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Abstract. Nonlinear image registration is a challenging task in the field
of medical image analysis. Intensity based registration is based on the
entire image information and generates a dense displacement field. In
many applications discontinuities may be present in the displacement
field, and intensity variations may occur. In this work we utilize an en-
ergy functional which is based on Total Variation regularization and a
robust data term. We propose a novel, fast and stable numerical scheme
to find the minimizer of this energy. Our approach combines a fixed-point
procedure derived from duality principles combined with a fast thresh-
olding step. We show experimental results on synthetic and clinical CT
lung data sets at different breathing states as well as registration results
on inter-subject brain MRIs.

1 Introduction

A large number of medical image analysis applications require nonlinear (de-
formable) registration of data sets acquired at different points in time or from
different subjects. The deformation of soft tissue organs, such as the lung or
the liver often requires the compensation of breathing motion. Surveys on non-
linear registration methods in medical imaging can be found in Maintz and
Viergever [12] or Crum et al. [9]. In the literature a distinction is also made
between feature based and intensity based methods. However, the majority of
publications utilizes the intensity based methods [2, 8, 15] mainly because all
available image information is used for registration. The main drawback of those
methods is the required computational effort.

The optical-flow based approach is very popular for intra-modality registra-
tion tasks [10, 15, 16]. The variational formulation of the optical flow framework
typically consists of quadratic data and regularization terms. This approach has
two disadvantages. At first, only smooth displacement fields can be recovered.



In some medical volume registration applications it is however necessary to al-
low for discontinuities in the displacement field. A typical example is breathing
motion, where the diaphragm undergoes a heavy deformation, whereas the rib
cage remains almost rigid. Therefore smooth displacement fields are not suffi-
cient to model such complex motions. In addition, quadratic error norms are
not robust against outliers in the intensity values. Image differences due to con-
trast agent application or inter-subject registration tasks frequently violate the
intensity-constancy assumption.

In this work we present a novel, numerical algorithm for an optical flow based
method which allows for discontinuities in the displacement field and is robust
with respect to varying intensities. In Section 2 we introduce variational optical
flow methods and derive the TV-L1-optical-flow model. For minimization we
derive a novel numerical scheme by combining a duality based formulation of
the variational energy and a fast thresholding scheme. In Section 3 we evalu-
ate our algorithm using synthetically transformed and clinical data sets. In the
last section we give some conclusions and suggest possible directions for future
investigations.

2 Optical Flow

The recovery of motion from images is a major task of biological and artificial
vision systems. In their seminal work, Horn and Schunck [11] studied the so-
called optical flow, which relates the image intensity at a point and given time
to the motion of an intensity pattern.

2.1 Model of Horn and Schunck

The classical optical flow model of Horn and Schunck (HS) for 2D images is
given by the minimizer of the following energy:

min
u

{
EHS =

∫
Ω

|∇u1|2 + |∇u2|2 dΩ + λ

∫
Ω

(I1(x + u(x))− I0(x))2 dΩ

}
.

(1)
I0 and I1 is the image pair, u = (u1(x), u2(x))T is the two-dimensional dis-
placement field and λ is a free parameter. The first term (regularization term)
penalizes for high variations in u to obtain smooth displacement fields. The sec-
ond term (data term) is basically the optical flow constraint, which assumes that
the intensity values of I0(x) do not change during its motion to I1(x + u(x)).

Since the HS model penalizes deviations in a quadratic way, it has two major
limitations. It does not allow for discontinuities in the displacement field and
it does not allow for outliers in the data term. To overcome these limitations,
several models including robust error norms and higher order data terms have
been proposed [1, 3, 13].



2.2 TV-L1-Optical-Flow

In this paper we utilize the non-quadratic error norm ρ(s) = |s| for both the
regularization term and data term. The major advantage is that it allows for
outliers while still being convex. Using this error norm and extending Eq. (1) to
N dimensions, the robust optical flow model is given by

min
u

{
ETV−L1 =

∫
Ω

N∑
d=1

|∇ud|dΩ + λ

∫
Ω

|I1(x + u(x))− I0(x)|dΩ

}
, (2)

where u = (u1, u2, . . . , uN )T is the N -dimensional displacement field. Although
this model seems to be simple and the modifications compared to Eq. (1) are
minor, it offers some desirable improvements. At first, the regularization term al-
lows for discontinuities. We note that this term is the well known Total Variation
(TV) regularizer which has been proposed by Rudin Osher and Fatemi (ROF)
for image denoising [14]. Secondly, the data term uses the robust L1 norm and
is therefore less sensitive to intensity variations.

Besides its clear advantages, the TV-L1-optical-flow model also leads to some
computational difficulties for minimization. The main reason is that both the reg-
ularization term and the data term are non-differentiable at zero. One approach
would be to replace |s| by some differentiable approximation e.g.

√
s2 + ε2 [4,

6]. However, for small ε this approach usually shows slow convergence and, on
the other hand, using large ε leads to blurred displacement fields.

2.3 Solution of the TV-L1-Optical-Flow Model

Based on the influential work of Chambolle [5], we introduce an additional vari-
able v = (v1, v2, . . . , vN )T and propose to minimize the following convex approx-
imation of Eq. (2).

min
u,v

{
ETV−L1 =

∫
Ω

N∑
d=1

|∇ud|+
1
2θ

(ud − vd)
2 dΩ + λ

∫
Ω

|ρ(x)|dΩ

}
, (3)

where the parameter θ is small so that we almost have u ≈ v and ρ(x) =
I1(x+v0)+(∇I1(x+v0))T (v−v0)−I0(x) is a first order Taylor approximation of
the image residual. This formulation has several advantages: The minimization
with respect to u can be performed using Chambolle’s algorithm. It is based
on a dual formulation of the total variation energy and does not suffer from
any approximation error [5]. The minimization with respect to v reduces to a
simple 1-D minimization problem which can be solved by an efficient thresholding
scheme. Thus, to solve the optimization problem Eq. (3), we propose an iterative
algorithm by alternating the following two steps:

1. For every d and fixed vd, solve

min
ud

{∫
Ω

{
|∇ud|+

1
2 θ

(ud − vd)2
}

dx

}
. (4)



2. For fixed u, solve

min
v

{∑
d

1
2 θ

(ud − vd)2 + λ |ρ(x)|

}
. (5)

The solution of these two optimization steps is given by the following proposi-
tions:

Proposition 1 The solution of Eq. (4) is given by ud = vd − θ div p, where
p = (p1, p2) fulfills ∇(θ div p− vd) = |∇(θ div p− vd)|p, which can be solved by
the following iterative fixed-point scheme:

pk+1 =
pk + τ∇(div pk − vd/θ)
1 + τ |∇(div pk − vd/θ)|

, (6)

where p0 = 0 and the time step τ ≤ 2(N+1).

Proposition 2 The solution of Eq. (5) is given by the following thresholding
scheme:

v(x) = u(x) +

λ θ∇I1 if ρ(x) < − λ θ |∇I1|2
−λ θ∇I1 if ρ(x) > λ θ |∇I1|2
−ρ(x)∇I1/|∇I1|2 if |ρ(x)| ≤ λ θ |∇I1|2 ,

(7)

The proof of the n-dimensional case is presented in [17].

2.4 Implementation

Computing optical flow is a non-convex inverse problem, which means, that no
globally optimal solution can be computed in general. In order to avoid such
physically non-relevant solutions, one typically applies a coarse to fine strategy.
Note, that due to the linearization of the image residual, the single-level mini-
mization problem Eq. (2) becomes a convex one. However, the overall problem
still remains non-convex.

For this purpose, we build a full Gaussian image pyramid by successively
down-sampling the images by a factor of 2. On each level of the image pyramid,
we solve the minimization problem Eq. (3), starting with the coarsest level. The
solution is then propagated until the finest level has been reached. At the coarsest
level, the displacement field is initialized by u = 0.

In the following we describe the numerical scheme used to compute the so-
lution at one single level of the image pyramid. For the implementation of the
fixed-point iteration scheme Eq. (6) we use backward differences to approximate
the discrete divergence operator and forward differences to approximate the dis-
crete gradient operator [5]. For the implementation of the thresholding scheme
Eq. (7) we use central differences to approximate the image derivatives. Finally,
our iterative procedure consist of alternately computing the solutions of the
fixed-point scheme and the thresholding step. In practice only a small number



of iterations (100 − 200) is necessary to reach convergence. Moreover, empiri-
cal tests have shown that one iteration of the fixed-point scheme is sufficient to
obtain fast convergence of the entire algorithm.

The numerical algorithm has two free parameters. The parameter θ acts as a
coupling between the two optimization steps. It basically depends on the range of
the intensity values of the input images. Empirically, we have selected θ = 0.02 in
all experiments. The parameter λ is used to control the amount of regularization.
Typical values of λ are between 10 and 100.

3 Experimental Results

To assess the validity of our approach we performed qualitative and quantitative
evaluations using synthetically transformed and clinical thorax CT data sets
showing breathing motion and inter-subject brain data sets. All our experiments
were performed on an AMD Opteron machine with 2.2 GHz and 16 GB RAM,
running a 64-bit Linux system. The run-time of our algorithm is approximately
15 minutes for 2563 voxel data sets when performing 200 iterations on the finest
level of the image pyramid. Note that this performance is superior compared to
the majority of intensity based registration algorithms.

3.1 Synthetic Data

Synthetic experiments were performed on a thoracic CT test data set with a
size of 2563 voxels, which was taken from the NLM data collection project 4.
To demonstrate the robustness of our method we generated two data sets. The
first one (NLM-SM) contains a simulated breathing motion. For simulation of
diaphragm movement we applied a translational force in the axial direction. This
force sharply decreases at those locations where the diaphragm is attached to
the rib cage, and linearly decreases in the axial direction (see Fig. 1(b)). For the
second data set (NLM-SMC) we simulated the application of a contrast agent by
increasing the intensity values of pre-segmented lung vessels by 300 Hounsfield
Units (HU) (see Fig. 1(c)).

We ran our algorithm on these two data sets using λ = 40 and 200 iterations
on the finest scale level. For quantitative evaluation we calculated the mean and
the standard deviation of the computed displacement field (u) with respect to
the known ground-truth displacement field. For comparison we additionally ran
the popular Demons algorithm [15] on our synthetic data. The implementation
was taken from the ITK 5. We set up the ITK Demons algorithm in a multi-
scale manner with 6 pyramid levels, a total number of 50 iterations at the finest
scale level and a displacement field smoothing value of σ = 1. Table 1 shows the
results of our experiments. From this we can see that our algorithm performs
slightly worse on NLM-SM, but outperforms the Demons algorithm on NLM-
SMC, showing the robustness of our algorithm.
4 http://nova.nlm.nih.gov/Mayo/
5 http://www.itk.org



(a) (b) (c)

Fig. 1. (a) Original data set. (b) Simulated diaphragm motion. (c) Simulated contrast
agent in lung vessels.

Table 1. Quantitative evaluation of the synthetic experiments.

NLM-SM NLM-SMC

Initial Demons TV-L1 Initial Demons TV-L1

mean [mm] 3.788 1.555 1.919 3.788 2.260 1.768

std [mm] 2.997 2.185 2.285 2.997 2.441 2.301

3.2 Clinical Data

The algorithm was also evaluated using clinical data sets. For clinical data clearly
no ground-truth displacement field is available. To still allow a quantitative
assessment, we calculated two similarity measures, the decrease of root mean
squared error of the intensity values (RMS) and the increase of [0, 1]-normalized
mutual information (NMI).

The first experiment was breathing motion compensation of two thoracic
CT data sets (LCT1, LCT2). Each of them consists of two scans at different
breathing states. The size of both data sets is 2563. The second experiment was
intra-subject registration of brain MRI. The brain data base consists of four
data sets (BMRI1, BMRI2, BMRI3, BMRI4) provided by the Non-Rigid Image
Registration Evaluation Project (NIREP) [7]. The size of each data set again was
2563. We chose BMRI1 as reference image and registered the remaining images
to the reference. For the first experiment we ran our algorithm using λ = 50 and
200 iterations. For the second experiment we used λ = 10.

The quantitative results of our experiments are given in Tab. 2. From this
we can see a significant improvement in both similarity measures. For visual
assessment we also provide qualitative results which are shown in Fig. 2 and
Fig. 3.

4 Conclusion

In this work we presented a novel variational approach for nonlinear optical flow
based image registration by employing a TV-L1-optical-flow model. For mini-



Table 2. Quantitative evaluation of the clinical data sets.

LCT1 LCT2 BMRI2 BMRI3 BMRI4

before after before after before after before after before after

RMS 232.88 50.33 245.86 45.94 25.79 12.31 31.11 13.35 30.80 13.06

NMI 0.233 0.418 0.289 0.454 0.299 0.401 0.265 0.394 0.269 0.395

(a) LCT1 (b) LCT2

Fig. 2. Lung CT breathing motion compensation. The upper row shows differences
of sagittal and coronal slides before registration, the lower row the same slides after
registration.

(a) BMRI2 to BMRI1 (b) BMRI3 to BMRI1 (c) BMRI4 to BMRI1

Fig. 3. Checkerboard representation of inter-subject brain MRI registration. The upper
row shows axial an sagittal slides before registration, the lower row shows the same
slides after registration.

mization of the model we proposed a novel fast and stable numerical scheme
by combining a dual formulation of the total variation energy and an efficient
thresholding scheme. For quantitative and qualitative evaluation we used syn-
thetically deformed lung CT data sets, clinical intra-subject thorax CT images
and inter-subject brain images. For future work we see two potential directions.
One direction is that we plan to use more advanced similarity measures such
mutual information. Since our numerical algorithm can be easily parallelized,



a second direction is to speed up our method using state-of-the-art graphics
hardware.
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