
Volume Graphics (2008), pp. 1–8
H. - C. Hege, D. Laidlaw (Editors)

A Flexible and Memory Efficient Data Structure for
GPU-based Polyhedral Grid Raycasting

Philipp Muigg, Markus Hadwiger, Helmut Doleisch

VRVis Research Center, Vienna, Austria

Abstract

The foundation for unstructured grid volume visualization via raycasting is a compact and easily traversable
representation of the grid’s topology. This data structure is used to query every cell intersecting a viewing ray
in order to sample the data volume and accumulate corresponding color and opacity information. Current tech-
niques mainly deal with tetrahedral volumes. However, with the ongoing evolution of simulation technology more
complex grid structures containing not only tetrahedral but general convex polyhedral cells have been introduced.
We propose a cell face-centered data structure capable of representing such polyhedral grids efficiently while still
allowing for fast viewing ray propagation for GPU-based raycasting. By choosing to abandon an explicit cell rep-
resentation we avoid storing redundant information and allow for a fast and straight-forward addressing scheme
within the data structure. The benefits of our approach are demonstrated by comparing it to other state-of-the-art
volume rendering methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech-
niques

1. Introduction

Unstructured grids are an important volumetric representa-
tion that is especially common in the field of computational
fluid dynamics (CFD), e.g., simulations of engineering prob-
lems computed with finite volume methods. The steady evo-
lution of these methods and the available hardware has led
to larger data sets as well as more complex grid structures.
While early algorithms were based on purely tetrahedral
or curvilinear meshes, state-of-the-art simulation packages
such as ANSYS’s Fluent [flu] or CD-adapco’s Star-CD [sta]
are able to cope with more general mesh structures contain-
ing arbitrary convex polyhedra. In order to directly visualize
scalar data specified on such grids volume rendering can be
used. However, most currently available unstructured grid
volume rendering approaches are only capable of dealing
with purely tetrahedral grids. In previous work, we have in-
troduced a volume rendering framework that extended GPU-
based unstructured grid volume rendering methods to con-
vex polyhedral grids. Now, instead of adapting data struc-
tures initially used for tetrahedral grids to polyhedral cells,

we propose to choose an altogether different approach to
grid representation, by abandoning explicit cell representa-
tion. Our new data structure stores only minimal information
per face to represent the grid topology. This allows for sig-
nificant memory savings and added flexibility and simplicity,
at a reasonable expense in rendering speed.

Previous grid representations used for raycasting have
been mainly optimized for fast volume traversal, sacrificing
memory and flexibility for speed. The most prominent ex-
ception to this observation are tetrahedral strips [WMKE04],
which provide the option to save varying amounts of mem-
ory by sacrificing rendering performance. The main draw-
back of this approach when considering polyhedral meshes
is that it is only applicable to tetrahedral cells. Our face-
based data structure is capable of representing polyhedral
cells, and although it also incurs higher computational costs
during ray propagation, it significantly reduces both the
amount of required memory, as well as the general complex-
ity of the raycasting process. As illustrated by the pseudo
code in Figure 6, only a single loop is required in order to

submitted to Volume Graphics (2008)

2 P. Muigg et al. / A Flexible and Memory Efficient Data Structure for GPU-based Polyhedral Grid Raycasting

propagate a viewing ray through the entire grid. Such kinds
of trade-offs have become more important over the past
years, especially when considering the evolution of modern
GPUs: while raw processing power is increasing rapidly and
memory bandwidth is also increasing, the amount of graph-
ics memory is increasing much more slowly.

2. Related Work

When discussing unstructured grid volume rendering meth-
ods, two main approaches can be distinguished: image-order
and object-order.

Generally speaking, object-order algorithms are based on
separately processing individual elements (e.g., cells) of the
overall data volume. Shirley and Tuchman introduced the
Projected Tetrahedra (PT) technique [ST90], which is the
basis of several subsequent approaches. In order to properly
composite the grid elements, they have to be rasterized in
visibility order. Thus highly efficient sorting algorithms such
as Meshed Polyhedra Visibility Ordering (MPVO) [Wil92]
or related methods are at the core of most object-order ap-
proaches [SBM94, SMW98]. Even though there are exten-
sions of the PT algorithm that allow an approximated ren-
dering of polyhedra [MWSC03], accurate implementations
are still limited to tetrahedra. Contrary to this, the Hardware
Assisted Visibility Sorting (HAVS) approach introduced by
Callahan et al. [CICS05] is, just like our proposed data struc-
ture, solely based on face information. By avoiding explicit
cell representation, flexibility is added to the grid structure,
which can be exploited by fast level of detail and progressive
rendering approaches, for example [CCSS05, CBPS06].

In contrast, image-order approaches such as raycast-
ing [WKME03, HSS∗05] are usually slower in pure render-
ing performance than cell-projection techniques, but com-
pensate for this fact by the lack of an explicit sorting step.
They are also very flexible, e.g., with respect to adaptive
sampling, and are a natural choice when complex non-
linear interpolation techniques such as mean value coordi-
nates [JSW05] are desired. Most unstructured grid raycast-
ing algorithms are based on the work of Garrity [Gar90],
who uses cell connectivity information to propagate view-
ing rays through the volume. Weiler et al. presented the first
GPU-based implementation [WKME03], which performed
the ray propagation by applying a multi-pass approach. In
order to reduce the excessive memory consumption, Weiler
et al. introduced Tetrahedral Strips [WMKE04], which ex-
tends the notion of triangle strips to 3D and adds mesh topol-
ogy information. Additionally, an approach similar to depth
peeling is introduced in order to cope with concave meshes.
Other GPU-based methods have been proposed by Espinha
and Celes [EF05], and Bernardon et al. [BPCS06], each im-
proving upon the memory consumption of the original al-
gorithm presented by Weiler et al. [WMKE04], but never
achieving higher memory efficiency than Tetrahedral Strips.

Figure 1: Two volume renderings of real world data sets
which have been used to benchmark our face-based mesh
representation. A cooling jacket (denoted as Large Cooling
Jacket in the remainder of this paper) is shown on the left
and an exhaust system for a diesel engine on the right.

3. Unstructured Grid Traversal for Raycasting

In order to perform volume rendering of unstructured grids,
the data set has to be sampled along viewing rays. For each
sample, the grid element (i.e., the cell) containing its loca-
tion has to be available in order compute interpolated data
values at the sample position. But since point location (i.e.,
the identification of a cell containing a certain point within
the grid) cannot be solved analytically in unstructured grids,
the ray propagation for a viewing ray through such a volu-
metric representation always involves the traversal of a data
structure representing the topology of the underlying grid.
Previous approaches dealing with tetrahedral grids are cell-
based. That is, all information necessary for ray propaga-
tion through the volume is stored per cell (or tetrahedral
strip [WMKE04]). Thus, per-face data such as face normals
or vertices are stored redundantly by adjacent cells. Further-
more, for a data volume composed of more general cells
such as convex polyhedra, storing topology information per
cell introduces the additional problem of varying memory
requirements per cell. This either necessitates padding and
thus wasting GPU memory, or a more complex addressing
scheme [MHDH07]. The data structure presented in this pa-
per avoids these two central drawbacks of cell-based data
representation by switching to a face-centered approach.

In order to perform ray propagation during raycasting,
only very little information about a cell is actually neces-
sary:

1. The plane equations of all cell faces.
2. The neighboring cells that are connected to the faces.

By using this information, a viewing ray that has been started
at a cell on the mesh boundary can be intersected with each
face plane of a cell. The closest intersection point (after the
ray entry position into the cell) can be calculated. The next
cell traversed by the viewing ray is connected through the
corresponding face. We propose to abandon the explicit rep-
resentation of a cell and instead store only face information
explicitly. This is possible by employing a data structure that
is similar in spirit to the winged edge data structure [Bau75]

submitted to Volume Graphics (2008)

P. Muigg et al. / A Flexible and Memory Efficient Data Structure for GPU-based Polyhedral Grid Raycasting 3

e right faceleft face

next left edge next right edge

prev left edge prev right edge

f

next front facenext back face

front flagback flag

(a) (b)

Figure 2: The winged edge data structure (a) is similar
to our face-based approach (b) since it represents an n-D
object by using linked (n− 1)-D primitives. Note that the
winged edge stores four links to connected edges, the edge
direction, two adjacent cells, and incident vertices in order
to allow for different queries. Our approach stores only in-
formation necessary for raycasting methods: two links to
faces in the adjacent cells, the face orientation (the side in-
dicated by the red triangle is in front of the face), incident
vertices, and two flags which are used during the data struc-
ture traversal.

for representation of polygonal meshes. Instead of storing
edges to represent 2D grids, we extend the concept to 3D by
using face data to represent 3D grids. Contrary to the winged
edge data structure, which has been designed to allow for
a fast evaluation of different queries, our data structure has
been stripped of redundant information and is mainly suited
for efficiently traversing all faces of a cell and querying faces
of neighboring cells. Although a cell is not represented ex-
plicitly, conceptually it consists of a linked list of its faces.
Each face can be a part of at most two cells and thus at most
two such linked lists. For each face, only its plane equation
and two links have to be stored. The first link determines the
“next” face of the cell on one side of the face, and the second
link determines the “next” face of the cell on the other side.
The link fields are only used to retrieve the set of faces that
constitute a cell, and thus the order of faces in these lists is
arbitrary. It is not possible to always use the “first” link field
for retrieving all faces of one cell, and the “second” link field
for the other cell. Therefore, when stepping from one face to
the next in a given cell, the link to use must be determined.
In order to enable this, additional annotation flags have to be
introduced (Section 4).

4. A Face-Based Grid Representation

The unstructured grid representation and traversal approach
proposed in this paper relies solely on a compact face rep-
resentation. Faces of one cell can be traversed by following
links stored at each face. Similarly, faces of an adjacent cell
can be reached again by following different links. This sec-
tion provides an in-depth description of the data structure it-
self, its construction based on per-cell topology information,
and its traversal during raycasting.

4.1. Data Structure

As already mentioned in Section 3, our data structure is re-
lated to the winged edge representation of polygonal meshes.
Figure 2 provides a schematic overview of the storage prim-
itives used by both grid representations. The core of the
winged edge data structure is the edge representation which
stores its orientation and several links to adjacent edges and
polygons. This allows for fast evaluation of different queries
such as finding all edges of a polygon or all polygons con-
nected by an edge. Our approach extends this data structure
to 3D by replacing edges of a polygon with faces of a poly-
hedron. It should be noted that in 3D the notion of "left"
and "right" with respect to an edge is replaced by the notion
of "in front" or "behind" with respect to the signed distance
to a face. Furthermore, we do not require a face linking to
another face to share edges or vertices with that edge. The
order in which cell faces are considered is irrelevant for ray
propagation. Note that we do require that all faces of one
cell are linked in one common circular loop. This is similar
to the winged edge structure, which imposes the additional
constraint that linked edges have to have a common vertex.
Besides this straight-forward translation from 2D to 3D, we
also propose to store only face data which is relevant for ray
propagation through the unstructured mesh. Thus, instead of
storing four links to following and previous faces we store
only two links to faces in the adjacent cells. The front link
connects to a face of the cell in front of the current face and

a

bc

e

f

d

A

BC

F B φ β
a - b - B
b f c F B
c d a F B
d f - B -
e b - F -
f e c F F

Figure 3: This figure shows how our data structure can be
used to represent three connected cells (A, B, and C). The
front side of a face is indicated by a red triangle. The links
are called front or back links with respect to the side of a
face from which they originate. The two flags correspond-
ing to the links are encoded as color. Blue indicates that the
next back link has to be chosen when iterating through a
cells faces whereas green links imply that the next front link
has to be chosen. The table on the right shows the link and
flag data which is used to store the three cells. The columns
labeled "F" and "B" contain the front and back links respec-
tively. The columns labeled φ and β contain the flags associ-
ated with the corresponding links (φ for front and β for back
links). A value of "F" corresponds to a green link whereas a
value of "B" to a blue one in the figure on the right.

submitted to Volume Graphics (2008)

4 P. Muigg et al. / A Flexible and Memory Efficient Data Structure for GPU-based Polyhedral Grid Raycasting

1: function TRAVERSEFACES(startFace,startFlag)
2: currentFace← startFace, currentFlag← startFlag
3: repeat . This loop iterates over all faces of a cell
4: Process face currentFace
5: if currentFlag = "F" then
6: currentFlag←GETFRONTFLAG(currentFace)
7: currentFace←GETFRONTLINK(currentFace)
8: else
9: currentFlag←GETBACKFLAG(currentFace)

10: currentFace←GETBACKLINK(currentFace)
11: end if
12: until currentFace = startFace
13: end function

Figure 4: This listing demonstrate how all faces of one cell
can be visited by following face links. The input parameters
are a face startFace where the iteration should be started
and a flag startFlag indicating whether the faces of the cell
in front or behind of startFace should be traversed. In order
to determine whether front or back links should be selected
the corresponding flags are used. Note that currentFlag al-
ways stores the flag which is stored at the previously visited
face in order to make this decision for the currentFace.

the back link connects to a face of the cell behind the cur-
rent face. Since we do not use explicit cell representations
we omit storing links to adjacent cells. In the special case
that all cells are consistently either in front or behind of all
their faces, these two links are sufficient to iterate through
every face of a cell. This can be observed when only consid-
ering cells A and B in Figure 3. Here cell A is always behind
its faces (a, b, and c) whereas cell B is always in front of its
faces (b, e, f). Thus all faces of A can be visited by always
following back links (column denoted by "B" in the table in
Figure 3). Similarly all faces of B can be visited by always
following front links (column denoted by "F" in the table in
Figure 3).

In order to cope with cells such as cell E in Figure 3 (faces
c and d face towards whereas face f faces away from the
cell), additional data has to be stored indicating wether to
follow the front or back link of a face. We propose two one-
bit flags, each related to one of the face links: φ to the front
link and β to the back link. They indicate whether to follow
the front or the back link when visiting the next face. The
link coloring in Figure 3 represents these flags: The flag cor-
responding to a blue link indicates that the next back link has
to be selected (expressed as "B" in the corresponding table).
A green link indicates that the next front link has to be cho-
sen when traversing all faces of the corresponding cell (indi-
cated by "F" in the table in Figure 3). Thus iterating through
all faces of cell C can be accomplished as follows: starting at
face c we follow the front link to face d (we choose the front
link since the cell C is in front of face c). The flag φ of face c
is set to "F" which indicates that the next face of C is stored
in the front link of face d. By following this link we reach

face f . The flag φ of face d indicates that now the back link
of f has to be selected. This leads back to face c. Figure 4
provides pseudo code illustrating this face traversal method.

Data Structure Construction: The face-based data
structure can be constructed very efficiently if basic cell-
centered topology information is available. Per cell only the
number of faces, their orientation, and the neighboring cells
corresponding to each face are used during the initialization
process. Additionally, two temporary vectors storing one en-
try per cell are used to steer the data structure construction.
The vector F stores a link to one face of a cell (if at least
one face has already been created for this cell) and G stores
whether the cells are in front or behind the faces referenced
by F. The overall data structure is created by iterating over
every cell ci. Per cell every neighboring cell c j is inspected.
If i < j we know that c j has not been visited and that the face
connecting ci and c j has not been initialized. Thus we have
to create a new face fi j (if i > j we assume that all faces of j,

1: function ADDFACETOCELLLIST(fi j , ci, initFlag)
2: if Fi not set then
3: Fi ← fi j , Gi ← initFlag
4: if initFlag ="F" then
5: SETFRONT(fi j , fi j , "F")
6: else
7: SEBACK(fi j , fi j , "B")
8: end if
9: else

10: if Gi = "F" then
11: face← GETFRONTLINK(Fi)
12: flag← GETFRONTFLAG(Fi)
13: SETFRONT(Fi, fi j , initFlag)
14: else
15: face← GETBACKLINK(Fi)
16: flag← GETBACKFLAG(Fi)
17: SETBACK(Fi, fi j , initFlag)
18: end if
19: if initFlag = "F" then
20: SETFRONT(fi j , face, flag)
21: else
22: SETBACK(fi j , face, flag)
23: end if
24: end if
25: end function
26: function ADDFACE(ci, c j)
27: init empty fi j facing towards ci
28: ADDFACETOCELLLIST(fi j ,ci, "F")
29: ADDFACETOCELLLIST(fi j ,c j , "B")
30: end function

Figure 5: This listing demonstrates how to set up the face
links and flags when adding one face when initializing the
whole grid representation. ADDFACE has to be called for
every cell ci and every neighbor c j of this cell where i <
j. Additionally boundary faces of cell ci have to be ini-
tialized by creating the corresponding face fix and calling
ADDFACETOCELLLIST(fix, ci, "F").

submitted to Volume Graphics (2008)

P. Muigg et al. / A Flexible and Memory Efficient Data Structure for GPU-based Polyhedral Grid Raycasting 5

including fi j have already been created) and link it to faces
already created for both cells which can be retrieved from
Fi and F j . The orientation of these faces fxi and fy j with
respect to cells ci and c j can be queried from Gi and G j .
Now the links of the new face fi j can be connected to the
faces succeeding fxi and fy j in their respective cells. Links
of faces fxi and fy j themselves are set to fi j . If Fi or F j has
not been initialized until now fi j is placed into the vector.
The link related to the uninitialized cell is set to directly lead
back to fi j . The exact process of extending the data struc-
ture by one face and the related modifications of links and
flags of already existing faces is illustrated by pseudo code
presented in Figure 5. Here the face insertion process is per-
formed by calling the function ADDFACE which initializes
the face data structure connecting cells ci and c j and inserts
it into the corresponding lists by calling ADDFACETOCELL

for each adjacent cell. In order to initialize boundary faces
for a cell ci (i.e., faces contained only by one cell) a new
face data structure fix is initialized facing towards ci which
is then directly inserted into the mesh representation by call-
ing ADDFACETOCELLLIST(fix, ci, "F").

4.2. Face-Based Raycasting

Every unstructured grid raycasting approach consists of
three basic steps. First, a viewing ray has to be initialized.
Then, the ray has to be propagated through the unstructured
volume while color and opacity are computed per ray seg-
ment. During the first stage, each viewing ray is initialized
by rasterizing the volume surface and encoding face indices
in multiple color channels. Determining which face is part
of the surface is straight forward since the back links of such
faces are not initialized. Now the ray propagation through
the volume can be started at the boundary faces. As men-
tioned in Section 4.1 faces are initialized facing towards the
cell with the lower index. That is, the back link of boundary
faces is not initialized whereas the front link points towards
the next face of the first volume cell which is intersected by
the viewing ray. In order to determine the next adjacent cell
intersected by the viewing ray we have to determine through
which face it leaves the current cell. Thus we iterate through
all faces of a cell by using the code presented in Figure 4.
Per definition the plane equations n ·x−d = 0 for each face
are initialized such that the face normal n is directed towards
a cell located in front of it (i.e., all points of a cell in front
of the face have positive distances). When iterating through
the faces of a cell ci some faces might have been initialized
facing towards and some away from ci. This is indicated by
the currentFlag during the iteration process. If it is set to "F"
the face is already facing towards ci, whereas otherwise it
is facing away from the cell. In order to determine whether
a viewing ray can exit through a face fi j two cases have to
considered:

• When the face is facing towards the cell a ray can only
exit through fi j if and only if nij ·v < 0.

1: function PROPAGATERAY(startFace, startPos, v)
2: entryFace← startFace
3: currentFace← startFace, currentFlag←"F"
4: minFace← startFace, minFlag← "F", minDistance←∞
5: P← startPos
6: repeat. This loop iterates over all faces of cells along a ray
7: if currentFlag = "F" then
8: currentFlag←GETFRONTFLAG(currentFace)
9: currentFace←GETFRONTLINK(currentFace)

10: else
11: currentFlag←GETBACKFLAG(currentFace)
12: currentFace←GETBACKLINK(currentFace)
13: end if
14: n← GETFACENORMAL(currentFlag,currentFace)
15: d ← GETFACEPARAMETER(currentFlag,currentFace)
16: if n ·v < 0 then
17: s← (n ·P−d)/(−n ·v)
18: if s < minDistance then
19: minDistance← s
20: minFlag← currentFlag
21: minFace← currentFace
22: end if
23: end if
24: if currentFace = entryFace then
25: entryFace← minFace, currentFace← minFace
26: if minFlag = "F" then . Use other link at minFace
27: currentFlag← "B"
28: else
29: currentFlag← "F"
30: end if
31: P← P + s ·v
32: minDistance←∞
33: Process ray segment
34: end if
35: until currentFace is a boundary face
36: end function

Figure 6: This listing demonstrates how a ray starting at
startPos with the direction v through the face startFace can
be tracked through a data volume. Three distinct blocks can
be distinguished: line 7 to 13 deals with loading the next
face within a cell (compare to Figure 4), line 13 to 23 inter-
sects the current face with the ray if the intersection point
lies ahead along the ray, and line 24 to 34 resets the face
traversal to the face for which the ray intersection is closest
to the ray entry position after all faces of a cell have been
visited.

• When the face is facing away from the cell a ray can only
exit through fi j if and only if nij ·v > 0.

With v being the ray direction and nij the face normal of fi j .
This assumption can be proven by examining the following
equation. It computes the distance s of a ray entry point into
a cell P to the intersection of the ray with a plane n ·x−d = 0
which is part of this cell’s surface and facing towards it:

submitted to Volume Graphics (2008)

6 P. Muigg et al. / A Flexible and Memory Efficient Data Structure for GPU-based Polyhedral Grid Raycasting

s =
n ·P−d
−n ·v (1)

n ·P− d is always larger or equal zero since P lies on the
surface of the cell. Thus the sign of s is only determined by
the term n ·v. If it is positive (i.e., s is negative) we can dis-
card the corresponding face since the intersection with the
face does not lie further along the ray. If n · v < 0 we have
to evaluate equation 1. The face for which s is smallest is
the face through which the ray exits the current cell. When
dealing with faces that are facing away from the current cell,
−s is the actual signed distance of the intersection. In or-
der to traverse the faces of the corresponding neighbor cell
we simply follow the link we did not choose when iterating
over the faces of the current cell. This process is repeated
until a volume boundary face is reached. The pseudo code
presented in Figure 6 illustrates the overall ray propagation
process starting at a volume boundary face startFace, at the
position startPos with the direction v. Lines 7 to 13 retrieve
the next face of the current cell (compare to Figure 4). Lines
14 to 23 determine whether the intersection of the ray with
the current face is the closest yet and lines 24 to 34 restart
the iteration process for the next cell along the ray.

In order to sample the current cell along the viewing ray,
mean value interpolation [JSW05] can be used [MHDH07].
This interpolation method is also suited for our face-based
volume representation, since the interpolation weights can
be computed on a face by face basis.

5. Discussion

Before showing quantitative results which are based on
a prototype implementation integrated into a framework
which has been presented in previous work we will discuss
several considerations related to our approach.

5.1. Data Structure Flexibility

Besides the memory footprint and traversal performance of
a data structure the flexibility with respect to grid topology
changes is of importance when considering level of detail
approaches for unstructured grids [THJW98, CL03]. Tetra-
hedra based methods have to guarantee that every level of
detail representation is still made up of tetrahedra. This is
mostly accomplished by progressively applying simplifica-
tion operations such as edge collapses which remove multi-
ple cells at once and change vertex positions and face orien-
tations in the edge’s surrounding. In order to propagate these
modifications into previous grid data structures involves the
modification of multiple tables: Connectivity information
for multiple tetrahedra has to be adapted, face orientations
have to be changed, and vertex positions have to be modi-
fied and in the case of tetrahedral strips eventually the whole
strip generation process has to be repeated. Since our data

Tex. Format Usage
4 Byte RGBA front lnk back lnk
2 Byte Lum. Alpha front/back flg front/back lnk
4 Byte RGBA vtx id 1 vtx id 2
4 Byte RGBA vtx id 3 vtx id 4
16 Byte F RGBA plane equation
Sum: 30 Byte

Table 1: This table shows how our face-based data structure
can be packed into five textures. Note that the 20-bit face
indices stored for the front and back links are split into a
16-bit part and a 4-bit part, which are stored in separate
textures.

structure can store polyhedral cells, other ways of merging
multiple cells without the often undesirable modification of
surrounding structures can be explored. For example merg-
ing two adjacent cells simply works by modifying the cor-
responding links and flags of two faces (i.e., removing the
connecting face from both cells). Since there is no explicit
cell representation this operation does not involve any addi-
tional data structure update.

It should be noted that the proposed ray propagation ap-
proach is currently only applicable to convex cells which
means that currently cell merging would only be allowed if
the resulting cell remains convex. However, an extension of
our propagation method to concave cells should be possi-
ble in future work which would remove this restriction (the
interpolation method currently used is already capable of in-
terpolating data within concave polyhedra).

5.2. Implementation

In order to evaluate our face-based data structure, we have
integrated it into a GPU based unstructured grid volume ren-
dering framework. This framework currently subdivides an
unstructured grid into bricks containing at most 64K cells
and vertices in order to allow for memory savings when stor-
ing cell and vertex addresses. Our implementation uses 20
bits to address faces within a brick, which allows for a max-
imum of 1,024K faces. This restriction is feasible, since the
number of overall faces n within an unstructured grid can be
computed as:

n =
c · favg + fbnd

2
(2)

With c being the number of cells, favg the average num-
ber of faces of all cells and fbnd the number of bound-
ary faces. Even in a worst case scenario where every cell
within the volume has only boundary faces and c = 64K and
n = 1,024K the average number of faces favg is as high as
16. This is sufficient especially when considering that our

submitted to Volume Graphics (2008)

P. Muigg et al. / A Flexible and Memory Efficient Data Structure for GPU-based Polyhedral Grid Raycasting 7

overall framework currently deals only with a selected num-
ber of polyhedral cell types which are limited to eight faces.
Thus all data representing one face can be packed into a 30-
byte structure as shown in Table 1. The 20-bit face links are
split into 16-bit and 4-bit parts, which are stored in two sep-
arate textures. Note that we store four 16-bit vertex indices
for every face in order to directly represent quads without
having to triangulate them.

5.3. Performance

The comparison of our old cell based memory layout and
the new face-based version is shown in Table 2. Here two
reasonably large unstructured data sets have been used: The
Large Cooling Jacket contains mostly hexahedra whereas
the Generator consists of a mixture of tetrahedral and
hexahedral cells. The memory requirements (rows entitled
"Mem.") specified in the table represent the overall texture
memory allocated to store the data necessary for volume ren-
dering. This also includes cells and faces which are shared
between bricks and thus have to be stored multiple times.
Our new data structure requires roughly 40% less memory
for the Large Cooling Jacket and 46% less for the Gener-
ator data set when compared to our previous speed opti-
mized data structure. In order to relate these results to the
memory requirements of other GPU based raycasting ap-
proaches we have added the number of tetrahedra which
would result from two different tetrahedra decompositions.
The first decomposition (shown in columns labeled "LQ")
minimizes the number of resulting tetrahedra whereas the
second decomposition (shown in columns labeled "HQ")
provides a higher quality tetrahedralization by introducing
vertices at the cell centers. This latter decomposition yields
results comparable to our mean value interpolation based ap-

Generator Large Cooling J.
Cells 6,730K 1,538K

Tets
LQ HQ LQ HQ

15,406K 32,939K 7,149K 17,044K
Cell Centered

Mem. 1,330 MB 318 MB

per Tet
LQ HQ LQ HQ

86 bytes 40 bytes 44 bytes 19 bytes
Face Centered

Mem. 714 MB 192 MB

per Tet
LQ HQ LQ HQ

46 bytes 22 bytes 27 bytes 11 bytes

Table 2: This table presents a comparison of the memory
consumption of our previous cell centered data structure and
our new face-based approach. In order to relate these results
to other state of the art raycasting methods we have included
the number of tetrahedra for two different tetrahedral de-
compositions of the data sets.

proach. Now memory consumption per tetrahedron can be
computed and compared to other memory layouts. The origi-
nal approach proposed by Weiler et al. [WKME03] uses 160
bytes per tetrahedron, whereas later cell based methods as
proposed by Bernardon et al. [BPCS06] or Espinha and Ce-
les [EF05] use 144 bytes and 96 bytes, respectively. When
comparing these numbers to the results presented in Table 2
it becomes apparent that even when assuming the low quality
tetrahedralization far less memory is required. The (memory
optimized) tetrahedral strip method [WMKE04] is the only
approach which is more efficient in most cases since it uses
only roughly 14 bytes per tetrahedron.

In order to compare the rendering speed to our previous
cell centered approach we tested several data sets which
could wholly fit into GPU memory. The number of cells of
these data sets ranges from 12K up to 1,538K for the Large
Cooling Jacket. On average the face centered data structure
performed 37% worse than the performance optimized cell
centered approach. This corresponds nicely to the roughly
40% memory savings which can be achieved by using our
new method. The main cause for the slower rendering per-
formance is the need to traverse the faces of a cell by follow-
ing the face links. This introduces one additional indirection
per face, which can only be avoided if face data is replicated
for each adjacent cell and stored tightly packed in an array
(this is the case in our cell centered data layout).

6. Conclusions and Future Work

We have presented a new face-based data structure for the
representation of polyhedral grids which allows for signif-
icant memory savings by sacrificing a reasonable amount
of rendering speed. This is accomplished by abandoning an
explicit cell representation which often introduces data re-
dundancy as can be observed in previous tetrahedra based
methods (e.g. face normals are stored twice for cells in the
interior of the volume). Besides the memory savings the sim-
plicity and flexibility of this new data structure is highly im-
portant. Because cell merging and splitting can be accom-
plished by modifying only a few links new level of detail
approaches based on merging multiple cells into polyhedra
become feasible. In order to provide quantitative results we
have presented a prototype implementation which has been
integrated into a brick based unstructured grid volume ren-
dering system.

There are several interesting areas for future work. The
improved flexibility of our approach can be used to re-
search new ways to level of detail representations. For ex-
ample multiple levels of detail could be easily stored within
one data structure without introducing unreasonable mem-
ory overhead by allowing multiple front and back links per
face. Furthermore our current ray propagation method can
be extended to concave polyhedra which would allow for
even more freedom when dealing with grid topology modi-
fications. Finally we will try to further improve the traversal

submitted to Volume Graphics (2008)

8 P. Muigg et al. / A Flexible and Memory Efficient Data Structure for GPU-based Polyhedral Grid Raycasting

speed of our data structure. Here for example storing faces of
some cells consecutively within our lookup textures would
improve cache coherency and eventually avoid additional in-
directions.

References

[Bau75] BAUMGARDT H. B.: A polyhedron representa-
tion for computer vision. In Proceedings AFIPS National
Conference (1975), vol. 44, pp. 589–596.

[BPCS06] BERNADON F. F., PAGOT C. A., COMBA J.
L. D., SILVA C. T.: Gpu-based tiled ray casting using
depth peeling. journal of graphics tools 11, 4 (2006), 1–
16.

[CBPS06] CALLAHAN S. P., BAVOIL L., PASCUCCI V.,
SILVA C. T.: Progressive volume rendering of large un-
structured grids. IEEE Transactions on Visualization and
Computer Graphics 12, 5 (2006), 1307–1314.

[CCSS05] CALLAHAN S. P., COMBA J. L. D., SHIRLEY

P., SILVA C. T.: Interactive rendering of large unstruc-
tured grids using dynamic level-of-detail. In IEEE Visu-
alization ’05 (2005), pp. 199–206.

[CICS05] CALLAHAN S. P., IKITS M., COMBA J. L. D.,
SILVA C. T.: Hardware-assisted visibility sorting for un-
structured volume rendering. IEEE Transactions on Visu-
alization and Computer Graphics 11, 3 (2005), 285–295.

[CL03] CHIANG Y.-J., LU X.: Progressive simplification
of tetrahedral meshes preserving all isosurface topologies.
Computer Graphics Forum 22, 3 (Sept. 2003), 493–504.

[EF05] ESPINHA R., FILHO W. C.: High-quality
hardware-based ray-casting volume rendering using par-
tial pre-integration. In SIBGRAPI (2005), pp. 273–280.

[flu] Fluent. See URL: http://www.fluent.com.

[Gar90] GARRITY M. P.: Raytracing irregular volume
data. ACM Computer Graphics 24, 5 (1990), 35–40.

[HSS∗05] HADWIGER M., SIGG C., SCHARSACH H.,
BUHLER K., GROSS M.: Real-time ray-casting and ad-
vanced shading of discrete isosurfaces. Computer Graph-
ics Forum 24, 3 (2005), 303–312.

[JSW05] JU T., SCHAEFER S., WARREN J.: Mean value
coordinates for closed triangular meshes. In Proceedings
of SIGGRAPH 2005 (2005), pp. 561–566.

[MHDH07] MUIGG P., HADWIGER M., DOLEISCH H.,
HAUSER H.: Scalable hybrid unstructured and structured
grid raycasting. IEEE Trans. Vis. Comput. Graph 13, 6
(2007), 1592–1599.

[MWSC03] MAX N., WILLIAMS P., SILVA C., COOK

R.: Volume rendering for curvilinear and unstructured
grids. In Proc. of Computer Graphics International
(2003), pp. 210–215.

[SBM94] STEIN C. M., BECKER B. G., MAX N. L.:

Sorting and hardware assisted rendering for volume vi-
sualization. In Proc. IEEE Symposium on Volume Visual-
ization ’94 (VolVis ’94) (1994), pp. 83–89.

[SMW98] SILVA C. T., MITCHELL J. S. B., WILLIAMS

P. L.: An exact interactive time visibility ordering algo-
rithm for polyhedral cell complexes. In Proc. IEEE Sym-
posium on Volume Visualization ’98 (VolVis ’98) (1998),
pp. 87–94.

[ST90] SHIRLEY P., TUCHMAN A. A.: Polygonal ap-
proximation to direct scalar volume rendering. In Pro-
ceedings San Diego Workshop on Volume Visualization,
Computer Graphics (1990), vol. 24, pp. 63–70.

[sta] Star-cd. See URL: http://www.cd-adapco.com.

[THJW98] TROTTS I. J., HAMANN B., JOY K. I., WI-
LEY D. F.: Simplification of tetrahedral meshes. In IEEE
Visualization (1998), pp. 287–295.

[Wil92] WILLIAMS P. L.: Visibility-ordering meshed
polyhedra. ACM Trans. Graph. 11, 2 (1992), 103–126.

[WKME03] WEILER M., KRAUS M., MERZ M., ERTL

T.: Hardware-based ray casting for tetrahedral meshes.
In Proceedings IEEE Visualization 2003 (2003), pp. 333–
340.

[WMKE04] WEILER M., MALLÓN P. N., KRAUS M.,
ERTL T.: Texture-encoded tetrahedral strips. In
Proc. IEEE Symposium on Volume Visualization 2004
(VolVis 2004) (2004), pp. 71–78.

submitted to Volume Graphics (2008)

