from Eq. 16. These steps can be
immediately implemented on the GPU by appropriate fragment programs using
two rendering passes.3 The first pass implements steps 1a and 1b from Eq. 17.
The values vk+1 are used only temporarily within the shader program and need
not to be saved explicitly. uk+1 is written to the target texture. The second
shader program corresponds with step 2 from Eq. 17. It turns out, that the
utilization of the fragment processors can be improved by updating u and pd for
two pixels simultaneously. The shader programs work on the left and on the right
half of the images in parallel, with appropriate handling of border pixels. Our
implementation encodes the two components of u using full 32-bit precision, and
the overall four components of p1 and p2 are compressed to 16-bit half precision
floating point numbers.

We currently use a fixed but tunable number of iterations on each level in
our implementation, since determining the maximum update |uk+1 − uk| still
requires an expensive reduction operation even on modern GPUs.

4 Results

At first, we provide timing results for our optical flow approach depicted in Ta-
ble 1. Two hardware setups were used to obtain the timing results: a desktop
PC equipped with a NVidia GeForce 7800 GS card, and a high-end laptop sup-
plied with a NVidia GeForce Go 7900 GTX graphics board. The timing results
were obtained under the Linux operating system with recent OpenGL graphics
drivers and the Cg 1.5 toolkit. The timings in Table 1 are given in frames per
second for the depicted fixed number of iterations on each level of the image
pyramid. The measured times include the texture uploads to video memory and
the final visualization of the obtained displacement field. The timing results in-
dicate, that real-time performance with more than 30 frames per second can
be achieved at 256 × 256 pixels resolution with our approach. Frames from a
live video demo application are shown in Figure 1, which continuously reads im-
ages from a firewire camera and visualizes the optical flow for adjacent frames.
Real-time performance can be achieved with the mobile hardware setup.

Figure 2 shows common test sequences for optical flow, in particular the Et-
tlinger Tor, the Rheinhafen and the Yosemite sequences, and their respective flow
3 A single pass variant using only one shader program is possible as well, but the

observed performance is inferior in almost all cases.



GeForce 7800 GS GeForce Go 7900 GTX

Image resolution 50 It. 100 200 50 It. 100 200

128× 128 56 32.1 17.5 95 57.6 30.9
256× 256 18 9.6 5 34.1 17.5 8.9
512× 512 5 2.6 1.3 9.3 4.7 2.3

Table 1. Observed frame rates at different image resolutions and with varying number
of iterations on our tested hardware.

(a) First frame (b) Second frame (c) Optical flow field

Fig. 1. Captured frames and generated optical flow field using our live video applica-
tion. The image resolution is 320× 240, and 50 iterations are performed on each level
of the image pyramid. The framerate is close to 30 frames per second in this setting.
The flow field is visualized using hue to indicate the direction and intensity for the
magnitude.

fields. The results for these datasets indicate, that the reduced 16-bit resolution
for the dual variables pd does not severely affect the quality of the obtained flow
fields. Table 2 specifies the obtained average angular error (AAE) of the flow
field for the Yosemite dataset wrt. the provided ground truth. If the completely
homogeneous sky region is excluded from the AAE calculation, the flow field
is essentially converged after 50 iterations. Enabling more iterations yields to
slightly inferior results, since the TV-L1 energy favors piecewise constant flow
fields in the limit. If the sky region is included in the evaluation, the AAE error
decreases by increasing the number of iterations. In this case the flow field in
the sky region converges relatively slowly to the zero displacement.

50 It. 150 250

Without sky 2.85◦ 2.88◦ 2.89◦

With sky 5.06◦ 3.7◦ 3.27◦

Table 2. Average angular error for frame 8 and 9 of the Yosemite sequence at different
number of iterations.



(a) Frame 5 (b) Frame 6 (c) Flow field, 9.3 fps

(d) Frame 1130 (e) Frame 1131 (f) Flow field, 29.1 fps

(g) Frame 8 (h) Frame 9 (i) Flow field, 27.2 fps

Fig. 2. Sample images and obtained flow fields for the Ettlinger Tor (512×512 pixels),
the Rheinhafen (320×240 pixels) and the Yosemite (320×256 pixels) sequences.

5 Conclusion

We presented a novel approach for efficient optical flow estimation using a TV-
L1 energy functional. We developed a novel fast numerical scheme which can
be efficiently implemented on modern graphics processing units. With this we
can show real-time performance using online video streams. The correctness and
quality of our implementation is demonstrated on several datasets.

Future work includes the extension of our approach to handle color images
as well. Additionally, other image similarity measures, e.g. based on intensity
gradients, need to be further explored. The edge preserving nature of total vari-
ation can be enhanced, if a suitable weighted TV-norm/active contour model is
applied [6]. Future work will address the incorporation of these feature for stereo
and optical flow estimation.

Finally, switching from an OpenGL-based implementation to the newer CUDA
GPU programming framework is expected to increase the observed performance
substantially.
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