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Abstract — This paper presents a novel method for interactive exploration of industrial CT volumes such as cast metal parts, with
the goal of interactively detecting, classifying, and quantifying features using a visualization-driven approach. The standard approach
for defect detection builds on region growing, which requires manually tuning parameters such as target ranges for density and size,
variance, as well as the specification of seed points. If the results are not satisfactory, region growing must be performed again
with different parameters. In contrast, our method allows interactive exploration of the parameter space, completely separated from
region growing in an unattended pre-processing stage. The pre-computed feature volume tracks a feature size curve for each voxel
over time, which is identified with the main region growing parameter such as variance. A novel 3D transfer function domain over
(density, feature_size, time) allows for interactive exploration of feature classes. Features and feature size curves can also be explored
individually, which helps with transfer function specification and allows coloring individual features and disabling features resulting from
CT artifacts. Based on the classification obtained through exploration, the classified features can be quantified immediately.

Index Terms —Non-Destructive Testing, Multi-Dimensional Transfer Functions, Region Growing, Volume Rendering.
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1 INTRODUCTION

Non-destructive testing (NDT) is a scientific discipline which examtection of features from visualization and prevents working in a fully
ines the internal structures of industrial components such as machimteractive manner. Most of all, it hampers interactively exploring the
parts, pipes, or ropes without destroying them. It is an essential ta@lume without already knowing beforehand what features are con-
in construction engineering and manufacturing, especially in the aained in it. Whenever the segmentation results for specified parame-
tomotive and aviation industry. In cast metal parts, for example, thers are not satisfactory, the user has to modify the parameters and the
processes during solidification may cause shrinkage cavities, poresiire segmentation has to be computed all over again. This is often
cracks, or inhomogeneities to appear inside the structure, which éinee-consuming and tedious.
not visible from the outside. NDT allows the assessment of such ma-Unlike this standard approach, we proposeisualization-driven
terial defects which arise throughout the manufacturing process, msthod for feature detection that allows features in the volume to be
well as during use if the component is exposed to mechanical loadseaplored interactively without re-computing the segmentation. The
corrosion. Furthermore, NDT is nowadays not only used for inspedtasis for this is an unattended pre-computation stage that computes a
ing metal parts but for a variety of different materials such as plastideature volumand some additional data structures, which contain the
wood, or concrete, as well as minerals in general. In recent yeamsult of feature detection ovparameter domainmstead of fixed pa-
3D Computed Tomography (CT) has become common in NDT, whichmeters. This pre-computation has to be performed only once for a
has created powerful new possibilities, but also new challenges for gigen data set and forms the basis of interactively exploring all con-
inspection and testing process. Industrial CT volumes are generdiyned features. In contrast to detection of a single type of features,
quite large, with voxels commonly stored with 16 bits of precisionye allow the user to explore all feature classes and decide interac-
which leads to several hundred MB to one or more GB of raw data p@rely which classes of features are of interest, instead of specifying
scan. Real-time volume rendering has become an essential tool fortkiis information beforehand. This is particularly useful in the context
sualizing these volumes, usually using bricking strategies [5] to copécompound parts or complex materials such as minerals.
with the large data sizes. However, for NDT practitioners visualization In a traditional workflow for detecting defects in cast metal parts,
is just one part of the workflow, which includes a variety of processintje parameters for the segmentation need to be specified such that the
tasks such as defect detection and quantification, computing statistwahsity of defects is below a certain threshold (assuming that air or
measures and properties such as material porosity, performing aagas comprises the interior of defects), their sizes are larger thanra give
rate measurements and comparisons, and many more. minimum (very small defects are noise), and smaller than a given max-
The goal of our work is to help bridge the gap between the visimum (very big defects are not defects but, e.g., actual holes). More
alization of features and the quantification of defects. Feature detewer, further parameters must be set for the region growing pspces
tion is usually performed via some type of segmentation, which mdstr example a maximum density variance in the region, or maximum
commonly builds on region growing and filtering operations such atandard deviation from the neighborhood of a seed voxel. The sys-
morphological operators. Segmentation results in one or several stégin might also require the user to manually specify seed voxels or set
segmentation masks, which can be visualized as part of the 3D volupggameters for automatic seed determination. In contrast, our system
and also form the basis of quantification. The segmentation, howewesmputes and records the result of region growing for the entire den-
cannot be modified without re-computation. This decouples the dgty domain, all different sizes of features, and the entire domain of
the most important region growing parameter (given a specific region
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Fig. 1. Overview of our pipeline. The pre-computation stage computes feature size curves via multi-pass region growing, which are stored split up
into a 3D feature volume and a 2D feature growth table. These are the basis for the subsequent interactive exploration stage.

strongly data dependent and cannot be determined at compilation tic@nputes deature size curvever “time”t (which corresponds to the
Simple implementations are based on aggregation starting from a spa&in region growing parameter) for each voxel in the volume (Sec-
ified seed point in a recursive way. More efficient implementatiort®on 4.1). For memory efficiency, these curves are stored split up into
use a split-and-merge strategy [8], and parallel implementations hav@D feature volumgSection 4.2), and a corresponding 2&ature

been developed [4, 11]. The seed points and the homogeneity nggbwth table(Section 4.3).

ric are essential for region growing techniques. Many researcipgrou When the feature volume and growth table are available, the data set
have suggested methods to simplify and automatize their specificatioan be explored interactively for features of interest inetgloration

In [1], the homogeneity criterion is omitted by simultaneous evaluatisiage (Section 5). Feature exploration builds on the specification of
of several different seed points. The volume seedlings approdch 3D transfer function (TF) in th@lensity, featuresize, timedomain
represents an interactive technique for specifying seed points to se(&sction 5.1), which is constituted by the CT density volume, the fea-
regions of interest. However, since this approach is working in scretme volume, and the feature growth table. TF specification is not only
space, it is restricted to a static viewpoint. Other techniques deritree means by which the user determines the visualization, but also how
the homogeneity criterion from statistical information about the Ideatures to be quantified are selected. Features can also be explored in-
cal neighborhood of the seed point, mainly mean value and variandezidually using a graphical feature view or picking in orthogonal slice
In 3D, such techniques are closely related to automatic iso-surfagews (Section 5.2), which can also be used to remove specific features
extraction. Tenginakai et al. [16] propose a method for detection fstbm rendering and quantification that are artifacts from the CT acqui-
salient iso-surfaces based on higher-order statistical moments: Tesition process. During exploration, the current feature classification is
niques such as contour-trees [17] and -spectrum [2] evaluate iaforndisplayed using real-time volume rendering (Section 5.3).

tion about topology, area and enclosed volume of iso-surfaces. ThisFrom the feature classification specified by the user during the in-
information is then used for feature classification. teractive exploration phase, th@antificationstage (Section 6) auto-

For the visualization of 3D scalar fields, powerful real-time volmatically computes statistical measures such as feature count, volume,
ume rendering techniques are available [6]. In recent years, usabifid surface area for features that have been selected in the exploratio
ity aspects have become more and more prominent in visualizatistage. That is, quantification is performed in a visualization-driven
systems. In their seminal paper, Kindlmann and Durkin describenganner, where everything that is selected for feature visualization is
semi-automatic TF design [12]. Although their TF was still oneincluded in the quantification. Performing quantification only for the
dimensional, the gradient magnitude and the second-order derivafigature classes found to be of interest during exploration empowers
of the scalar field were taken into account. True multi-dimensiontiie domain expert to interactively control the final result. Both feature
TFs were introduced by Kniss et al. [13]. Here, the derivatives weexploration and quantification can be performed as often as desired
pre-computed and a 3D TF was applied for classification. The authevithout requiring additional pre-computation.
also proposed a user-interface based on interaction in both the spatial
domain and the feature space of the TF (dual domain interaction). The PRE-COMPUTATION

original idea of tracing path lines along the gradient field describegithough exploration is conceptually the most important part of our
in [12], was expanded by Sereda et al. [14]. They employ a LH (lowsipeline, the basis for interactivity during exploration is a complex
high) histogram for selecting regions of interest in feature space. Eggf-computation stage, whose components are described in this sec-
voxel with a gradient magnitude larger than a small threshold is cofion. However, no user input is required for this stage, and thus it
sidered a boundary voxel and a short path line is traced along the geatechnically complex and important but decoupled from the explo-
dient field in order to determine two tissue types at the boundary. ration. The main goal for pre-computing additional information is to
Huang and Ma [9] integrate the region growing technique into voknaple exploration of different classes of features with differerztrpar

ume visualization systems. Besides full segmentation, their technigstgrs in such a way that, e.g., the main parameter used to steer region
may perform region growing on a partial data range in order to defiggowing (e.g., maximum variance) can be changed interactively after
a 2D TF for volume rendering. Such a visualization, however, wiictual region growing has been performed. In order to allow this, we
not be exact compared to the full segmentation. Although their visgerform region growing in multiple passes and track the progress for

alization is fast and effective, modifying the seed points at run-tim&ch voxel, which is recorded feature size curves
will also require re-computation. Huang et al. also demonstrate an ap-

plication of their region growing technique for non-destructive testing.1 Feature Size Curves

of CT data [10], which is effective, but underlies the same limitationg, orger to allow interactive exploration of region growing with differ-
for interactive exploration. Like the approach by Huang and Ma [10kn parameter settings, such as different variance thresholds, which
our visualization technique is based on multi-dimensional TFs. TRG, 14 not be possible to change interactively, the result of region
feature volume we use, however, is different. Unlike their approacgyqying is tracked and recorded along the parameter axis in the pre-
our technique allows us to interactively explore the volume by sele omputation stage. That is, instead of using a single parameter value,
ing feature size, density, and the main region growing parameter yack features over an entiparameter range In order to make
real-ime. Region growing is performed only as a pre-processing st@Re following description more general, we denote this parameter as
“time” t, which is stepped from a start timg(e.g., minimum interest-

ing variance) to a maximum timg (e.g., maximum interesting vari-

An overview of our pipeline for exploration and quantification of feaance) in a specified number of stdpsThat is, the time (parameter)
tures is illustrated in Figure 1. As a pre-requisite, for a given CT vobxis is sampled intd bins, e.g.,b = 16, which allows the resulting
ume additional information must be pre-computed (Section 4), whidurves to be stored in arrays wittentries. For each voxel, the size of
constitutes the basis of interactive feature exploration. We employttee feature (region) it belongs to is recorded, resultingfesdure size
multi-pass region growing approach (Section 4.4) that conceptuatiyrvefor each voxek along the time axis: fs(x,t).

3 PIPELINE OVERVIEW



Figure 2 illustrates the feature size curves of four different exampde3 Feature Growth Table
voxels. Voxel 0 (red) is the seed voxel of a feature that starts attgim
with a size of 30 voxels and grows in size several timesiasreases.
Voxel 3 (purple) is another voxel in this feature, but only become
part of it at timet;. Voxel 2 (green) belongs to another feature, b
merges with the feature containing voxels 0 and 3 at tym&/oxel 1
(blue) belongs to a feature with a size of 15 voxels, which stays at t
size over time, i.e., does not grow any further.

eAs described in the previous sections, the feature volume itself does
Nt store actual feature size curves. Instead, we store one refarese
Jive curve for each feature, which is the feature size curve of the fea-
ture’s seed voxels, in a 2Dfeature growth tableThe feature growth
ﬁ?sble contains one row per feature dncblumns, wher® is the num-
ber of bins for sampling the parameter Each entry in this table is
a (fs(xs,t),ID(ti)) pair, which in each row collectively represent the
Storing feature size curves: The major observation for stor- sampled growth curve of the feature over timefs(xs,t), as well as
ing feature size curveg(x,t) with a manageable amount of memory ismapping time tacurrent feature ID ID(t). The latter is necessary in
that all voxels in a feature exhibit very similar curves. In the beginningrder to be able to handle the merging of features over time, where
(time tp), most voxels do not belong to any feature, ifg(x,to) = 0.  feature birth ID and current feature ID are not necessarily the same
Seed voxels that start a new feature at tintecord the entire growth because the ID can change when a feature merges into another one.
curve of this feature. In each pass, additional voxels may becomejandling the merging of features is described below. The feature size
part of this feature, and when a voxel does so at tiimiéfrom then on  curve for a given voxek can be reconstructed for any tiraéy using
shares the feature size curve with the curve of the original seed voxeduation 1 witht; =ty (x), and indexing the feature growth table
Before a voxel becomes part of a feature, its “voxel-local” featize s in row ID ;. (x) and the column corresponding to the birtipfo ob-
is zero. That is: tain fs(xs,ti) whentj > t;. This is a very simple and efficient scheme,
which can easily be evaluated in a GPU fragment shader during ray-
fs(x,t) = { ? ¢ : i:J (1) casting, illustrated by the pseudo code in Section 5.3.
sxs,t) T4 In principle, the feature growth table is stored in a 16-bit two-
for a voxelx that at timet; becomes a part of a feature whose origin (fhannel 2'-3 texture, e.g., a Lum|nan(;e-AIpha texture in OpenGL.
seed voxel is. This fejlct makes it possible to store only a singlaHowever, since this texture has to contain one row per feature and th(_are
feature size calrvq-ner featurein full. However for each voxel. the %an be thousands of features, hardware texture dimension constraints
T ' . ' ' often make it impossible to use a single 2D texture for this purpose. If
feature ID that it will become a part of at tilgmust be stored, as well the hardware supports 2D texture arrays (e.g., NVIDIA GeForce 8 o

as storing;j itself. Thisper voxelinformation is stored in a 3feature | ; her), we split up the feature growth table into a texture array with
volume(Section 4.2), whereas the curves themselves are stored in a% ows'and(n/m} layers, wheran is the maximum allowed dimen-

feature growth tabléSection 4.3). Figure 3 illustrates the relationshi%ion ofa 2D ;
between the feature volume, the feature growth table, and feature Yffeatures. |
curves, which is described in detail below. )

texture as reported by the hardware, misdthe number

f texture arrays are not supported, the feature gtatea

is split up in a similar way, but layers are stored in the depth dimen-
4.2 Feature Volume sion of a 3D texture, which is functionally almost identical. However,
_accessing a 3D texture is slower than accessing a 2D texture array, and

) ; X ﬁ‘mi ht be necessary to pad the depth dimension to a power-of-two.
that is needed to reconstruct full feature size curves at run-time. As 9 ytop P P

detailed in the previous section, it is sufficient to store only two values Merging features:  Features can merge as the parametier

per voxelx: (IDpirth (X). tpjrth (X)) The first value yields a feature ID ¢ oaqes e g. when two or more small disjoint but close features gro
that this voxel belongs to. Howevgr, when .fea.tures merge over iM.gize overt until they finally touch and thus merge. When this hap-
feature IDs can change, the handling of which is described in the n%tns attimey, they are treated as a single feature fot alt. In order
section. In order to avoid storing these changlng IDs per vo>_<e|,_the do so, we :":lssign a nevurrent feature IDto the entire merged fea-
stored in the feature volume is tfeature birth ID(IDyytp ), which is dure, using the ID of the (sub-)feature with the largest voxel population

the ”.3 of the f!rst featun_e thls_voxel belongs to. The second value the features that have merged. During rendering, the feature tD tha
termines the time at which this voxel becomes part of the feature wifh . .ot at a timé needs to be determined for a given voxel (sam-

the corresponding feature birth ID, i.e., feature birth imety ). e). Thus, we store the current feature ID corresponding to gach

. . : |
The fea“.”e volume is stored na 16-bit two-g:hannel 3'.3 textur D(t;)) in the feature growth table, as explained above. Every row in
€.g., a Luminance-Alpha texture in OpenGL. During rendering, a si jjs table corresponds tofaature birth 1D, i.e., the ID that was as-

tgle tEXturf fettct?]from thl,'s ]?’D tfeaturg texture yllelijhs er ertythlng netehd ned on feature creation, whereas therent feature IDis retrieved
bcl) re(t:onsdr_uc 28 ;/0>(te S lea gre S|_zbe gubrv:e viathe ieature grow om the ID entry in columtt;. Thus, the IDs stored in the feature vol-
e stored in a 2 texture, as described below. ume are feature birth IDs instead of current IDs. The big advantage of

E . this approach is that it allows the IDs stored in the feature volume to be
eature Size Curves

200 : © ® left untouched by the merging of features. It is sufficient to know the
el @ feature birth ID for each voxel, i.e., the feature the voxel first bedohg
100 voxel2 . to. Everything else can be obtained from the feature growth table, i.e.,

= voOXEIl 3 -

for anytj, the current ID and current size of the feature are retrieved
from the feature growth table in rofgature birth IDand columrt;.

80
t1

60 @

40 ®
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Fig. 2. Feature size curves of four example voxels. Seed voxels belong

to a feature from the time where it is created (voxels O, 1, 2), whereas Fig. 3. A feature volume stores only the per-voxel information that is
other voxels may join a feature at a later time (voxel 3; t;). Features necessary in order to reconstruct the feature size curve of each voxel
may merge over time (tz), which implies that the feature size curves of  using the per-feature growth information stored in the feature growth
all contained voxels are the same after the merge (voxels 0, 2, and 3). table, where each row corresponds to one feature.



4.4 Multi-Pass Region Growing and Seed Selection if possible given the new region growing parametey. If an exist-

Both the feature volume and the feature growth table are computfd feature grows further at tim, 4, its feature size increases, i.e.,

using region growing in multiple passes, where each pass correspo 1) > f§(x’ti)' see Figures 2 and 3'. .

to a specific time stef. Figure 4 illustrates the overall region growing, 1 he following approach allows handling all cases efficiently and

process for three consecutive time steps. The resulting feature igg‘t'ng the first and all subsequent passes as uniformly as possible.
u

curves over time and the feature volume and feature growth table maintain two bit masks with one bit per voxel for tagging and thus
to store them are illustrated in Figures 2 and 3, respectively. removing voxels from further consideration for either growing a new

Instead of selecting specific seed voxels either manually or au{g_ature or extending an existing feature. A voxel is considered tagged

matically, we in principle considezveryvoxel in the volume as po- Wh%:l Its b'tl 'sfstit |nhe|t|k(1ecrj one clneftthe two masks (c|>r ?Oth)' id
tential seed for growing a region. This way, no seeds for potentia). ?goa ot thechec ef nt1as %rem_ct)ve v?é(%s rom %Ons' ?r'
features can be missed, and the user is not required to specify seeddian for growing a new feature (where it would be a seed voxel), or

; ; tending an existing feature (where it would be a voxel in the fea-
all. Nevertheless, we allow optionally culling away the background : . .
performance optimization. ure’s boundary), both in the current and all subsequent pas$es. T

mask is cleared only before the first pass and then updated from pass
Culling:  Inindustrial CT parts a significant number of voxels argo pass. A bit in the checked mask is set when either (a) the voxel is

usually part of the background, i.e., air. In order to speed up the piasidea feature, i.e., all its neighboring voxels also belong to the fea-

computation stage, it is worthwhile to remove these parts of the vaiire (e.g., using the 26-neighborhood); or (b) because the vopatis

ume from the potential seed candidates. We do this by allowing tbéa region that becanteo big(see above).

user to specify an opacity TF, which is used to cull small sub-blocks In contrast, the goal of thesited masks to avoid considering the

of the volume (e.g., 3. The simplest TF for culling is a simple win- same voxel twice in the same region growing pass (for either growing

dowing function. In our system, the default setting is a window ovex new feature or extending an existing feature). As such, it is cleared

the entire density range, which disables culling, but can be changeddafore each pass. A bit in the visited mask is set when a voxel is

the user before pre-computation is started. Culling determines an adeded to a feature in the current pass, irrespective of whether inside

tive block list, and the voxels contained in active blocks are considergt feature or on its boundary.

as potential seeds. During region growing, a voxel is a candidate for either growing a

new feature or growing an already existing feature further when nei-

Reglon growing: Gl\{en the active block list d_etermmed byther its bit in the checked mask nor in the visited mask is set. The
culling, which might contain the entire volume, selection of seed ca(gb

didates for region arowing proceeds by processing block after blo jstinction between these two cases is done according to the corre-
giong gp yp 9 onding entry in the feature volume. The entry there contains a valid

co?S|der|rTg eachfcontau:]ed vogel 'n;.lémt' N f birth feature ID if the voxel already belongs to a feature, and thus is
N éach pass, Tor each seed candidate, a region IS grown as 1ag a3, gigate for growing the feature further. It contains an invalid ID

possible given th? current parameter In order for a region to .b(.e- when the voxel does not yet belong to a feature, and thus is a seed
come a feature, its size must be both larger than a given miNiMyMm_ i date for growing a completely new feature '
S .

(not too smal), to avoid spurious features of only a few voxels du
to noise, and smaller than a given maximum (tust big), to avoid 45 Region Growing Criteria
turning entire structures such as holes into features. These two si
thresholds are specified globally and are set to very conservative

ues by default, which is usually sufficient and thus no specificatidﬁ
by the user is necessary. If a region satisfies these two criteria, a

e . . .
Hr approach is independent of the actual region growing method that
used, and works well as long as a single parameseffices to char-
rize the main variation of the growing process. We have used the
feature is created from it. All voxels comprising this feature will sub- 0 region growing approaches outlined below_as a pro_of-of—concept
me%ur interactive approach. However, other region growing or featu

sequently not be considered as seed candidates. Region growing . -
continues by considering the next seed candidate. Furthermore, indﬁeCtlon methods could be adapted as well to work in the context of

passes after the first one, in addition to starting completely new fed!r framework.

tures, existing features have to be grown further if allowed for by the Region growing method A: We are using a variant of seeded
increased region growing parametigr . The distinction between first region growing [1] that is also able to include a region’s boundary.
and subsequent passes, as well as handling multi-pass region groviRegion growing is performed in two distinct phases:

efficiently, is described below. ) ]

In the first passj = 0, with a corresponding region growing pa- 1. Grow the homogeneous “core” of a regiow voxel is added to
rametert; = to, every voxel that is not yet part of any feature is con-  the region when the difference of its density to the average den-
sidered as seed candidate for starting a completely new feature. Note Sity of the whole region is below a given thresheldv—v;| <,
that since seed candidates are considered sequentially, even in the first Wherevis a voxel's density, and is the current region’s average
pass many voxels may already have been assigned to features when density. After a new voxel is added, is updated accordingly.

a given candidate is processed. In the next pasd,, and all subse-
quent passes, (1) as yet unassigned voxels are considered asettw
candidates, possibly starting a new feature at timg and (2) al-
ready existing features are grown further from their boundary vpxels

2. Expand the region by including its boundarffor every voxel
adjacent to the region, we either check a gradient magnitude cri-
terion in order to decide whether this voxel should be included
in the region, or use the voxel’s LH value [14].

The time parameter determines the current homogeneity criterion:

t = €. Further, itis possible to separate these two phases in such a way
that they can be distinguished later on during interactive exploration.
By advancing the time parametebetween the two phasesyenbins

of t correspond to region cores without their boundary, add bins
correspond to regions including their boundary. This allows to select
O culled voxels Ml new features B growing features regions with or without their boundaries in the 3D TF.

X seed voxels O previous features B merged features

time=0 time=2

Region growing method B: Huang et al. [10] are using a com-
Fig. 4. Region growing is performed in multiple passes. In each pass, bination of region growing based on the standard deviations of density
new features can be created, previously existing features may grow (ex-  and gradient magnitude, respectively. They determine both standard
cept in the first pass), and features may merge. Optionally, background  deviations for a fixed neighborhood of each seed voxel. The main pa-
voxels can be culled in order to improve pre-processing performance. rameter of their method is a global scale fadtor O:
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Fig. 5. Apart from inspecting individual features, the feature classification space can be explored through a stack of 2D histograms spanning the
3D domain of (density, feature_size, time). (a) 2D slice through the domain with histogram and transfer function widgets (x axis: density, y axis:
feature_size); (b) Volume view generated with GPU-based real-time ray-casting; (c) Orthogonal slice views can also be used for picking features.

Figure 6 illustrates the 3D TF domain, highlighting two selected 2D
subdomains and the widgets intersecting them.

V—V.
fca = | S|7 2 Feature histograms:  The background of Figure 5 (a) is a 2D
ko
v histogram plotting voxel density (x axis) against feature size (y axis).
fop = 19— 95| (3) The number of voxels with a giveidensitysize combination is color-
¢ kag ’ coded (red corresponds to a large number of voxels). For each time
fee(p) = Pfeat (1—p)fep (4) stepti,a corresponding 2D histogram is computed, which are together

maintained as a stack of 2D histograms that collectively span the entire
wherevis a voxel's density valueis the density of the seeda voxel’s 3D domain. In order to gain insight into the distribution of feature
gradient magnitude valugs the gradient magnitude of the seed, angizes, densities, and their occurrence in time, the time axis is explored
oy andgy are the corresponding standard deviations of the seed neigi#ing the slider fotcur, which specifies the current time of interest.
borhood, respectlvelbehe factprcan be set toagonstant .value.but. IS 3D TFs and 2.5D widgets: The 3D TF in the(density, fea-
set by default top = 5-%5-. We employ these region growing criteriature size, time)domain is specified using 2.5D widgets, which result
in our framework by setting= k for tracking the main parametkr from extending some of the well-known regular 2D TF widgets such

as boxes, tents, or Gauss blobs [13] into the third dimension by as-
5 EXPLORATION signing a time rangéa,ty] to each widget using a range slider. This
For the user, the exploration stage is the most visible part of oi@nge determines in which time steps this widget is active, i.e., 2D
pipeline. The complexities from the previous pre-computation stagjédgets are extruded into 3D from timgto timet,. The actual wid-
are hidden to a large extent. During exploration, the current classifi@gt shape is 2D, e.g., a Gauss blob is extruded into a cylindrical shape
tion is shown in real-time in a 3D volume view (Figure 5 (b)) and thre# 3D. The reason for this is that opacity ramps are very useful in the
orthogonal slice views (Figure 5 (c)). In order to explore and classif@lensitysizg subdomain, but gradually changing the opacity classi-
features and feature classes, the corresponding regions in the voldiigriion over time is not meaningful because the time axis is in fact
can be mapped to color and opacity using one of two different meafi®t continuous (it is not only sampled, but also corresponds to the im-
(1) via a 3D TF in thdensity, featurssize, timeyiomain (Section 5.1; Pact of fixed increments in the main region growing parameter on the
Figures 5 (a) and 6), which maps entire feature classes; or (2) direc@}plution of regions, not actual time). Thus, a widget is either fully
via picking individual features in one of the slice views or graphi- Present at a timg with ta <tj <t,, or not present at timg at all.
cal feature view(Section 5.2; Figure 7). This special view allows thdn many cases, in order to determine a specific feature class the user
user to pick features, inspect their feature size curves, and set tigplores the time domain until a time step is found that depicts the
color and opacity individually, which can also be used for disablinfgatures of this class well. In this case, widgets for this class are set to
features that stem from CT artifacts by setting their opacity to zerde active only in this particular time step, i.& = t,. Example TFs
Picked features are immediately highlighted in all views. are also shown in Figures 8, 9, and 10.

An important concept during exploration is the handling of the tim . -

axist. Showing all time steps simultaneously is only supported by2 Exploring Individual Features
the graphical feature view, where feature size curves can be indpedte addition to exploring whole classes of features, it is important to
along the time axis in a function plot, and the dense color-coding 8fso allow the user to pick and inspect individual features. Features
feature IDs shows their evolution over time (due to creation and meigan be picked with the mouse in either (1) one of three orthogonal
ing of features), which constitutes the main part of the view (Figure &lice views, which retrieves the current feature ID at the picked loca-
All other views, i.e., the 3D volume view, the three orthogonal 2ion; or (2) in the graphical feature view. The graphical feature view
slice views, and also the TF panel depict only a single time step. This
current time stepdur is specified globally for exploration and can be
modified by the user at any time via a simple slider.

5.1 Exploring Feature Classes

The main goal of classification is to explore feature classes, instead of
requiring the user to inspect individual features. Features are atassifi
by specifying a TF in the 3D domain density(from the CT volume),
feature sizdretrieved from feature size curves), dirde (the changes

of features according to the main region growing parameter). Al-
though this is a 3D domain, we use a 2.5D metaphor to make the man-
ual specification of TFs manageable. The @i2nsityfeaturesize
subdomain can be viewed in its entirety for any given tigg in the  Fig. 6. TF with 2.5D widgets in the 3D (density, feature_size, time) do-
TF panel. This corresponds to choosing a specific time of interest andin. A stack of 2D (density, feature_size) histograms, one for each time
then exploring features according to their size and density distributicitep, helps with TF specification.




float density = texture3D(density.vol ume, sanple_coord3);
vec?2 feat _vox = texture3D(featurevolume, sanple_coord3);

float birthlD = feat vox. X;
float birthTime = feat_vox.y;
if ((birthiD == IDNONE) || (birthTime > T.CUR)) {
out = texturelD(tf1D, density);
} else {
4 6 8 10 vec2 fsmap = texture2D(growt h2D, vec2(T-CUR, birthlD));
time step .
float curSize = fsmap. x;
float curlD = fsmap.y;
Fig. 7. Graphical feature view, where each row (middle image) corre- if (curlD == PICKEDID) {
sponds to a feature and IDs are color-coded. The horizontal axis is out = pi cki ngCol or;
time t. A plot of the feature size curve of the currently picked feature is 1 else {
also shown (right image). The color coding of IDs can be used during out = texturelD(sel ectionlD, curlD);
volume rendering for immediate inspection of the result of region grow- it ( (out.a > 0.0) & !use.col or_ranp.1D )
ing for a given time step tcyr without specifying a 3D TF (left image). out = texture3D(tf3D, vec3(density, curSize, T.CUR));

if (out.a == 0.0)

(Figure 7) has two main components, a visualization of all features out = texturelD(tf1D, density):

with their feature IDs color-coded and depicted over time (Figure 7,
center), and a plot of the representative feature size curve of the ﬁJr}
rently picked feature (Figure 7, right). The former visualization con-

tains one row for each feature, with the vertical coordinate correspondh

Ing to the feature ID (increasing from bottom to top). The horlzont# an orthogonal slice view. The volume is rendered for a specific time

axis is timet, where horizontal changes in color indicate the mergln(%zp’ i.e., the global current timeyr, which is denoted a§ CUR in
t

ich can then be composited during ray-casting, or simply displayed

of features and thus a change in feature ID. The gray areas (top | code. For a sample with volume coordina | e_coor d3,

correspond to features that are only created at later time steps, \ . .
who have no valid feature ID before théature birth time This view € density volumedensi ty.vol une) and the feature volume

depicts the feature growth table described in Section 4.3 as a colgc eat ur e-vol une) are sampled at that position, which yields the

: : : (Efnsity and the feature birth I r t hl D) and time bi rt hTi ne)
coding of thelD(t) channel from thé fs(xs,ti),ID(t;)) pairs stored in . 7 < o
the table. As such, it is a visual representation of the behavior of? hen no feature is present at that location given the current classifica

. . . 8 . . n, i.e., no feature exists there at dlD_NONE), or the feature does
features over time with respect to their creation and merging with othﬁgOt yet exist at timécur, or is mapped tgzero o)pacity in the feature TF

features. When features merge, their ID changes (except for &he f . )

ture with the largest voxel population of the merging features, whic{;gl:z?g’ trhg\:fgglgr éc[))rc(j:i?osrlfgc];ilfn( ﬁ‘ggltzxasseodr. J—Shlﬁ feiﬁgf\';? d%ia()l\gn-

is kept, see Section 4.3). This shows up as color changes within a o dg it : Section 5.2 ngt blei edg tionlD

in this view. This color-coded view does not allow detailed analysl\()%,rS and opacity (see Section 5.2), a ableis usedéct i on1D),

but provides a good overview at a glance whether a lot of features ar

merging or not, and at what time steps a lot of merges occur. Detailgd

inspection is then possible by picking a feature (row), and looking at ) ) )

the corresponding plot that shows all details of the feature’s size curli order to assess the quality of materials or the whole casting process
itself, it is necessary to quantify the features contained in a data set,

e Featurepicking: When a feature is picked, a specific individuale.g., their number, volume, surface area, as well as global statistical
color and opacity can be specified, which is then stored per feaeasures such as average volume and standard deviation. The focus
ture by overriding the corresponding entry in the 1D color rampf our system is to provide the basis for interactively specifyirt
TF described in the next paragraph. should be quantified, as a basis for a variety of actual quantification

. . options. Our system computes and displays quantities corresponding

e Feature color coding: All features can automatically be showng feature classes selected via the 3D TF, individual features, as well

in different colors, by mapping feature IDs to colors and opacitys oyerall information computed in the pre-computation stage.
via a 1D transfer function, which is filled with a color ramp by

default. This is the same color ramp used in the graphical featlgel  Feature Quantification

view (Figure 7, center). Figure 7 (left) shows this color mappin . . . e .
applied in the 3D volume view, which is useful to gain a quiclfn contrast to rendering during exploration, quantification does not pri-

overview before transfer functions are specified marily.consider individual voxels (§gmples), but whole features with
’ all their voxels. Therefore, quantification does not need the feature

e Removal of artifacts: P|Ck|ng features is also very useful forVO'Ume but relies mainly on the feature grOWth table (Section 43),
removing erroneous features that in fact are artifacts from tighich contains the representative feature size curves for every fea-

scanning process, such as reconstruction/Feldkamp artifacts@ie, as well as information computed during region growing that is
center/circular artifacts. When an artifact is picked, its individudtot needed for rendering, such as lists of voxels comprising individua

opacity can be set to zero, which removes it from both renderifigatures. For a featurg, the representative feature size cufygx,t)
and quantification. is the feature size curve of the feature’s seed vdx@ls,t), see Sec-

tion 4.1. The size of the feature in voxels at titnean be determined
. directly from this representative feature size curve, which is stored

5.3 Volume Rendering in the feature growth table. However, this considers only the region
Volume rendering is performed by using ray-casting in the fragmegtowing process itself, not the classification done via the TF which can
shader [15]. Since industrial CT volumes are quite large and a feateseclude features and whole feature classes from quantification. During
volume is required in addition to the density volume itself, we emplohe region growing process (Section 4.4), a list of contained voxels is
bricking in conjunction with single-pass ray-casting [7], keeping onlincrementally constructed for each feature. In order to quantify a fea-
the visible subset of the entire volume in GPU memory. The followinwire, these voxels have to be visited, and their density, together with
pseudo-code (similar to GLSL) illustrates the main steps that needthe feature’s size at tintg must be used to perform a lookup in the 3D
be done in order to determine the color and opacity (without shadinfgature TF. The resulting opacity determines whether this voxel should
of a given sample, as RGBA tuple in thec4 variableout : be included in the quantification or not. In addition to using the opac-

ity, feature classes can be quantified individually by either quantifying

iéich overrides the feature TF whesse_col or ranp_1Dis set.

QUANTIFICATION AND RESULTS



Figure 9 shows a "reduced-pressure-test sample” (RPTS), which is
used in the casting industry to evaluate the gas content of an aluminum
or copper melt. Therefore about@&® (1.83n°) of the melt is solidi-
fied at a pressure of 8000 Pa (1.16 psi), which causes the gas inithe me
to form pores in the metallic volume. Furthermore, the shrinkage of
the metal during solidification causes shrinkage cavities to be formed
in the center of the upper regions of the sample. Therefore, these sam-
ples are ideal test pieces for the evaluation of feature detection, as they
are virtually full of different pore sizes and shrinkage cavities. The
evaluation of those basic types of features is of great relevance to the
casting industry as they are the most common defects in metallic cast
parts beside non-metallic inclusions. The distinction between these
defects is of special interest for the casting expert, as they are both
voids but have a completely different origin, and therefore have to be
treated differently in the casting process. For this application, the time
steptcur in our system was chosen interactively, such that the ren-
dered features comply with the actual position and size of the different
each widget's classification separately, or combining the classificatigafects. In this case, a (2D) feature TF for the time &gpwas suffi-
of several widgets that collectively classify a single feature class. ~cient in order to classify the gas pores according to their size, and the

We compute the most common measures such as the volume of &ftinkage cavities can be separated by their morphologies.
tures in voxels, or mapped to cubic millimeters via the reference size The asphalt drilling core depicted in Figure 10 with a diameter of
of a single voxel inx,y, z, the surface area of a feature, density aved00mm(3.9in) is used to characterize the quality of asphalt. It is com-
age and standard deviation, as well as global statistical measures fa$ed of three main phases: the mineral phase, the bitumen binding
as average feature size and standard deviation. However, additigtfz@se, and pores. The mineral phase can be composed of differen
measures can be added easily. minerals in different grain sizes. This highly complex composition

concerning density profile and dimensional range makes a reliable
6.2 Results evaluation especially difficult. Such samples ideally show the advan-
Table 1 illustrates exemplary quantification results for two of the datages of interactive feature detection. Due to the fundamentally differ-
sets we have used in this paper, see also Table 2. ent behavior and composition of the er_nployed phases, a3DTFcan be

Figure 5 depicts a part of a cast housing for the automotive indUés€d to separately characterize the different phases. Figure 18 show
try. The part is produced of an AlSi-type alloy in a die-casting proced§'€ result of two different feature TFs at a specific timer.

As it carries fluids during operation, impermeability of the housing
one point of specification. Therefore a characterization of voids in t
casting has to be performed. Table 1 (top) gives quantification resul@ple 2 gives typical numbers for pre-computation times and volume

for different void sizes (feature classes) contained in this data set, fgnhdering frame rates for the data sets used in this paper. Perfor-
cluding the number of features in each class, their average volumegnance has been measured on an Athlon 64 2.4GHz, 4GB, XP64, and
voxels, and the percentage of voxels in the class with respect to thé&eForce 8800 GTX, 768MB. The first region growing step always

number of voxels in the whole part (excluding the surrounding air). consumes the most time. It has to compute the additional data re-

Figure 8 shows a 2-piece construction golf ball. The inner piece @glired, such as mean and standard deviation of the seed voxel neigh-
reinforced with dense particles. To evaluate the quality of these refpPrhood, considers the most voxels as seeds, and grows andidiscar
forcements, their distribution and size were checked using industr@l regions that becom#o big All following time steps are then
CT. The two different time steps in Figure 8 clearly show the influend8uch faster. The bit masks maintained during region growing ensure
of the region growing parameter (hekeof region growing method B, that many voxels are visited only once over time, which reduces pro-
Section 4.5) on the quantification result at the end of the pipeline. g&ssing time for further iterations. Volume rendering is fast, as only a
3D TF was used to obtain an optimal result for the complex structut@w additional operations compared to regular volume rendering have
of the sample. Table 1 (bottom) contrasts the quantification resultstefbe executed per fragment, see the pseudo code in Section 5.3.
two selected time steps. The user visually determined that the earlierfable 2 also lists the memory usage of the major additional data
time step (values in parentheses) corresponded to incomplete resghgictures computed, i.e., the feature volume (first value) and the fea
whereas the later one resulted in a plausibly complete detection of f i
tures. For example, the particle indicated in Figure 8 corresponds
an agglomeration of smaller particles during the production of the gc 4
ball. It also appears in the quantification as a singular particle of lar ‘

Fig. 8. A golf ball, reinforced with dense particles. Two different time
steps and the corresponding 2D section of the 3D TF are shown. In the
earlier (left) time step, the indicated particle is still small because the
region growing parameter has not advanced far enough yet. In the later
(right) time step, it has become a big feature that does not grow further
since it has reached its maximum (actual) size. See also Table 1.

Ilfje?’ Performance and Memory Usage

size (last row of Table 1).

Table 1. Example quantification results. The results for the golf ball
are for the time step selected by the user as the “complete” one (Fig. 8,
right), and an earlier, “incomplete” time step in parentheses (Fig. 8, left).

&

Dataset| class | feature count| avg.vol. [voxels] % of part vol. 2
Cast | |EEHl 337 158.1 0.041
Housing | med. 16 717.2 0.088
(Fig. 5) large 6 1629.7 0.075
XL 6 5181.3 0.024
XXL 3 10678.7 0.026
Golf small 6131 (4375) 70.2 (83.5) 0.044 (0.037)
Ball 1875 (948) 209.1 (224.2) 0.040 (0.022)
(Fig. 8) l 78 (26) | 1152.2(1029.8)] 0.092 (0.027)

1 (1) 9472 (3441)| 0.0097 (0.0035) Fig. 9. Reduced-Pressure-Test Sample (RPTS). Lower densities are the

interior of pores (red-blue), higher densities their boundaries (yellow).
Feature size is mapped with a color gradient from red (small) to blue
(large). Very large features are set to transparent. An individual picked
feature is highlighted in green, here of size 7939 voxels and 9.02mm3.



Data Set Resolution Feat.-Mem. Pre-comp. (1st, 2nd, 3rdth time step, overall for 16 steps), Method| B Rendering
Cast Housing| 667x465x512| 606MB+128KB || 600s | 8.7s 7-8s| 12.1min || 421s| 0.84s| 0.5-09s| 7.2min 16-22 fps
Golf Ball 512x512x256| 256MB+448KB || 198s | 3.8s 3-4s| 42min || 447s| 7.2s 5-6s | 8.9min 22-28 fps
RPTS 373x377x512| 275MB+192KB || 280s | 64.6s | 45-66s| 20.5min || 260s| 146s| 29-85s| 15.1 min 20-23 fps
Asphalt Core | 512x512x256| 256MB+1.3MB || 253s | 27.4s| 17-21s| 9.4 min || 450s 24's 10-15s| 10.9 min 20-40 fps

Table 2. The data sets we have used in this paper, with typical pre-computation times (first and second time step, range for 3rd+; and overall time for
16 time steps), and typical volume rendering frame rates (viewport 512x512). The left four columns of pre-processing use region growing method A,
and the right four columns method B (Section 4.5). The first step is the most expensive; after the second step, computation times decrease rapidly.

ture growth table for 16 time steps (second value). For rendering, ordy a proof-of-concept of our general framework, and would likexto
a subset of the entire feature volume needs to be resident in GPU m@iore additional options in the future. We would also like to investigate
ory due to texture bricking, whereas the feature growth table is alwagdaptive sampling schemes of the parameter (time) domain. Extending

resident in texture memory in its entirety. the basic concept further, higher-dimensional parameter spacgd wo
enable exploration of a wider variety of possible segmentations. Semi-
7 CONCLUSIONS AND FUTURE WORK automatic transfer function generation in our new 3D TF domain or

similar domains would also be a worthwhile venue of future research.
nally, we are also planning to extend the possibilities for quantifica-
on, specifically with respect to global measures such as porosity.

We have presented an approach for interactive exploration of featu
in industrial CT volumes that helps to bridge the gap between visH
alization and feature detection. Given the complexity of feature an
defect detection, and the wide variety of data and material propertias K NnowL EDGEMENTS
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