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ABSTRACT

GPU-based ray-casting techniques are becoming more and more
important for the visualization of volume data in medicine and en-
gineering. Thanks to their flexibility and accuracy, they will likely
replace existing slice-based techniques in the near future. This tu-
torial targets the growing number of developers and scientific re-
searchers who work with specialized volume visualization algo-
rithms on state-of-the-art graphics hardware.

Starting with a brief introduction to the concepts behind GPU-
based ray-casting, we will review existing techniques capable to
accelerate the rendering performance. These acceleration tech-
niques are the key issue for supporting advanced illumination mod-
els, since these models usually consume more rendering time. In
contrast to commonly used local illumination models, advanced il-
lumination models allow to incorporate the light interactions be-
tween neighboring structures. Such effects include soft and hard
shadows as well as translucency and multiple scattering. The tu-
torial focuses strongly upon those effects, which support improved
spatial comprehension and are thus relevant for scientific visualiza-
tion from a perceptual point of view, but it also covers topics more
related to visual arts.

Index Terms: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Subjects: Color, shading, shadowing, and
texture

1 TUTORIAL DURATION
1/2 day tutorial.

2 LEVEL OF THE TUTORIAL

Intermediate to advanced. The tutorial is aimed at scientific re-
searchers and developers of visualization tools. Course participants
should have basic programming skills and should be familiar with
graphics hardware and shading languages. We will assume a ba-
sic knowledge regarding volume data as well as interactive volume
rendering techniques. Furthermore, a basic understanding of GPU-
based rendering techniques is required.

3 TuUTORIAL WEBSITE

Updated versions of the slides and the tutorial notes can be
found at the following website: http://www.voreen.org/
visO08—-tutorial

4 TUTORIAL DESCRIPTION

We will present an in-depth tutorial on GPU-based ray-casting
approaches to volume visualization, including acceleration tech-
niques, efficient memory management and advanced illumination
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models. Participants will learn how to leverage the new features of
modern commodity graphics hardware to implement advanced illu-
mination techniques for high-quality volume rendering applications
supporting improved spatial comprehension. Thus they should be
able to target new research directions towards visualization tech-
niques exploiting novel shading models as well as to improve the
existing advanced shading models.

The tutorial starts with an introduction to the basic principles
of GPU-based volume ray-casting, including useful optimization
techniques highly benefitial for advanced illumination models. Af-
ter these areas have been covered existing interactive illumination
models for GPU-based volume ray-casting are explained in detail,
by considering their contribution to the image understanding pro-
cess.

Thus, besides the basic implementation details, the following
topics are covered:

e Memory Management,

Space Leaping and Early Ray Termination,

Soft and Hard Shadows, Semi-Transparent Shadows,

e Diffuse and Specular Light Interactions,

Translucency and Multiple Scattering Effects, and
e Monte-Carlo based Illumination Techniques.

Participants are provided with implementation details often
omitted in scientific publications and should thus be able to con-
duct their own research in this area in the near future. We feel that
it is important to also demonstrate these ideas since the reality of
implementation can be quite different from the theory presented in
the scientific literature. Since the content of the tutorial can be quite
challenging, we intend to answer questions on the fly.

5 INSTRUCTORS BACKGROUND AND CONTACT INFORMA-
TION
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ence from the Vienna University of Technology in 2004, and has
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Volume Graphics.

Timo Ropinski

Visualization and Computer Graphics Research Group (VisCG)
University of Miinster

Einsteinstr. 62

48149 Miinster, Germany

Email: ropinski@math.uni-muenster.de

Timo Ropinski is a postdoctoral researcher working in the field
of medical volume visualization. After receiving his PhD in 2004
from the University of Miinster, he became a project leader within
the collaborative research center SFB 656, a cooperation between
researchers from medicine, mathematics, chemistry, physics and
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Dr. Ljung has published several papers in international con-
ferences and journals including IEEE Visualization, Eurographics
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6 CONTENTS AND SCHEDULE

The half-day tutorial will consist of four blocks, each of about
45 minute length. From a didactic point of view, each block will
loosely build upon the information provided in previous blocks with
growing complexity and increasing level of difficulty.  8:30 —

9.15: Introduction and Basics
Speaker: Markus Hadwiger

e Application Areas for Volume Rendering
e Benefits and Drawbacks of Ray-Casting

e GPU-based Volume Ray-Casting

e Space Leaping and Early Ray Termination
e Memory Management

e Multiresolution LOD and Adaptive sampling

GPU-based ray-casting is a direct volume rendering technique
with a steadily growing popularity in scientific visualization. The
first part of the tutorial gives an introduction to GPU-based ray-
casting discussing the benefits and drawbacks compared to previous
real-time volume rendering approaches like 3D texture slicing. Af-
ter this introductory part, the attendees should have a thorough un-
derstanding of how GPU-based ray-casting approaches work, and
how they must be employed in practice to achieve optimal perfor-
mance. This section covers optimization techniques such as empty
space leaping, level-of-detail and adaptive sampling. The imple-
mentation of spatial partitioning techniques, hierarchical data struc-
tures and memory management strategies for the handling of large
volumes are explained in detail.

9:15 - 10.00: Light Interaction
Speaker: Timo Ropinski

e Light Transport and Illumination Models

e Local Volume Illumination

Specular Reflections through Ray-Tracing

e Soft vs. Hard Shadows

e Semi-Transparent Shadows with Deep Shadow Maps
o Simulation of Color Bleeding

The second part gives an overview to physically-based light
transport introducing the phase function as a volumetric equiva-
lent to the bidirectional reflectance distribution function (BRDF)
known from surface lighting. This part covers basic local illumina-
tion techniques with respect to GPU-based ray-casting, including
run-time gradient estimation, as well as more advanced local illu-
mination techniques for volume data and isosurfaces. For scientific
visualization, the inclusion of shadows into volume rendering sys-
tems significantly increases the perception of spatial structures and
depth relationships. This part covers state-of-the art techniques for
shadow computation in semi-transparent volume renditions, includ-
ing soft and hard shadows. We will show how hard shadows can be



computed interactively using efficient GPU-based approaches, such
as deep shadow maps.

10:30 — 11.15: Ambient Occlusion
Speaker: Patric Ljung

e Ambient Occlusion for Isosurfaces
e Local Ambient Occlusion (DVR)
e Dynamic Ambient Occlusion (DVR)

Light interactions may be also approximated using ambient oc-
clusion techniques for semi-transparent volumes and dynamic illu-
mination scenarios.

11:15 - 12.00: Scattering
Speaker: Christof Rezk-Salama

e Monte-Carlo Integration

e Single versus Multiple Scattering

e Color Bleeding

e Translucency

e Monte-Carlo Scattering

o First-order Multiple Scattering

e Scattering with Deep Shadow Maps

Scattering effects account for photons which are reflected multi-
ple times before they reach the eye. For volumetric data, scatter-
ing effects are usually included to capture the visual appearance
of participating media. Such effects are important for modeling of
natural phenomena such as smoke and clouds in visual arts. For
scientific visualization, volume scattering may be used to convey
tissue properties in a more realistic way. Translucency is an impor-
tant visual property of soft tissue. This part of the tutorial covers
interactive implementations of both single and multiple scattering
effects in volumes. Compared to visual arts, where the optical prop-
erties inside the volume are mostly assumed homogeneous, in or-
der to implement scattering and translucency in scientific data, e. g.,
tomographic scans, slightly different approaches must be chosen to
optimally convey the structures. Several state-of-the-art approaches
to achieve multiple scattering effects including color bleeding and
translucency for interactive volume graphics are explained.
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Talk Outline

® Why use ray-casting instead of slicing?

@ Ray-casting of rectilinear (structured) grids
@ Basic approaches on GPUs
@ Basic acceleration methods
@ Object-order empty space skuppmg
@ Isosurface ray-casting
@ Endoscopic ray-casting

¢ Memory management
® LOD selection

vr v'is oo VIO

Why Ray-Casting on GPUs?

® Most GPU rendering is object-order
(rasterization) o~

® Image-order is more “CPU-like” (‘\
\\

@ Recent fragment shader advances |
@ Simpler to implement P \ 5
@ Very flexible (e.g., adaptive sampling) ( ' \_)
@ Correct perspective ‘ _
projection /o /0 ~—
@ Can be implemented /)
in single pass! _’—ﬁ“
@ Native 32-bit fy
compositing Ly,

(]
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Correct Perspective

@ Entering the volume
® Wide field of view

@ Fly-throughs

@ Virtual endoscopy

@ Integration into
perspective scenes,
e.g., games

MARKUS HADWIGER, VRVIS RESEARCH CENTER, VIENNA, AUSTRIA ':V"
v r vll s ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING

Recent GPU Approaches

® Rectilinear grids
@ [Kriger and Westermann, 2003]
@ [Rottger et al., 2003]
@ [Green, 2004] (NVIDIA SDK Example)
@ [Stegmaier et al., 2005]
@ [Scharsach et al., 2006]

@ Unstructured (tetrahedral) grids
@ [Weiler et al., 2002, 2003, 2004]
@ [Bernardon, 2004]

MARKUS HADWIGER, VRVIS RESEARCH CENTER, VIENNA, AUSTRIA .:Wm
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Single-Pass Ray-Casting

@ Enabled by conditional loops in fragment
shaders (Shader Model 3; e.g., Geforce 8800, ATI
X2800)

@ Substitute multiple passes and early-z testing by
single loop and early loop exit

@ No compositing buffer: full 32-bit precision!

@ NVIDIA example: compute ray
intersections with bounding box,
march along rays and composite

vV rvis

Basic Ray Setup / Termination

@ Two main approaches:
@ Procedural ray/box intersection (A __
[Rottger et al., 2003], [Green, 2004] / ~

@ Rasterize bounding box — T
[Kriger and Westermann, 2003]

@ Some possibilities
@ Ray start position and exit check
@ Ray start position and exit position
@ Ray start position and direction vector

vV r vis oo VisDB




Procedural Ray Setup/Term.

@ Everything handled in the fragment
shader

@ Procedural ray / bounding box
intersection S

@ Ray is given by camera position /.
and volume entry position
@ Exit criterion needed

® Pro: simple and self-contained
® Con: full load on the fragment shader

. o
v rivis ';;{,'5135

// Cg fragment shader code for single-pass ray casting
float4 main(VS_OUTPUT IN, float4 TexCoord0 : TEXCOORDO,
uniform sampler3D SamplerDataVelume,

F ra m e n t S h a d e r uniferm samplerlD SamplerTransferFunctien,
uniform fleat3 camera,

uniform float stepsize,

uniform float3 volExtentMin,

@ Rasterize front faces jrfom oS olBtendiex
Of VOIUme bounding box { floatd wvalue;

float scalar;
// Initialize accumulated color and opacity
floatd dst = £float4(0,0,0,0);

Q Texcoords are vo‘ume // Determine volume entry position

float3 position = TexCoordl.xyz;
pOSiiion in [o 1] // Compute ray direction
14 float3 direction = TexCoord0.xyz - camera;
direction = normalize(direction);

a SUbirCICi camera pOSiiion // Loop for ray traversal

for (int i = 0; i < 200; i++) // Some large number

// Data access to scalar value in 3D volume texture

ﬁ Repea‘l’edly CheCk for value = tex3D(SamplerDataVolume, position);

scalar = value.a;

exii of bounding box // Apply transfer function
float4 src = texiD(SamplerTransferFunction, scalar);
// Front-to-back compositing
dst = (1.0=dst.a) * src + dst;
// Advance ray position along ray direction
position = position + direction * stepsize;
// BRay termination: Test if outside volume ...
float3 templ = sign(pesition - volExtentMin);
float3 temp2 = sign(volExtentMax - position);
float inside = dot(templ, temp2);

// ... and exit loop
if (inside < 3.0)
break;

vV rovis }

return dst;




"Image-Based” Ray Setup/Term.

@ Rasterize bounding box front faces and back
faces
[Kriger and Westermann, 2003]
@ Ray start position: front faces T
® Direction vector: back—front faces

ov-®

@ Independent of projection
(orthogonal/perspective)

™
vVr v‘is‘ o VIisDBS

Standard Ray-Casting Opt. (1)

Early ray termination
@ Isosurfaces: stop when surface hit

@ Direct volume rendering:
stop when opacity >= threshold

@ Several possibilities -
@ Older GPUs: multi-pass rendering with
early-z test
@ Shader model 3: break out of ray-casting loop
@ Current GPUs: early loop exit not optimal but
good

e
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Standard Ray-Casting Opt. (2)
Empty space skipping

@ Skip transparent samples
@ Depends on transfer function
@ Start casting close to first hit

-

¢
-
= i

@ Several possibilities \i,}
@ Per-sample check of opacity (expensive)
@ Traverse hierarchy (e.g., octree) or regular

grid
@ These are image-order: what about object-
order?
v riovis 'E‘;:"'Us

Object-Order Empty Space Skip. (1)

® Modify initial rasterization step

rasterize bounding box

vV rivis




Object-Order Empty Space Skip. (2)

® Store min-max values of volume bricks
@ Cull bricks against isovalue or transfer function
@ Rasterize front and back faces of active bricks

] MARKUS HADWIGER, VRVIS RESEARCH CENTER, VIENNA, AUSTRIA Co \’
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Object-Order Empty Space Skip. (3)

® Rasterize front and back faces
of active min-max bricks
@ Start rays on brick front faces

® Terminate when
@ Full opacity reached, or
@ Back face reached

] MARKUS HADWIGER, VRVIS RESEARCH CENTER, VIENNA, AUSTRIA .:Wm
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Object-Order Empty Space Skip. (3)

® Rasterize front and back faces
of active min-max bricks
@ Start rays on brick front faces

® Terminate when
@ Full opacity reached, or
@ Back face reached

@ Not all empty space
is skipped

MARKUS HADWIGER, VRVIS RESEARCH CENTER, VIENNA, AUSTRIA Co \’
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Isosurface Ray-Casting

@ Isosurfaces/Level Sets
@ scanned data
@ distance fields
@ CSG operations
@ level sets: surface editing, simulation,
segmentation, ...

L
MARKUS HADWIGER, VRVIS RESEARCH CENTER, VIENNA, AUSTRIA
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Intersection Refinement (1)

@ Fixed number of bisection or binary search steps
@ Virtually no impact on performance

)
@ Refine already detected
intersection
@ Handle problems with small
features / at silhouettes with
adaptive sampling

MARKUS HADWIGER, VRVIS RESEARCH CENTER, VIENNA, AUSTRIA ':VI_.DB
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Intersection Refinement (2)

without refinement with refinement

sampling rate 1/5 voxel (no adaptive sampling)

MARKUS HADWIGER, VRVIS RESEARCH CENTER, VIENNA, AUSTRIA .:Wm
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Intersection Refinement (3)

Sampling distance 1.0, 24 fps Sampling distance 5.0, 66 fps
<
. MARKUS HADWIGER, VRVIS RESEARCH CENTER, VIENNA, AUSTRIA
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Deferred Isosurface Shading

¢ Shading is expensive
@ Gradient computation; conditional execution not free
® Ray-casting step computes only intersection image

@
. MARKUS HADWIGER, VRVIS RESEARCH CENTER, VIENNA, AUSTRIA ‘m
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Enhancements (1)

® Build on image-based ray setup
@ Allow viewpoint inside the volume
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Enhancements (2)

1. Starting position computation
= Ray start position image

2. Ray length computation
= Ray length image ~

3. Render polygonal geometry
= Modified ray length image

4. Raycasting
= Compositing buffer

5. Blending

= Final image

MARKUS HADWIGER, VRVIS RESEARCH CENTER, VIENNA, AUSTRIA .:Wm
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Moving Into The Volume (1)

@ Near clipping plane clips into front faces
/r, r
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@ Fill in holes with near clipping plane
@ Can use depth buffer [Scharsach et al., 2006]
vrivis 'E‘;:'*Ue

Moving Into The Volume (2)

1. Rasterize near clipping plane
@ Disable depth buffer, enable color buffer
@ Rasterize entire near clipping plane

2. Rasterize nearest back faces .z
@ Enable depth buffer, disable color buffer '
@ Rasterize nearest back faces of active bricks

3. Rasterize nearest front faces
@ Enable depth buffer, enable color buffer
@ Rasterize nearest front faces of active bricks\

@
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Virtual Endoscopy

@ Viewpoint inside the volume
with wide field of view
@ E.g.: virtual colonoscopy

@ Hybrid isosurface rendering /
direct volume rendering

@ E.g.: colon wall and
structures behind
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Virtual Colonoscopy

@ First find isosurface; then continue with DVR
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Virtual Colonoscopy

® First find isosurface; then continue with DVR
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Hybrid Ray-Casting (1)

@ Isosurface rendering
@ Find isosurface first
@ Semi-transparent shading
provides surface information

@ Additional unshaded DVR © ¢
@ Render volume behind the surface ~ *
with unshaded DVR
@ Isosurface is starting position
@ Start with ( 1.0-iso_opacity )

MARKUS HADWIGER, VRVIS RESEARCH CENTER, VIENNA, AUSTRIA .:Wm
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Hybrid Ray-Casting (2)

@ Hiding sampling artifacts (similar to interleaved
sampling, [Heidrich and Keller, 2001])

~
vV rvis Xé\?fﬁ&%?&%&%@gSTERgHSEQQRUCEgiE%TEEUVéiNSEAD\/j(;JLSJﬁlEARAYCAST|NG .E‘V.l‘m
Multiresolution VVolumes
@ Hierarchical blocking @ Flat blocking
@ Constant data size structure
@ Lower resolution @ Constant spatial size
blocks cover @ Lower resolution
increasing spatial size blocks have fewer
samples

. Level 1 . Level O . Level 1

e . Levez L Level3

oooooooo

| Level3
Level O
L
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Hierarchical vs Flat Blocking

Final composition Final composition

Hierarchical blocking Flat blocking
Bl Level 0 B Level 1 Level 2 Level 3
- %)
Vr vis oo VIi=sDES

TF Based Level-of-Detail

® Block resolution derived by TF content
@ Content of a block in the current TF domain
@ Empty: All voxels are transparent

@ Homogeneous: Non-transparent voxels,
similar color

® Varying: Varying transparency, varying color
@ Block significance based on visual error

@ Color difference from CIE L*u*v*, AE

@ Perceptually uniform

@ Optimize LOD to minimize visual error for
a given memory limit

. @
v rivis ';2{15'35




Data Reduction:
64:1
1.6 % (2.25 MB)

144 MB, 512x512x384

v rivis %Vﬂ%@@

@ Single sided replication
@ Weiler et al. '00, Guthe et al. 02

Four-block neighborhood
Replicate samples from neighbors

Interpolate missing samples

[ o o o Each block is self-contained,
with varied overhead
[Kraus & Ertl '02]

® ° Double sided replication for
improved continuity support
[Weiler et al. ’00]

@ I
vV rovis oo VDB
OSO




Multiresolution Interblock Interpolation

1x1 2x2 8x8 8x8

1x1 1x1 4x4 8x8

vrivis ';;':'505

Interblock interpolation

@ A normalized sum, ¢, of bounded block
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Data reduction 80:1 (1.25% of original data size)

Without Interblock Interpolation With Interblock Interpolation
Vr vis GSVII%D@
0810

Data reduction 40:1 (2% of original data size)




Adaptive Volume Sampling

Bl Level 0 B Level 1 [ Level 2 Level 3
@
. MARKUS HADWIGER, VRVIS RESEARCH CENTER, VIENNA, AUSTRIA \’ m
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Adaptive density
ATI: 7.1 FPS

NV: 3.0 FPS
Speed-up: 2.6-2.8

Full density
ATI: 2.6 FPS
NV: 1.2 FPS

@
. MARKUS HADWIGER, VRVIS RESEARCH CENTER, VIENNA, AUSTRIA
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Out-of-Core Data Management

® Disk performance

@ Data transfer rates, about 60 MB/s

@ Access density performance is still poor!!!

@ Random access of many small blocks is bad
@ Group of blocks - GOBs

® Large pages: 24 - 192 kb

@ Spatial coherence

@ Minimizes disk read requests
@ Uncompressed storage

@ Precomputed gradients

o
vrivis oo VIEDS
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Hierarchical vs Flat Blocking

Hierarchical blocking Flat blocking

/[ [L /L L LS

Final composition Final composition
Data reduction 2.2:1 Data reduction 3.8:1
B Level 0 M Level 1 Level 2 Level 3
v rivis| 'E‘;:“"Us

Multiresolution volume sampling : Intrablock sampling

Intrablock sampling

@ Algorithm outline
@ Determine closest block (nearest block sampling)
@ Lookup block size and location in index texture
@ Clamp sampling position to the block’s sample

boundary
® Lookup interpolated sample in the packed

texture
00000006 Boundary aligned Centered
0000000 icat
0000000 Sample replication g\verage vall!ue
::::::: Nearest neighbor <11
0000000 | downsampling Wavelets

o
Vr vis oo VieD8
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Nearest block sampling

Multiresolution volume sampling : Intrablock sampling

@ Block sample boundary

@ An inset, 5, from block boundary (mean-value
downsampling)
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No block interpolation

Multiresolution volume sampling : Interblock interpolation

®
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Multiresolution volume sampling : Interblock interpolation

Minimum distance edge weight

—12.0

8.0

5.0

A 2.0

0.0

@
vrivis ';‘;:‘559
Multiresolution volume sampling : Interblock interpolation
Boundary split edge weight
S

@
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Multiresolution volume sampling : Interblock interpolation

Maximum distance edge weight

i)

o
v rivis oo VIEDS

Conclusions

¢ GPU ray-casting is an attractive alternative

@ Very flexible and easy to implement

® Fragment shader conditionals are very powerful;
performance pitfalls very likely to go away

@ Mixing image-order and object-order well suited
to GPUs (vertex and fragment processing!)

@ Deferred shading allows complex filtering and
shading at high frame rates

VI vis oo VisDB




Thank You!
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Light Interactions
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Specular Reflections
Through Ray-Tracing
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Higher Order Rays

@ Entry parameter texture can be modified for
tracing higher order rays

e -
& eyl /MO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY e ViaDE
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Higher Order Rays

existing
entry exit points

2 entry exit point generation

blending
for higher order rays 4

with fransfer function

specularity mapping function

it .

grd
final rendering
ath ath
LT -
mwm TIMO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY ..vm
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Specular Reflections

® Degree of specularity can be controlled with a
transfer function 4 e

Cens

um TIMO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY
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Soft vs. Hard Shadows
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Why adding Shadows?

@ Adding interactive shadows to volume graphics
supports spatial comprehension

@ Focus on shadow algorithms
integrationable into GPU-based | SEE"
raycasters ' .

Wl B hd
o e VISOS
—_— o ‘ L

Object- vs. Image-Based

@ Object-based
@ object-based shadow algorithms like Crow's shadow
volumes
@ require polygonal representation of rendered objects

® Image-based
@ representation of shadows in an image
@ shadow mapping by Williams (1978)
@ oppacity shadow maps
@ deep shadow maps (allow transparent objects)

11.08.2008



Shadow Rays

@ similar to shadow rays in raytracing
@ opaque occluders (similar to first hit raycasting)
@ alpha raycasting
@ 3D-textures can be used for caching results

[
. o VISOS
—— @ ‘ L ]

3D Texture Caching

@ Shadows can be cached in 3D Textures to gain

performance

@® 3D-texture for shadow lookup

@ preprocessing shadow feelers

@ needs to be recomputed on light source or transfer

function change
d > 4

11.08.2008



Shadow Mapping

@ Shadow map saves depth values of first hit

points as seen from the light source
@ depth comparison during rendering gives binary
decision for shadowing
@ shadow threshold marks intensity limit
@ supports opaque

occluders only

Shadow Mapping

@ Filtering of shadow map reduces artifacts

filler shadow values
with Gauss filter

11.08.2008
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Semi-Transparent Shadows

Timo Ropinski Wiszslizticn
Visualization and Computer 'L'
Graphics Research Group, =" wpasmm:
University of Minster, GErmany e Mo

Deep Shadow Maps

@® Support semi-tranparent occluders by
incorporating multiple layers

@ Each layer is a pair of depth and transparency

@ For each pixel control points of pleceW|se linear
functions are saved (e e | bl

map layers -

light sourca

first-hit-position
= first sample point

11.08.2008



Deep Shadow Maps

@ Shadow map constrution
@ At the first hit point, the first key value is saved
@ Based on a error function, further key values are
saved

transparency function

next key value is
outside error region

arror tolerance

Deep Shadow Maps

@ Original function differs by the choosen error value

i this part of the transparency ——=
- function is not approximated

| o

3 N\

B o \'\\
T 8 control points
of DSM function

| -2 1 L1 1 L1 1 L1 1 1 1 1 L1 1 L1 1 1 1 1 11 1 L1 1 L1 1

- 3 —
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Approximation Artifacts

error value of 0.01

error value of 0.00005

e
& Eompriar Brpkin

DSM Performance

| Shadow Mode

| RC | without RC |

ShadowRay (B)
ShadowRay (A)
ShadowRay (B + PP)
ShadowMap (B)
DeepShadowMap (A)
DeepShadowMap (A + PP)

10.03
10.0
5.59

29.08

15.76

13.06

10.03
10.0
46.0
45.5
34.5
45.2

@ Intel Core2 6600 (2.4GHz), 2GB RAM and an

nVidia GeForce 8800GTX

i
=

———
A 4
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deep shadow mape

shadow rays shadow mappin

R e LT
@ €ampmisriirphize TIMO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY K me
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Simulation of Color Bleeding

Timo Ropinski Vwizides
Visualization and Computer E@Wﬁﬁ;ﬁﬂm
Graphics Research Group, " m———
University of MUnSster, GEMMaNy  m—— i
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Indirect Illumination

@ Langer, Bulthoff: Depth Discrimination from
Shading under Diffuse Lighting [Perception 00]:

»-.. depth discrimination under diffuse lighting is superior
to that predicted by a classical sunny day model, ...“

® Gribble, Parker: Enhancing Interactive Particle
Visualization with Advanced Shading Models
[APGVO06] T S, (50

-
L g i forMNSTER Bera T SR T ee VIS DS
— —— L 'y
— &

-] (=]
Motivation

@ Standard volume rendering integral
@ Captures emission and absorption only

(s, @) = T(0.1) -I(x0, ) fﬂ T(5.0)-E(xy)ds

Q <—roooooooooooooooooooooooooooo-|— @
X
Xr A

@& No diffuse interreflection (as well as
scattering) can be captured

—ae -
[Trr ST o Vi=OS
s ™ ::‘.... - ; L]

11.08.2008
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Motivation

@ Transfer functions influence displayed
structures and therefore light interactions
= Precomputation with surface-based
techniques not possible

oo
¥
i

Related Work

® Kniss et al.: Global Volume lllumination
[TVCGO3] 7 7

11.08.2008
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Workflow

1
1 2 | (3
. N .
Capture _nght Compress L_|ght|ng i | Volume Rendering
Interactions | Information 1
7 N & : A
<— Preprocessing : Interactive —>
e tita o VisDES
_-_=_____ .‘.

Workflow

1 2 o
Capture Light Compress Lighting
Interactions Information
4

3

Volume Rendering

{ /

<— Preprocessing

® Light interactions

@ ... are captured for the Vvicinity only
@ ... are expressed by using a local histogram

Interactive —>

[T
o R s
e —

e

11.08.2008

13



Workflow

3

. . Volume Rendering
Interactions Information

>

1

1 (2 '
Capture Light Compress Lighting :

1

1

1

1

1

< Preprocessing Interactive —>

® One local histogram for each voxel results in
unmanageable data sizes

@ Light information is clustered to handle it interactively
during rendering

Interactive —>

p— v VISOES
[ — Tg®
= H
1
1 2 113
. I h
Capture .nght Compress Lllghtlng 11 Volume Rendering
Interactions Information "
A # 1
1
1
1

<— Preprocessing

® Rendering parameters are changed frequently
@ Representative local histograms can be modulated

interactively
® Volume rendering requires only two additional texture
fetches

11.08.2008
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Workflow
alaals
1
1 2 | (3
Capture Light Compress Lighting : Volume Renderin
Interactions Information 1 u nng
& & : l\. 7
}
1
T Symos
=== 4
Histogram Generation
1.2 E; 3

@® Analyze vicinity of each voxel
® Compute a normalized local histogram wn = 2P

M LH() = (LHO). . LH, 1 (2)

LH = Y fu (";‘—“’C') (PR

XeSy (V)

T

27 _
NS

i
e s g o Vi=0S
—_——— L ; L
=

11.08.2008
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Histogram Generation
st
. Svisos
=== e
Histogram Clustering
SEFNEN

@® Given: n local histograms (vectors)
@ Desired: m << n representatives (code book)

@® We exploit a vector quantization (vq) for the
clustering

16



Histogram Compression

@ Goal: generate a packed histogram
with j <<'i bins (i = initial number of bins)

@ Iterative splitting is used to reduce histogram
dimensionality

MLlE[L

® Example:i=12,j=9

()
o
c
[J]
L
=
>
Q
(8]
O
N
Intensity
L o) N 5E MON , L ]
& Empmisr@iplizm  1VO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY e VIR0B
3 ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING ™y
—— == ;

Detailed Workflow

Cilzia

histogram 2| 3 interactive

histogram
clustering rendering

generation

1

volume data set

[T -
@ RumESer Gaghtsy  T1MO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY Wis
H] ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING '.' @ oS
= H

e

11.08.2008
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Interactive Rendering
2 i 3

@ Two additional texture fetches required .
1. Obtain the cluster ID of the current sample x
2. Fetch the current environment color Epy (X)

intensity 2b

@® E.,(x)is computed by considering the current
transfer function

[ e e
e o VISOB

e
- S
— T

Isosurface Shading

@ Combination with the transfer function -~ *2.3.

Ot 7T () = = ¥ ) - LH, ()
AT < jor

0 intensity 2b

@ Apply Phong shading by using

I, (x) = 1.0—= Opp(x,7T(f(X))) - Coljsp

11.08.2008

18



11.08.2008

Isosurface Shading
@ Occlusion term can be weighted @:[—T—i

Ia (x) =1.0- Oenv (x; V’F(f(x))) ) COlI'SO'_g

n.=512
S, o
& Empmisr@spliz VO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY e VIEDES
3 ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING g ®
— $

Isosurface Shading

Phong our technique

ey =
n.=2048 1 ¢

T kel
@ Gumgasr tiagiitg /MO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY s
H] ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING T
S — 4
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Demonstration Video 1
1
a2 :[ 3
n=2048
gm TIMO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY .:Wm
3 ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING ™y
— e &

Direct Volume Rendering

@ Challenges Cal2 43
@ More than one hue is present

@ Areas with participating media may occur

® Combination with the transfer function

Eem (X, 7T(f(x)))

s ) Ta()) () LH;(x)
r
3 TE 0<j<2b
0 intensity 2b
E J
gkt TIMO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY
_.E:‘iw ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING .l..;v.bm

20



Direct Volume Rendering

Rendering is done in YUV color space
Color: Interpolate between Ecy,, and Trgb (x)
= Oy is used as the interpolation factor

(123

= Luminance: minimum of 1.0 — Oy and 7 T(f(x))- L

Specular highlights can be added

L oLy
& ST TIMO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY ':Wm
3 ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING ™y
T s ;
===
[}
Rendering - 3D Glow
1
Cilzlial

1

@ VVolumetric glow can be realized by

exploiting an aldditional texture fetch
Eon(5,77(F(9)) = 7

3 0< j2b
@ Exploiting a glow mapping function

P Enbin e

o Jtzraty | [ =

Wi

e o

Y, Talf(x)) - T (F(x) -LH; () A(F(x))

Wkl
@ RumESer Gaghtsy  T1MO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY
z ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING

—_——
A e
S

11.08.2008
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Rendering Wrapup

@ |Indirect illumination can be captured
independently of the
currently set transfer
function

(123

L o)
gmm TIMO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY
ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING

';.

Demonstration Video 11

Wkl
@ gumgater Gapii  11VO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY
ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING
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Application Example - DVR

x4 L =

£ TIRERR OFINEKISLHIVERSITY OF MUNSTER, & e vbl E
3 ADVANCED ILLUTI'NATION TECHNIQUES FOR SPFU-BASED W0 LINME RENEA STING Y
—t—— &
—

Gzl

Phong our technique

n.=2048
ﬁmmwm TIMO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY .:W.m
= ARVANCED ILLUMIMATION TECHNIQUES FOR GPU-BASED WO LUME EtitngTING @ &
Sl ;
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Demonstration Video 111

n.=2048
Emm TIMO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY .:m
3 ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING ™y
—_———— ;

Varying Distance Metrics

Cilziisl

n.=256

n.=512
n.=1024
I-max Ll
Ml -
8 R G TIMO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY se VisDES
= ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING Co®
== 4
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Surface Filtering

(123

@ Too few clusters lead to quantization
artifacts
@ A surface filter is used to reduce artifacts I

L o)
& Gompmiar Sl TIMO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY e VIaDE
= ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING ™y
—_— e ;

Performance

Cil2iis

data set size sphere size  hist. gen. ining 1o training | local histo~ | codebook
(voxel®) (radius) (min.) (codewords/packed dim)  (min.) aram size size
Comell box 128 = 128 = 128 32 236,03 256/16 210 2045 MB | 0.01 MB
51216 T.08
1024716 21.50
Visible Human head | 192 % 192 % 110 12 16.63 3045764 53855 | J96DMB | 0.5 MB |
16 871 484,31
24 132,40 S10.01
256 % 256 % 147 16 101,60 2048/64 T04.21 9408 MB 0.5MB
5125122294 32 302538 — 75264 MB 0.5 MB
hand 244 x 124 = 257 20 514.51" 2048/64 633,80 7393 MB 0.5 MB
feet” 128 = 64 x 128 12 15.98 2048/64 320.81 1024 MB 0.5 MB
data sets computed using pre-processing with performance improved implementation
cloud 256 % 128 < 128 24 6.03 2048716 503 4096 MB 0.5 MB
Visible Human head | 256 2 256 < 147 16 ‘ 10.26 2048764 ‘ 61,60 G408 MB 0.5 MB

* not caleulated.  caleulated on & machine with 4« Xeon 2.8,

Wkl -
@ gumgater Gapii  11VO ROPINSKI, UNIVERSITY OF MUNSTER, GERMANY oo VisDIE
H] ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING So®
T ‘
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Implementation

® Preprocessing 1213
e Reallzeq in C++ ———
@ Parallelization with OpenMP pernvir-

@ 8 processor cluster system
(AMD Opteron 852, 2.6 GHz)

C.')T
-~

@ Rendering pen
@ OpenGL in combination with GLSL
@ GPU-based ray-casting [Roettger et al. 2003]
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Local Ambient Occlusion in DVR

Patric Ljung

Siemens Corporate Research SI E M E N S
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Motivation

@ Improve medical diagnosis

@ Perception of shapes, densities

and depth

@ Diffuse (surface)
illumination
not suitable for
@ Noisy data sets
@ Volumetric data

@ Hernell et al. 2007,
Liung et al. 2004, 2006

SIEMENS

Motivation

Global lllumination
@ Higher realism

® Computationally
demanding

® Occludes too much?

SIEMENS

oo VisOS




Concept of
Local Ambient Occlusion
® Compute light

contribution for g |

each voxel —

@ Local spheres /

\

SIEMENS oo VIED8

Concept of
Local Ambient Occlusion

Diffuse illuminat@iumetric Ambient Occlusion
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Advantages

@ Efficient local occlusion method for DVR
@ Supports Multiresolution Data

@ Interactive TF-based emission
@ Highlight user-specified data ranges

SIEMENS o ViSDS

LAO — single direction

SIEMENS




LAO — multiple directions

SIEMENS -E?:we

Local Ambient Occlusion Equations

@ Integration of incoming light from one direction

I (x) = fa ol exp(— /a S’c(u)du)ds

@ Ra —a

M m—
® =) — H](l — ;)N K number of directions

m=0 =0

1 K
I(x) = Iyias + K Z wili (x)
k
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Light Contribution

m— 1

. Mt
=Y g [ 101 =)

Light is contributed only at the boundary  Light is contributed at each sample point

SIEMENS v{‘;:iws

LAO with Emission

x =OOO-OOO00»

@ Affect intensity and color of x
@ Emissive component in the TF
@ Add C; (color light emission) to the integral

Ro 1+ cr(s) s
I (x) = / ® —'tgg—(—s)'exp(— / T(u)du)ds
Ja RQ —da Ja
SIEMENS o Vi508




Ray directions

@ Dynamically configured

@ Subdividing a tetrahedron, isocahedron
or octahedron

.t.
<
b
(]

SIEMENS

Multiresolution volume

» Superfluous sampling in areas __AR___.IZ
of low occlusion contribution EREEN e |====
EEE: N

« Flat Multiresolution Blocking EERI B e ia===
(Ljung et al. ‘04) HEN N R A | | |
| | | T— LT

* Preprocessing stage =IIIIII'IIIIEZ‘1IHII
: (RN <. THE

« 163 voxels are organized

into a multiresolution
representation

* TF based LOD selection iy

» Optimizing the resulting
image quality

SIEMENS




Multiresolution volume

Packed texture

High resolution (162) Middle resolution (82) Low resolution

4)
PATRIC LJUNG, SIEMENS CORPORATE RESEARCH, PRINCETON, USA \’
SI E M EN S ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING ';‘.i‘m

Multiresolution LAO

® Compute LAO directly in packed
coordinates

® Reduce the number of voxels to compute
@ Empty space skipping (Volume block < 43)

@ Increase the sampling distance for low
resolution blocks

@
SI E M EN s PATRIC LJUNG, SIEMENS CORPORATE RESEARCH, PRINCETON, USA @ V‘-‘m
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Local Ambient Occlusion Pipeline

1. LAO computation > LAO map

2. Ray casting with LAO look up

PATRIC LJUNG, SIEMENS CORPORATE RESEARCH, PRINCETON, USA
SIEMEN o VisD8

ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING

LAO Computation

Frame Buffer Object

Local Ambient
Occlusion map

Packed volume
/ R 2 Y

y A
\'1‘Q -

- |
z
/:'BO planes

X
- >
Screen coordinates

L) A"
‘ﬂ b !
I .
'1. ' >~
I ’
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Per-fragment Pipeline

packed coordinates

1
estimate ray offset I
I

|
|
|
FBO i l m———m-
|
! |, stored |
. | lintensity 1
1 | Y T
1 1 |
A 4 1 | +
! ) ) |
Index P2V : index V>P light I voxel
: computation : intensity
|
|
1 1
v : :
volume coordinates 1 scalar data |
1 1
| 1
| I
| 1
1 1
1 1
| [
PATRICI = S 4
SI EM EN AD\/AN&'EL)'I'LL'U!\?!‘I‘!\FITON‘I ECANMUESTOR GPU-BASEUVOLOME RAYCAS ITRGT = = ';‘v.lics
"o
TF.> Color | | TFz > Emission RGB ~ Emissive Color
A — Ambient Occlusion
()
E ORATE RESEARCH, PRINCETON, USA
SI E M E N ig;r/ifCLélle’I\‘L(iUSAAlIEN’\,AAEF’I\JC?NCTOERCPHNIQUES FOR GPU-BASED VOLUME RAYCASTING oe v"m
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Results

Diffuse lllumination

NVIDIA GF8800 Ultra

768 MB of graphics
texture memory

51 ms/frame to update
one ray in the LAO map

27 FPS

SI E M EN PATRIC LJUNG, SIEMENS CORPORATE RESEARCH, PRINCETON, USA ':Vi‘m
ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING

Results

— com ul’atlons

issive light i r.ay-eastlng \ ) Em ssive light AFLAQ
|

"\ _

—

2 G2l GRAD C___

PATRIC LJUNG, SIEMENS CORPORATE RESEARCH, PRINCETON, USA @
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Comparison w/ Diffuse
Shadinc

Diffuse illumination

<
. . , USA =
SI E M EN PATRIC LJUNG, SIEMENS CORPORATE RESEARCH, PRINCETON, U @ Vi‘
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Multiresolution Speed-up

140 T T T T T T
* VVolume of 5123 voxels
1204
» Super-linear
. 100+
performance increase
80r
» Less voxels to ©
compute 6
* Increased step %0
length for low |
resolution blocks
% ® ® w_w 2w w 7w @ w0
Data Reduetien
SIEMENS {22010 SIS comorae seseascn paneeron vsn e 02 VIBOB




Results - Multiresolution

Data reduction: 85:1 15.7:1 314:1

Error
images
Mean error: 0.6 1.2 1.6
@
SIEMENS o

Varying Number of LAO Rays

Number of rays: 128

Error
images

0 "
Mean error: 0.3

SIEMENS




Application to Virtual Autopsy Case

=F :
<
PATRIC LJUNG, SIEMENS CORPORATE RESEARCH, PRINCETON, USA
SIEMEN ‘ o VisD8
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Global Light Propagation

Patric Ljung

Siemens Corporate Research SI E M E N S
A

Princeton, NJ, US




Motivation

e Improved medical diagnosis

» Perception of shapes, densities and depth

e Correct global integration

« Computationally demanding Pl
- Need for real-time | ) V4
performance of global ////
lighting in DVR
IS VY
LUK
AKIiViEAEE.
SIEMENS os ;«:iscs

Motivation 2

® Multiresolution data sets
@ Exploit Data Reduction to speed-up Global
Lighting.
@ Existing Techniques has limited
applicability for Raycasting
¢ Adaptive ray-space sampling
@ Multiresolution rendering

SIEMENS -E;o;ma




Main Advantages

@ An efficient approximation of volumetric
light propagation from a point light
source

@ A fast approach for refinements of locally
in-scattered light contribution in high
resolution

@ Support for interactive and arbitrary
positioning of the light source

SIEMENS -E;ﬁms

Theory: DVR Integral

The direct volume rendering integral

D
](D) — IO 'e—f(f) T(r)dt 4 / g(S) e ISD I'(T)(lfds
J0O
where

g(s) = c(s) - als)
for an unshaded rendering. C(S) is the color and (5) is the
opacity at

each sample point, S.

g o

where |(S) is a combination of direct and in-scattered
intensities.

SIEMENS o Vis0B




Pipeline: Algorithm Outline

Change in
Light Source / TF

Intermediate results

y

Local Piecewise Integration

y

Global Shadow Volume

y

Global Light Contribution |
1
annn . 1
) + Scattering !
1
1
1
1
1
1
i
1
H v 1
- 1
errrrsssasasasnes .| Volume ray castmg | . » Ieye i
1
! screen i
1
@
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Piecewise Integration

L M
T, (x) = ¢ o= 1~ [0 -am)
n=0

poy

Pl
/- olny)

Ol (%) é} e f

@
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Piecewise Integration

k

OCg(SO) = ] —H(l - qu(Si))

alp(so)

SI E M EN S PATRIC LJUNG, SIEMENS CORPORATE RESEARCH, PRINCETON, USA
ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING

Speed-up of global integration

Opacity is computed for
each local segment
originating at red points

Global integration using
the pre-computed
piecewise integration
can be computed for
fewer points

Leading to a Shadow
Volume Representation
(SVR)

Note that the integration
for each point still is at
high resolution

SI E M EN S PATRIC LJUNG, SIEMENS CORPORATE RESEARCH, PRINCETON, USA
ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING
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Improving Accuracy of Direct Light

ooooooooooooooooooo

/ | AN 0
@ @
B \".Jg(sl)
A T
|d (S)/
Qyp(sg
@
PATRIC LIUNG, SIEMENS CORPORATE RESEARCH, PRINCETON, USA
SI E M E N S ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING oo VisD8

In-scattering

Ro ,
L(s9) = g(s)e Jsy 7)1t g,

Sof

/
© Emittance integral Ly(s0) = 1o~ (1 —otg(s1)) - (

@ Similar to Local Ambient
Occlusion (LAO) as described
earlier

@
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In-scattering

Ii(s0) = / o(@) [ 1) e ot

@® Discretized, composmng scheme

m—1

Iy = Z Q; Z Ly(sm) l—I —osi))

Jj=0 m=0 =0

@ Progressive refinement, 1 direction per pass

1 I
Iplended = Aina + (1 — I) Ltored

0 4rd

SIEMENS

.:.
<
b
(]

Empty Space Handling

AR

P
-
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Rendering Pass

n k—1

loye = Z 8k l(l . OC(SP))
k=0  p=0

S :{bias + (1 —=Tpigs) - Ls(sg ) -c(sg ) - a(sg)

A

e

[fr'na.-'

@ |, allows for setting the minimum light
for a volume sample

.!.
<
o
]
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Compare w/ Diffuse Surface

Gradient Novel
based global +
local ambient
lighting lighting
@
SIEMENS oty

gl

N
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Comparison: Full integration

grat'gn, 0.54 s
SVR @ 5123 R " '

PATRIC LJUNG, SIEMENS CORPORATE RESEARCH, PRINCETON, USA
SIEMENS o VisD8
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Performance Timing

Piecewise segmenl A
Light Source / TF length (voxels) | 32° | 64° | 128° | 256°
Change 4 261 | 267 | 439 | 1428
I 8 284 | 297 | 373 552
A v 16 331 | 339 | 380 | o641
Local Piecewise Integration 32 436 | 439 | 463 862
milliseconds
Global Shadow Volume Data reduction A B C
323 | 2567

B -2 8.9:1 284 | 552 | 233 68

Global Light Contribution 14.8:1 178 145 il 68

+ Scattering 22 l l 121 403 96 48

35.2:1 81 365 62 ) 46

milliseconds
Volume ray casting Original volume: 5123 voxels
Datareduction: 8.9:1

Segment Length: 16
Viewport: 1024x1024

@
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Shadow Volume Sensitivity

Original volume: 5123 voxels, Datareduction: 8.9:1, Segment Length: 16 voxels

323 643 1283 2563
SIEMENS -E‘;;we
Summary

@ Efficient computations, adapting to data
reduction
@ Interactive frame rates

@ Volumetric Global Lighting and Ambient
Occlusion

@ Improved perception of local features, depth, and
3D structures

@ Can handle color-bleeding and emissive tissues

@ Gradient Free Shading
@ Good for noisy data sets

SIEMENS -:;«:ms
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Scattering Effects

Christof Rezk Salama '

Computer Graphics Group (-§

Institute for Vision and Graphics \ N
University of Siegen, Germany CcG -)

Advanced Illumination

cheetah skull

Data sets available at the

big brown bat

UTCT data archive, DIGIMORPH
pterosaur skull http://utct.tacc.utexas.edu

«
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Translucency

-
-
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= —
——
S o

@3
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Light Transport

Wave-Particle Duality

® Photons

® Quantum of light (the smaillest possible packet of light at a given
wavelength)
@ Photoelectric effect (van Lenard, 1902)

® Wave Theory (Maxwell)

@ Electro-magnetic wave characteristics of light
@ Effects such as interference and diffraction

® Quantum Mechanics (Einstein)

@ Universal theory of lighttransport
@ probabilisticcharacteristics of the motions of atoms and photons
(quantum optics)

' ' : : ®
. D goK IEs e _ o Ve 08
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Light Transport

Wave-Particle Duality

® Photons

@® Quantum of light (the smallest possible packet of light at a given
wavelength)
@ Photoelectric effect (van Lenard,1902)

@
@

®
®

I N SISO N i g VIR
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Scattaring Efects
Single and Multiple Scattering

Christof Rezk Salama '

Computer Graphics Group (- §

Institute for Vision and Graphics « )
University of Siegen, Germany CcG -)




Scattering Effects

When a photon hits a surface, it changes
both direction and energy

® Single Scattering: Q—
@ Light is scattered once before
it reaches the eye

@ Local illumination model

® Multiple Scattering
® Soft shadows v
@ Translucency

@ Color bleeding

cG

Single Scattering

Phong illumination with point light sources

HRISTOF REZK-SALAMA COMPUTER GRAPHICS GROUP. UNIVERSITY OF SIEGEN. GERMANY @
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Single Scattering

Phong illumination with point light sources

A

pecular
j Ambient

=X

IPhong

Single Scattering

Environment Light

-[Lambert

Irradiance Map

HI SROUP _I_I' uI'IE:-_:‘;u:I'l—E “;:_l GERMANY .: VI‘D
{ F SEI IME RAY CASTING .‘.




Single Scattering

Environment Light

-[La,mbert

Irradiance Map

IReflect

Environment Map

LOUP UNNERSITY OF SEGEN GERVANY g Vi OOED

L UME RAYCASTIN

JOLUME RAYCASTING o‘o

Single Scattering

Environment Light

-[La,mbert

Irradiance Map

IReflect

Environment Map
INIVERSITY OF EN, GERMAN = =
ERSITY OF SIEC oo VisD8




Single Scattering

Environment Light

-[La,mbert

Irradiance Map

-[Sp ecular
Reflection Map

; A R I e S, DR e S e i e = i =]
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Single Scattering

Environment Light

-[La,mbert

Irradiance Map

ISp ecular
Reflection Map

CHRISTOF REZK-SALAMA COMPUTER GRAPHICS GROUP, UNIVERSITY OF SIEGEN, GERMANY
A e s T OF SiEe! o Vis 08
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Single Scattering

Environment Light

-[La,mbert

Irradiance Map

-[Sp ecular
Reflection Map

. - — 3 T ARSI ®
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Math Notation

® Surface lllumination

® Volume lllumination

L(x,wo) = [olp(x, w,

cG 2
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Scattaring Efects
Monte-Carlo Methods

Christof Rezk Salama '

Computer Graphics Group (- §

Institute for Vision and Graphics « N
University of Siegen, Germany CcG -)'

Math Notation A

Mathematical Model
L(x,w,) = / P(X, wo — w;) L(x,w;) dw; (]
Q

integrates over the entire sphere/hemisphere

® |ntegral must be solved for every
intersection point

® Fredholm Equation (cannot be
solved analytically)

HRISTOF REZK-SALAMA COMPUTER GRAPHICS GROUP. UNIVERSITY OF SIEGEN. GERMANY @ =
(’6§ ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING .".VI‘D
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Numerical Integration

Equidistant Sampling

Approximation integral
by a Riemann sum

' : al b—a
——— [ f@yde ~ Y ()T

1=0

Stochastic Sampling
Uniformly distributed samples

Approximation by sum

Stochastic Sampling

Cons:
@ Slower convergence
than Riemann sum

Pros:

@ Better Scalability for multidimensional functions:
increase number of samples in arbitrary steps

G—§ ADVANGED ILL UMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING .:Vlsl:la
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Stochastic Sampling

L OmoO

Cons:
@ Slower convergence
than Riemann sum

Pros: |
@ Better Scalability for multidimensional functions:
increase number of samples in arbitrary steps

cG 2 3

Stochastic Sampling

O O O

Cons:
@ Slower convergence
than Riemann sum

Pros: | |

@ Better Scalability for multidimensional functions:
increase number of samples in arbitrary steps

@ Noiseinstead of Aliasing

cG 2




Stochastic Sampling

Cons:
@ Slower convergence
than Riemann sum

Pros:
@ Better Scalability for multidimensional functions:

increase number of samples in arbitrary steps

@ Noiseinstead of Aliasing

@ /ndependentof sampling grid: M“‘““‘“M”
Clever placement of

samples will improve the
convergencel

Blind Monte-Carlo Sampling

® Example: Filtering an Environment Map

Given an Environment Map Calculate an Irradiance Map
(i.e. photograph: fisheye or For each pixel of the irradiance map:
mirror ball) Determine n random directions
on the hemisphere
Sample the Environment Map and

Average the results
(incl. cos-term)

LDR Sample




Rendering

® Calculate the radiance from a point
@ depending on the incoming light on the sphere/hemisphere

Deterministic Blind Monte-Carlo

Uniform sampling of the Randomized sampling of the

sphere/hemisphere. sphere/hemisphere.

High computational load Visually better images for

good approximation fewer samples, slow convergence

~HRISTOE REZK-SA| A COMPIITER GRAPHICS GROLIP LINIVERSITY OF SIEGE ER @ —

Yot s o Dl e > VI508
cG 2 °3°

Rendering

® Calculate the radiance from a point
@ depending on the incoming light on the sphere/hemisphere
@ depending on the phase function/BRDF

Deterministic Blind Monte-Carlo Importance Sampling

Uniform sampling of the Randomized sampling of the Place samples where

sphere/hemisphere. sphere/hemisphere. contributionis high

High computational load Visually better images for Faster!

good approximation fewer samples, slow convergence

\.‘E > ~LHRISTOE REZK_-SAl AMA COMPLITER CRAPUICS GROLIP LINIVERSITY OE SIEGEN GERMANY @ —
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Importance Sampling

A f(CL') Stochastic Sampling
Non-uniformly distributed
samples

Approximation by sum

b N e
/ f(x)dx %Zf( ";
a i=0

— p(z;

Clever placement of samples

Many samples where function is high

Probability

Few samples where function is low Distribution

Function (PDF)

Sampling a Specular Lobe

® Simple Approach
Specular term  f(yp) = cos®(¢) = (r-v)?

Non-optimal, but easy to implement
Idea: uniform distribution of directions restricted to a cone

cG 2




Sampling a Specular Lobe

® Simple Approach

Specular term  f(¢) = cos®(¢) = (r-v)*
Non-optimal, but easy to implement
Idea: uniform distribution of directions restricted to a cone

Precompute random unit vectors
with uniform PDF

Randomly pick one vector p

cG

Sampling a Specular Lobe

® Simple Approach
Specular term  f(yp) = cos®(¢) = (r-v)?

Non-optimal, but easy to implement
Idea: uniform distribution of directions restricted to a cone

Precompute random unit vectors
with uniform PDF

Randomly pick one vector p
Negate vector, if (r - p) < 0
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Sampling a Specular Lobe

® Simple Approach

Specular term  f(¢) = cos®(¢) = (r-v)*
Non-optimal, but easy to implement
Idea: uniform distribution of directions restricted to a cone

Precompute random unit vectors
with uniform PDF

Randomly pick one vector p
Negate vector, if (r-p) < 0
Blend with vector r and normalize

s=ar+(1—-a)p

cG

Sampling a Specular Lobe

® Simple Approach
Specular term  f(yp) = cos®(¢) = (r-v)?

Non-optimal, but easy to implement
Idea: uniform distribution of directions restricted to a cone

Precompute random unit vectors
with uniform PDF

Randomly pick one vector p

Negate vector, if (r - p) < 0

Blend with vector I and normalize
s=ar+ (1 —a)p

Blend weight a controls the size

of the specular highlight and can
be calculated from shininess s

G 2




Stochastic Sampling

/ ' f(a)de Z .

® What is the ideal PDF for sampling a given function f(x)?
® Variance is minimal, if

p(z) =X f(x)
® )\ must be chosen to normalize the distribution
® Problem:

b
/ plz)de =1 = p(x)=

f(z)
fab f(z)dz

@ The ideal PDF requires knowing the integral beforehand!

]

I e S S D R TS AT ou D)

Stochastic Sampling

unknown

L(x,6,)|= / f(x,w; — wy) IL(xX,w;) cos 8; dw;
Q

Although we do not know the integral completely,
we still know parts of it

SHRISTOF REZK-SALAMA, COMPUTER GRAPHICS GROUP, UNIVERSITY OF SIEGEN, GERMANY ® —
('C-§ ADVANGED ILLUMINATION TEGHNIQUES FOR GPU-BASED VOLUME RAYCASTING "'.\/."n
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Stochastic Sampling

unknown

LX) |=

known

Although we do not know the integral completely,
we still know parts of it

P(w;) = f(x,w; — w,) cosb;

ﬁ(wi)

Plk) = T 5w

CHRISTOF REZK-SALAMA, COMPUTER GRAPHICS GROUP, UNIVERSITY OF SIEGEN, GERMANY - =
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Solid Angle

A emis ere:/ 1dw = 27
Hemisph - R 2

du = r df
dv=r sinfdo
Area (yellow):
dA = 1% sin@ do db

Solid Angle:

dA
dw = =2 = sin 0 d¢ do
T
Unit of solid angle: Steradian [sr]
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Sampling a Specular Lobe

® Ideal Sampling

f(wi) = cos™(0:) p(wi . 7

; 2 pm/2 A . I
/m cos” () dw =/0 /U cos" (0)sin(f) dfdp = D)

R T e I o N N B T e e o S S e S A o
R e R ST N

Sampling a Specular Lobe

® Ideal Sampling
J(wi)

f(wz) = COS'”'(Q%') ( fQ+ wz)dw
p(6;,0;) = (n2—i7—rl) cos™ 6; sin 6;
P o VisOB




Sampling a Specular Lobe

® Ideal Sampling

f(w;) = cos™(6;) p(w;) = T
Q-i-
p(0i, ¢i) = (n;—rl)
/ N

p(6;) = (n+ 1) cos™ 6; sin 6, p(il6:) = o

cos™ 0; sin 6,

® Convertto CDF and invert

6; = cos™? £$”+L1) ¢; = 2o

@

L gt e S R s

Importance Sampling

Literature:

e M. Pharr, G. Humphries: Physically Based Rendering,
Morgan Kauffman (Elsevier), 2004

e M. Colbert, J. Kfivanek, GPU-Based Importance Sampling
in H.Nguyen (edt.): GPU Gems 3, Addison-Wesley, 2008
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GPU Ray-Casting

« Calculate First Intersection with Isosurface

@ Rasterize the front faces of the
bounding box

@® Foreach fragment, cast a ray

@ Find first intersaction point with
isosurface by sampling along the ray

(§ CHRISTOF REZK-SALAMA, COMPUTER GRAPHICS GROUR, UNIVERSITY OF SIEGEN, GERMANY .-: VI.OE
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GPU Ray-Casting

« Calculate First Intersection with Isosurface
@ Rasterize the front faces of the
bounding box
@® Foreach fragment, cast a ray
@ Find first intersaction point with
isosurface by sampling along the ray
® interval bisection
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GPU Ray-Casting

' Calculate First Intersection with |sosurface

@ Rasterize the front faces of the
bounding box

@® Foreach fragment, cast a ray

@ Find first intersaction point with
isosurface by sampling along the ray
® interval bisection
@ Store the intersection pointin
render target O
@ Estimate the gradient vector using
central differences

@ Store the gradient vector in
render target 1

MRTO: xyz-coordinates of first MRT1: xyz-components of
intersection point with isosurface gradient vector (color coded)
Il N CERMANY @ -
A ge ViBOB
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Deferred Shading

Single Scattering (no shadows)
® Diffuse term:

@ Sample irradiance cube
using gradient direction
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Deferred Shading

Single Scattering (no shadows)
® Diffuse term:

@ Sample irradiance cube
using gradient direction

® Specular term:

@ Calculate random directions
on the specular lobe

@ Sample environmentcube
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Single Scattering (no shadows)
® Diffuse term:

@ Sample irradiance cube
using gradient direction

® Specular term:

@ Calculate random directions
on the specular lobe

@ Sample environment cube

@ Weighteach sample with
its BRDF/phase function and
its probability distribution

Single Scattering
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Why not use a pre-filtered
environmentmap?

You can, but

@ it only works for one
specular exponent
per object

@ Variable shininess may be
used to visualize additional
surface properties
(e.g. gradient magnitude)
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Mathematical Model
(X, wy) = / p(X, wo — w;) L(x, w;) dw;
Q

integrates over the entire sphere/hemisphere

® |ntegral must be solved for every
intersection point

® Fredholm Equation (cannot be
solved analytically) v

Numerical Solution:

® Number of rays grows exponentially

® Much workload spent for little
contribution

=
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Multiple Scattering

Mathematical Model 477 TN
L(X?wo) — / p(X,wO — w,,;)L(X,wi) dwz .
Q

infegrates over the entire sphere/hemisphere

Quantum Optics

@ Trace the path of single photons

® Photons are scattered
randomly

@ Probability of scattering
direction given by
BRDF/phase function

@® Monte Carlo path tracing

Phase Function Model

® Scattering of light at every point inside the volume
@ Too expensive (extremely slow convergence)
@ Not practicable. Controlling the visual appearance is difficult

® |dea: Restrict scattering events to a fixed number of
isosurfaces only.

specular
r reflection

diffuse = transmission
reflection
non-refractive refractive
: LR|< "EREFK_© ; Gt = TER R PH *Q GaRC F IFR<SIT AF 5 E d .y Y .
; _ BAS | :

WL AVANGED UM “HNIQUE J-BASED VOLUME 8.




GPU Ray-Casting

Scattering Pass

® Start at first isosurface and
trace inwards

® Account for absorption

along the rays

@ Proceed until next
isosurface

® Calculate scattering event

@® Sample the environment
on exit

G? ;

cG

GPU Ray-Casting

Scattering Pass
Simplifying Assumption:
@® Absorption on the ,way in”
is same as on the ,way out”
@ Abort the ray inside the volume

square the absorption and
sample irradiance map

@® Notvery accurate but
good visual results

. b2 COK SHicaeropR.0 _ o Ve 08
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Scattering Pass

preview in real-fime final version in '2-1 seconds

: T . . o
(?§ MA, CON i i . .:Q!QBB

cG

Final Composite

Multiply

Blend
using
Fresnel term

cG 2




Path Tracing

Primary rays: 1 Primary rays: 8 Primary rays: 64
Secondary rays: 64 Secondary rays: 8 Secondary rays: 1

Path Tracing

Primary rays: 1 Primary rays: 8 Primary rays: 64
Secondary rays: 64 Secondary rays: 8 Secondary rays: 1
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Examples

Different scattering cone
angles for the ,inward-looking”
(transmissive) Phong-lobe

Scattaring Efects
Light Map Approaches

Christof Rezk Salama '
Computer Graphics Group (- .
Institute for Vision and Graphics © 3 v
cG >

University of Siegen, Germany




3D Light Map
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® Direct light by shadow volume or deep shadow map

® Consider the exchange of radiantenergy between
neighbouring voxels

® Approximate by blur operation (like [Kniss, 2002])

B e L ’E;.‘D

cG 2

Generate a 3D Light Map

® Based on Shadow Volume

@® Calculate shadow volume for direct light as in

e U. Behrens and R. Ratering. Adding Shadows to a Texture-
Based Volume Renderer. In Proc. IEEE Symposium on Volume
Visualization, 1998, p.39-46.

@ Blurthe direct light slice by slice
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Generate a 3D Light Map

® Based on Shadow Volume

@® Calculate shadow volume for direct light as in

e U. Behrens and R. Ratering. Adding Shadows to a Texture-
Based Volume Renderer. In Proc. IEEE Symposium on Volume
Visualization, 1998, p.39-46.

@ Blurthe direct light slice by slice
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Generate a 3D Light Map

® Based on Shadow Volume

@® Calculate shadow volume for direct light as in

e U. Behrens and R. Ratering. Adding Shadows to a Texture-
Based Volume Renderer. In Proc. IEEE Symposium on Volume
Visualization, 1998, p.39-46.

@ Blurthe direct light slice by slice




Generate a 3D Light Map

® Based on Shadow Volume

@® Calculate shadow volume for direct light as in

e U. Behrens and R. Ratering. Adding Shadows to a Texture-
Based Volume Renderer. In Proc. IEEE Symposium on Volume
Visualization, 1998, p.39-46.

@ Blurthe direct light slice by slice
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Generate a 3D Light Map

® Based on Shadow Volume

@® Calculate shadow volume for direct light as in

e U. Behrens and R. Ratering. Adding Shadows to a Texture-
Based Volume Renderer. In Proc. IEEE Symposium on Volume
Visualization, 1998, p.39-46.

@ Blurthe direct light slice by slice
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Scattering 3D Light Map

Direct light

Direct plus
indirect light
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Calculate a 3D Light Map

® Based on Deep Shadow Map
@® Resample the deep shadow map on a uniform voxel grid
@ Coarsegrid resolutionis sufficient due to the low-frequent

nature of volumetric scattering
image plane
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Calculate

® Based on Deep Shadow Map

® Resample the deep shadow map on a uniform voxel grid
® Coarse grid resolution is sufticient due to the low-frequent

nature of volumetric scattering
image plane
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Direct
light

Direct plus
indirect light
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Light Map Approaches

Shadow Volume Appraoch

® Calculated in Model Space
@ |imited by Resolution of Shadow Volume

® High Memory Requirements

Deep Shadow Map Appraoch

® Calculated in Screen Space
@ |imited by Resolution of Shadow Volume

® Reduced Memory Requirements
® High Precision

cG 2

High Dynamic Range

Direct light and shadows
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Summary

Scattering Effects

® Single Scattering \
@ Filtered EnwronmentMops
@ Monte-Carlo Integration

® Multiple Scattering

@ Monte-Carlo Integration
@ 3D Light Maps

(Shadow Volume/Deep Shadow Map)

G§ {RISTOF REZ
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