
A Load Simulation and Metrics Framework for Distributed Virtual Reality

H. Lally Singh∗

Virginia Tech, USA

Denis Gračanin†

Virginia Tech, USA

Krešimir Matković‡

VRVis, Austria

ABSTRACT

We describe a simple load-measure-model method for analyzing the
scalability of Distributed Virtual Environments (DVEs). We use a
load simulator and three metrics to measure a DVE’s engine with
varying numbers of simulated users. Our load simulator logs in as
a remote client and plays according to how users played during the
conducted user study. Two quality of virtuality metrics, fidelity and
consistency, describe the user’s experience in the DVE. One engine
performance metric provides the cycle time of the engine’s primary
loop. Simulation results (up to 420 users) are discussed.

1 INTRODUCTION

Our overall research focuses on building scalability models of Dis-
tributed Virtual Environments (DVEs). Specifically, we’re studying
the per-user growth rates of memory, CPU, and network bandwidth
requirements. The process is straightforward: we provide different
levels of load to the system and measure the resources the engine
uses. That data will be used to construct a scalability model of the
engine, providing memory, cpu, and network utilization estimates
per logged-in user.

While we add load, we have to make sure that the DVE stays
usable. Even if several hundred clients can log in, it doesn’t matter
if the DVE is no longer realistic. To keep the simulation accurate,
we provide some metrics measuring the quality of the virtual reality
presented. We call it Quality of Virtuality (QoV).

With a minimal QoV requirement, we ensure the simulations and
the resulting models are relevant and accurate. When the system
fails to provide this minimal QoV, we can stop modeling it’s scala-
bility —- we expect users to start logging off.

Here we discuss our load simulator, our QoV metrics, and a very
simple engine-level metric for CPU usage.

2 LOAD SIMULATION

A simple method to add load is to add on many users and some loss
and jitter to the network. Adding jitter and wild user movement
help, but they should be kept within a representative amount.

Getting many people to come together & play is difficult to do
repeatedly, and requires many client computers. Instead, a software
simulator can be constructed. It doesn’t have to be nearly as sophis-
ticated as a human player — we have some useful limitations that
will reduce the complexity of our software.

We have elected to build a simulator based directly on obser-
vations of humans. This is plausible because the game our DVE
executes is incredibly simple.

The game we use as our DVE basis is known as a simple “twitch-
action” First–Person Shooter, known for working better with good
reflexes than complex strategy. In our game there is no strategic
advantage to any player’s state beyond position. We modified the
original one-weapon game to have infinite ammunition and imme-
diate respawn.

∗e-mail: lally@vt.edu
†e-mail: gracanin@vt.edu
‡e-mail: Matkovic@VRVis.at

2.1 User Study

The data came from a pair of user studies, where users played a
Torque [2] game against each other. On two occasions, we placed
users in a computer lab and had them connect to a single server.
Each computer recorded every message with the server. The first
time, we had ten students, the second, five.

We took recordings of each player and analyzed them separately.
The simulator executes 16 different behaviors, with the observed
frequencies of each. Figure 1 lists them. We later found that snip-
ing at less than 50m was functionally equivalent to standing and
attacking. Hence, the simulator merges those two behaviors.

We built a simulator based on this list of behaviors. It executes
each of the tactics according to that distribution — the selection is
random based on the set of under-executed tactics. The duration of
the tactic is randomly selected, as is the firing rate.

Behavior Total % Behavior Total %

Circle-Strafe 15.9% Hide-Snipe 0.9%

Scatter 15.7% Snipe 50m 4.0%

Snipe 100m 6.6% Snipe 150m 2.7%

Snipe 200m 1.7% Snipe 300m 0.9%

In-Building Snipe 4.6% Chase-Kill 15.9%

Reverse-Attack 3.5% Wander 10.2%

Shoot into Building 1.5% Inactive 7.7%

Parallel Strafe 1.5% Sinusoid 2.1%

Stand & Attack 4.6%

Figure 1: Behaviors from the User Study and their distribution

2.2 Simulator Behavior

The simulator contains a set of scripted actions that takes over a
client at login, and executes each of the 16 actions randomly. When
one action has had more than it’s appropriate share of runs, it’s
taken out of the candidate list for selection. Different actions de-
pend on varying levels of knowledge about the environment —
things that a user would normally understand by sight.

In practice, the simulator works reasonably well. Observing it in
action, it traverses in and out of buildings, tracks down, chases, and
kills other players, and snipes them from various distances. Using
the knowledge base of the level’s features, it routes around build-
ings and can use them as cover when attacking.

3 METRICS

We have three metrics, grouped into two categories: Quality of Vir-
tuality and Engine Performance. In the former category, we present
two metrics that measure the fidelity and consistency of the system.
In the latter, we present a simple metric for CPU usage.

3.1 Quality of Virtuality

The first two metrics cover the fidelity and consistency of the DVE.
We define these experiences as those that validate from a single
second of the experience (such as random jumping of players) for
the former, to those that take much longer to figure out (such as
failures in the physics or collision systems) for the latter.

287

IEEE Virtual Reality 2008
8-12 March, Reno, Nevada, USA
978-1-4244-1971-5/08/$25.00 ©2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 18, 2008 at 09:55 from IEEE Xplore. Restrictions apply.

Fidelity: The Circle Metric — DVEs often communicate by
sending dead–reckoning (DR) vectors to one another [1], indicating
the current position, direction, and velocity of the object. We take
advantage of this fact by running an avatar in a curved path, and
measuring how much error we get on the remote side.

We use two software-controlled clients that log into the DVE.
The first we call the actor, which goes to a predermined location
and begins strafing (walking sideways) in a bounded circle around
a central point. It records its position as it goes. The second we call
the observer: it finds a viewpoint where it can see the actor all the
way around the circle, and records its position. By comparing the
differences in the observed versus the actual positions, we have a
metric for fidelity lost over the communications line. Some fidelity
can be lost in between normal DR updates, and the rest lost when
DR updates are lost across the network.

Consistency: The Collide Metric — DVEs often run in a
simple input-simulate-render loop. That representation is updated
for the current time tick. The simulation includes moving all the
objects along their DR vectors, then doing collision checks. Within
this loop we have a “catch up” method: all the objects are moved
along their (straight) DR vectors for all the time in between the last
simulation tick and now. For Torque, that’s 16 Hz on the server
and 32 Hz on the client. If the engine gets bogged down, then the
time through the loop will increase, making the simulation stages
further and further apart. Objects in the DVE may get moved so
far in a single time through the loop that they may pass completely
through each other before a collision check is done. That collision
check will register no collision, as the objects have since cleared
each other.

Our metric is very simple: we have two software-controlled
clients log in and repeatedly move to predetermined locations and
run into each other. They record whether they hit each other or got
to points past where they should have collided. They then move
back to their origins and try again. Using server-relayed messages,
they synchronize their runs. We observe the collisions and non-
collisions to get a measure of how consistent is the DVE.

3.2 Engine Performance

As a simple control measure, we track how long the engine takes
to get through a single iteration of it’s topmost loop. This sim-
ple metric, CoreLoop, serves as our best measurement of the CPU
requirements of the DVE engine. The engine doesn’t sleep(),
select(), or otherwise block it’s own operation. Instead, it runs
as fast as it can, using additional CPU for more precise simula-
tions (through a smaller simulation period) and faster framerates.
By measuring CoreLoop, we have a rough characterization of how
much work the engine does.

4 ANALYSIS

We ran a simulation on a cluster of 24 AMD Athlon 3800 (1 GHz)
machines, connected with gigabit ethernet. One hosted the server,
another hosted our four metrics clients, and the other twenty two
ran our simulators. The four simulation clients and the server add a
total of five clients to the simulators we add on. We aimed for 500
clients, but could only get up to 420 before clients could no longer
log in due to client crashes and server timeouts. All clients were
automatically restarted if they crashed or were logged out.

Figure 2 shows how many logged in users we had over the sim-
ulation, overlayed with our circle metrics data. Figure 3 shows
CoreLoop and our collision metric. After the first few clients finally
had their levels fully downloaded, CoreLoop settled down for some
time. It later destabilized as engines started crashing and needed
their levels re-downloaded. Non collisions are only reported if both
actors got into position and successfully ran towards each other
first.

After the downloads finish, the engine’s CoreLoop drops down
to where the collisions register reliably. There are a few collisions
detected when the CoreLoop is high, but that simply means that the
objects happened to advance into colliding positions — not that the
simulation reliably worked.

-7.5

-5

-2.5

 0

 2.5

 5

 7.5

 10

 12.5

 0 1000 2000 3000 4000 5000 6000 7000

 50

 100

 150

 200

 250

 300

 350

 400

M
e

te
rs

 f
ro

m
 R

a
d

iu
s

N
u

m
b

e
r

o
f

U
s
e

rs

Actual
Observed

Logged in Users

Figure 2: Circle Metric and Logged–in Users

Figure 3: Collision Occurrences

Figure 2 shows the collision actor and observer’s data. The ac-
tor’s value is their distance from the center, minus their orbit radius.
The observer’s value is the observed distance between the actor and
the center. While the actor provides a reliable control, the observer
sees the actor quite differently. (The position is reported before go-
ing over the wire to the server, so it’s not sensitive to it’s state.)
It was usually about 50-100% off from the actual value, and quit
early on us at t = 5003. The observer either kept crashing or timing
out after that. The lack of correlation with the CoreLoop or pure
number of logged-in numbers indicates that the engine continues to
send reliable DR vectors under significant load.

5 CONCLUSIONS

The initial tests show promising results for a heavily loaded server.
With these initial results, we have a solid foundation for comparing
the simulation results against the actual use of a DVE. With a cal-
ibrated load simulator we can then go back and use a fine-grained
simulation to find the failure loads of this DVE — the minimum
QoV of this DVE.

REFERENCES

[1] D. A. Fullford. Distributed interactive simulation: its past, present, and

future. In WSC ’96: Proceedings of the 28th conference on Winter

simulation, pages 179–185, New York, NY, USA, 1996. ACM Press.

[2] GarageGames. The torque game engine.

http://www.garagegames.com/products/browse/tge/.

288

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 18, 2008 at 09:55 from IEEE Xplore. Restrictions apply.

