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Fig. 1. NeuroTrace allows neuroscientists to interactively explore and segment neural processes in high-resolution EM data.

Abstract—Recent advances in scanning technology provide high resolution EM (Electron Microscopy) datasets that allow neuro-
scientists to reconstruct complex neural connections in a nervous system. However, due to the enormous size and complexity of
the resulting data, segmentation and visualization of neural processes in EM data is usually a difficult and very time-consuming
task. In this paper, we present NeuroTrace, a novel EM volume segmentation and visualization system that consists of two parts:
a semi-automatic multiphase level set segmentation with 3D tracking for reconstruction of neural processes, and a specialized vol-
ume rendering approach for visualization of EM volumes. It employs view-dependent on-demand filtering and evaluation of a local
histogram edge metric, as well as on-the-fly interpolation and ray-casting of implicit surfaces for segmented neural structures. Both
methods are implemented on the GPU for interactive performance. NeuroTrace is designed to be scalable to large datasets and
data-parallel hardware architectures. A comparison of NeuroTrace with a commonly used manual EM segmentation tool shows that
our interactive workflow is faster and easier to use for the reconstruction of complex neural processes.

Index Terms—Segmentation, neuroscience, connectome, volume rendering, implicit surface rendering, graphics hardware.

1 INTRODUCTION

The reconstruction of neural connections to understand the function
of the brain is an emerging and active research area in bioscience that
is often called Connectomics [28]. With the advent of high-resolution
scanning technologies such as 3D light-microscopy and electron mi-

• Won-Ki Jeong, Amelio Vazquez, and Hanspeter Pfister are with the School

of Engineering and Applied Sciences at Harvard University, E-mail:

{wkjeong,amelio,pfister}@seas.harvard.edu.

• Johanna Beyer and Markus Hadwiger are with VRVis Center for Virtual

Reality and Visualization Research, Inc., E-mail:

{msh,johanna.beyer}@vrvis.at.

• Ross T. Whitaker is with the Scientific Computing and Imaging Institute at

the University of Utah, E-mail: whitaker@cs.utah.edu.

Manuscript received 31 March 2009; accepted 27 July 2009; posted online

11 October 2009; mailed on 5 October 2009.

For information on obtaining reprints of this article, please send

email to: tvcg@computer.org .

croscopy (EM), reconstruction of complex 3D neural circuits from
large volumes of neural tissues has become feasible. Among them,
however, only EM data can provide sufficient resolution to identify
synapses and to resolve extremely narrow neural processes such as
dendritic spines of roughly 50 nm in diameter. Current EM technolo-
gies are able to attain resolutions of 3-5 nanometers per pixel in the
x-y plane. Due to its extremely high resolution, an EM scan of a sin-
gle section from a small tissue sample can easily be as large as tens
of gigabytes, and the total scan of a tissue sample as large as several
terabytes of raw data.

These high-resolution, large-scale datasets are crucial for recon-
struction of detailed neural connections, but pose very challenging
problems for 3D segmentation and visualization. First, the cur-
rent common practice for segmentation of objects of interest in EM
datasets is a mostly manual process, which is very labor-intensive
and time-consuming. Even though there have been research efforts to
develop automated EM segmentation algorithms, they are not robust
enough to deal with common artifacts of real datasets, such as noise







Fig. 4. Active ribbon with image correspondence force. Left: Input im-
age. Middle left: Segmentation using active ribbon on the current slice.
Middle right: Incorrect initial position of active ribbon on the next slice
(projection along z-axis). Right: Correct active ribbon position using
image correspondence force.

but a single level set on two different images. Thus we can define the
level set function for φi+1 that minimizes Eφ as follows:

dφi+1

dt
+ξ FC|∇φi+1|= 0, (4)

where FC is the image correspondence speed and γ is a level set pa-
rameter. The image correspondence speed FC can be defined using the
gradient of Eφ with respect to φ as follows:

FC =
sign(φi+1− φ̃i)|φi+1− φ̃i|

|∇φi+1|
. (5)

The image correspondence speed FC can be integrated into the level
set equation 1 like other speed functions. In our implementation, we
gradually decrease ξ as the level set iteration proceeds so that the en-
tire active ribbon can move towards the correct location of the target
membrane at the beginning, and then becomes more stable at the end
such that the ribbon boundaries can close in on the membrane bound-
aries. Figure 4 shows the robust transition of the active ribbon between
slices with the image correspondence force.

4.2 3D Centerline Tracking

To deal with non-axis aligned neural processes, we implemented a
tracking algorithm that follows the centerline of the process. Even
though tracking a centerline through membrane centers may seem
straightforward, it is not simple in our case because we do not know
membrane locations in advance. In other words, even though the cur-
rent slice position and segmentation are given, we do not know the
position and segmentation of the next slice.

To tackle this problem, we propose a two-step method that consists
of estimation and correction steps. In the estimation step, the tangent
direction Vt at the last center point is computed using a one-sided finite
difference method. We also keep the previous tracking direction Vp.
The new tracking direction is then the weighted average between those
two vectors: V = ωVp + (1−ω)Vt (Figure 3 right). The weight ω
controls the amount of history used to determine the current tracking
direction. We typically use a value of ω = 0.9 for smooth transition
between slices.

Once we compute a new tracking direction, a temporary new center
position Ci+1 of the next slice can be estimated by simple extrapolation

as C̃i+1 = Ci + δV , where δ is the pixel width (i.e., grid spacing) in
order to move no more than one pixel distance per estimation step.
The local frame of the previous slice is then projected onto the new

plane defined by the center C̃i+1 and the normal V . A new 2D slice is
resampled from the volume data using the new local frame and used

for segmentation. Finally, in the correction step, C̃i+1 is replaced by
the correct center of the segmented neural membrane, Ci+1. Figure 5
shows an example of 3D centerline tracking and segmentation using
NeuroTrace.

Fig. 5. 3D segmentation in progress. Green: 2D level set segmentation
of neural membranes. Red: 3D centerline tracking.

4.3 GPU Implementation

Our GPU level set solver updates the level set only in active regions
using a block-based narrow band proposed by Lefohn et al. [16]. A
slight difference is that we collect all the blocks within a user-defined
narrow band size, where the minimum distance to the zero level set of
each block is computed in the redistance step without explicitly check-
ing the activation of neighboring blocks. The main level set update
process consists of four steps: (1) Form the active list by collecting
the active blocks. (2) Iteratively update the level set on each active
block in the active list up to the pre-computed number of iterations
(based on the narrowband width). (3) Recompute the distance from
the zero level set. (4) Stop if the level set converges to a steady state
or the maximum number of iterations is reached. Otherwise go to (1).

The active list is a one dimensional array of unsigned integers. The
first element in this list is the total number of active blocks, and the rest
of the array contains the active block indices. To manage the active list
efficiently, we store it entirely on the GPU. The only interaction be-
tween the CPU and the GPU is copying the first element of the active
list from the GPU to the CPU. Then the host code launches a CUDA
kernel with the grid size equal to the total number of active blocks. The
size of a CUDA block is the same as an active block for our level set.
In the CUDA kernel, the global memory address is computed by off-
setting from the base address using the active block index. Managing
the active list, i.e., adding new active blocks and removing non-active
blocks, can be achieved using the atomic hardware operators of recent
NVIDIA GPUs without using additional stream compaction processes.
We can compute the minimum distance to the zero level set for each
block using parallel reduction. If the minimum distance is smaller than
the user-defined narrow band width, the total number of active blocks
is increased by one using AtomicAdd(). Then the current block
index is stored at the end of the current list using the index returned by
the atomic operator.

Once the active list is formed, then each block in the list can be up-
dated multiple times depending on the width of the narrow band. For
example, if the grid spacing is 1 and the width of the narrow band is
10, then we can safely update the active blocks in the current active list
10 times without refreshing the active list (i.e., explicitly checking the
(de-)activation of the blocks). This is because the CourantFriedrich-
sLewy (CFL) condition [26] guarantees that the maximum deforma-
tion incurred by a single update of the level set cannot be greater than
the grid spacing. The level set update is done using a Jacobi update
method, and communication between block boundaries can be handled
implicitly by calling the new CUDA kernel for each level set update
because the new solutions are written back to global memory after
each update.

In extending the single level set method to multiphase level sets we
need to evaluate the correct distance between two level sets to keep
the topology of the active ribbon consistent. However, the active rib-
bon does not guarantee the correct distance after deformation due to



the combination of various force fields. Therefore, we recompute the
distance field for each level set when the list of active blocks is up-
dated. Note that we need to redistance not only on the active lists but
the complete level sets because the level sets may not share the same
active list unless they are very close to each other. To quickly compute
the distance fields we employ the GPU-based Eikonal solver by Jeong
et al. [12].

We implemented the nonrigid image registration method using
semi-implicit discretization as a two-step iterative process, updating
and smoothing the vector field v as follows:

v ← v+dt(Ii+1− Ĩi)∇Ĩi (6)

v ← G⋆v, (7)

where G is a Gaussian smoothing kernel. Equation 6 is a simple Euler
integration that can be efficiently mapped to the GPU. To interpolate

the pixel values Ĩi and ∇Ĩi on locations defined by v we use texture
hardware interpolation on the GPU. Texture memory is cached, so it
is efficient for locally coherent random memory accesses. To speed
up the 2D Gaussian smoothing in image space, we implemented a se-
quence of 1D convolutions using shared memory and apply them along
x and y, respectively.

5 VOLUME VISUALIZATION

Volume rendering of high-resolution EM data poses several chal-
lenges. EM data is extremely dense and heavily textured, exhibits a
complex structure of interconnected nerve cells, and has a low signal-
to-noise ratio. Therefore, standard volume rendering results in clut-
tered images that make it hard to identify regions of interest (ROIs) or
to observe an ongoing segmentation.

Our visualization approach supports the inspection of data prior to
segmentation, for identifying ROIs, as well as the visualization of the
ongoing and final segmentation (see Figure 2). To improve the visu-
alization of the raw data prior to segmentation, we have implemented
on-the-fly nonlinear noise removal and edge enhancement to support
the user in finding and selecting ROIs. Using a local histogram-based
edge metric, which is only calculated on demand for currently visi-
ble parts of the volume and cached for later reuse, we can enhance
important structures (e.g., myelinated axons) while fading out less im-
portant regions. During ray-casting we use the computed edge values
to modulate the current sample’s opacity with different user-selectable
opacity weighting modes (e.g., min, max, alpha blending).

5.1 On-demand Filtering

The main motivations for on-demand filtering (i.e., noise removal and
edge detection) are the flexibility offered by being able to change fil-
ters and filter parameters on the fly while avoiding additional disk stor-
age and bandwidth bottlenecks for terabyte-sized volume data. We
perform filtering only on blocks of the volume that are visible from
the current viewpoint, and store the computed data directly on the GPU
for later reuse. We have implemented a caching scheme for these pre-
computed blocks on the GPU to avoid costly transfers to and from
GPU memory while at the same time avoiding repetitive recalculation
of filtered blocks. During visualization we display either the original
volume, the noise-reduced data, the computed edge values, or a com-
bination of the above.

Our on-demand filtering algorithm consists of several steps: (1)
Detect for each block in the volume if it is visible from the current
viewpoint. (2) Build the list of blocks that need to be computed. (3)
Perform noise removal filtering on selected blocks and store them in
the cache. (4) Calculate the histogram-based edge metric on selected
blocks and store those blocks in the cache. (5) High-resolution ray-
casting combining edge values and original data values. The detection
of visible blocks (Step 1) is done either in a separate low-resolution
ray-casting pass or included in Step 5.

5.1.1 Noise Removal

Since EM data generally exhibits a low signal-to-noise ratio we have
integrated an on-demand noise removal filter step into our pipeline

prior to calculating the local histogram-based edge metric. We per-
form the filtering only on those blocks that were marked as visible
and are not present in the cache yet. We have implemented 2D and 3D
Gaussian, mean, non-linear median, bilateral [31], and anisotropic dif-
fusion filters [22] with user adjustable neighborhood sizes. Especially
non-linear filters have shown good noise removal properties without
degrading edges in the EM data [30]. Our main objective, however,
was to develop a general framework for noise removal, where addi-
tional filters could be added easily. The results for each processed
block is stored in the cache and used as input for the edge detection
algorithm.

5.1.2 Local Histogram-based Edge Detection

We use a local histogram-based edge metric to modulate the opacity of
the EM data during raycasting. Boundaries in the volume get enhanced
while more homogenous regions are supressed. This helps the user
in navigating through the unsegmented dataset and in finding regions
where a segmentation should be started. The edge metric is computed
only for visible blocks that are not stored in the cache yet.

Our edge detection algorithm is based on the work of Martin et
al. [19] who introduced edge and boundary detection in 2D image
based on local histograms. They did a thorough evaluation of different
brightness, color, and texture cues for constructing a local boundary
model, which was subsequently used to detect contours [18] in natural
images.

In our local histogram-based edge detection approach we take a
block neighborhood around each voxel to calculate the brightness gra-
dient for different directions. We separate the voxel’s neighborhood
along the given direction into two halves and calculate the histogram
in each half-space. Finally, the histogram difference is calculated us-
ing the χ2 distance metric. A high difference between histograms in-
dicates an abrupt change in brightness in the volume, i.e., an edge.
The maximum difference value over all directions is saved as the edge
value in the cache block. As the neighborhood size for the histogram
calculation can be adjusted to match the resolution level of the current
input data, this approach scales to large data and to volume subdivision
schemes like octrees. Again, we have kept the implementation of our
edge detection framework as modular as possible to support adding
different edge detection algorithms in the future. During volume ren-
dering, we fetch at each sample location the corresponding edge value
and use it to modulate the sample’s opacity and/or color. Optionally,
the user can first use a windowing function on the calculated edge val-
ues to further enhance the visualization.

5.1.3 Dynamic Caching

To improve the performance of our edge-based visualization scheme
we have implemented a dynamic caching scheme for storing on-the-fly
computed blocks. Two caches are allocated directly on the GPU, one
to store de-noised volume blocks and the second to store blocks con-
taining the calculated edge values. First, the visibility of all blocks is
updated for the current viewpoint in a first ray-casting pass and saved
in a 3D array corresponding to the number of blocks in the volume.
Next, all blocks are flagged as either: (1) visible, present in cache; (2)
visible, not present in cache; (3) not visible, present in cache; or (4)
not visible, not present in cache. Visible blocks that are already in the
cache (flagged with (1)) do not need to be recomputed. Only blocks
flagged with (2) need to the processed. Therefore, indices of blocks
flagged with (2) are stored for later calculation (see Section 5.1.4).
During filtering/edge detection the computed blocks are stored in the
corresponding cache. A small lookup table is maintained for mapping
between block storage space in the cache to actual volume blocks as
described in [4]. Unused blocks are kept in the cache for later reuse
(flagged with (3)). However, if cache memory gets low, unused blocks
are flushed from the cache and replaced by currently visible blocks.

5.1.4 GPU Implementation

After detecting which blocks need processing, a CUDA kernel is
launched with grid size corresponding to the number of blocks that
need to be processed. For simplicity we explain the implementation of





Fig. 7. Left: On-the-fly interpolation between two elliptical cross-sections (elli,elli+1), see Equation 8. Middle: Although this is an approximation
for non-parallel (ni,ni+1), the result is consistent and smooth over successive cross-sections of an axon. Gradients for shading are computed via
central differences in the resulting distance field φ(x). Right: Composite of elliptically-interpolated axon (left) compared to 2D segmentation results
in 3D (right).

ell(p) is interpolated between the nearest pair of ellipses (elli,elli+1)
that encloses p. This pair is the one where p is in the front halfs-
pace of elli, i.e., p ·ni > ci ·ni, and the back halfspace of elli+1, i.e.,
p ·ni+1 < ci+1 ·ni+1. For interpolation, a parameter α ∈ [0,1] is re-
quired for a given p, which we compute as follows:

α =
k0

k0 + k1
with k0 =

p ·ni

n̄ ·ni
,k1 =−

p ·ni+1

n̄ ·ni+1
, n̄ =

ni +ni+1

||ni +ni+1||
. (8)

This is illustrated in Figure 7 (left).

We compute α such that it is always 0 in the plane of elli, and 1 in
the plane of elli+1, which guarantees that successive segments between
ellipse pairs line up exactly. We require a vector n̄ that is guaranteed
not to be parallel to either ellipse, and compute α as the ratio of k0, the
distance from p along n̄ to elli, to k0 + k1, the total distance between
elli and elli+1 along n̄ through p. We have chosen n̄ as the half-way
vector between ni and ni+1. This choice fulfills our requirements and
yields smooth results. Another obvious choice would be ci+1 − ci.
However, in our case this vector can be close to parallel to the ni,
which can result in numerical problems in the denominators of k0 and
k1 (Equation 8).

After α has been computed, it is used to obtain ell(p) as lin-
ear interpolation between the ellipse centers and axis lengths, yield-
ing cp, lx

p, and l
y
p, and spherical linear interpolation between qi and

qi+1, yielding qp. Then, p is projected into the ellipse’s plane:

p′= p−np(p ·np−cp ·np). From this, the distance value φ
(
ell(p),p′

)

is computed entirely in 2D in the plane of the ellipse.

This approach gives completely accurate results for parallel ellipse
planes, which is a common case in axon tracking where the planes
are often orthogonal to the z axis. It is an approximate solution for
non-parallel planes that works well in practice. The angle between
two successive ellipse planes ni and ni+1 is always quite small, even
though the whole axon is allowed to curve significantly from the first
cross-section to the last. Figure 7 (middle) shows a close-up of an axon
with non-parallel ellipse planes, which illustrates that our approach
results in visually smooth results.

5.2.2 GPU Implementation

In order to speed up finding the two ellipses nearest to a given point p

in the CUDA ray-casting kernel, ellipses are sorted into a 3D block
structure (e.g., 163 blocks) before rendering that only needs to be up-
dated when new ellipses are added. Each block contains links (in-
teger indices) to all ellipses intersecting it. A single ellipse can be
linked to by several blocks, but during rendering only a single block
needs to be examined for each point p. In order to efficiently han-
dle empty blocks, each block only stores the number of ellipses that
intersect it and a start index into a global array of links to ellipses.
The array is packed tightly such that all links of non-empty blocks are

stored at consecutive memory locations. Actual ellipse information
(axon-ID,ci,qi, l

x
i , l

y
i ) is stored in a separate global ellipse array that

is indexed using these links. In order to allow multiple axons to inter-
sect the same block, multiple counts need to be stored in each block,
one per axon. Furthermore, all links in a block are pre-sorted such
that ci+1 ·ni > ci ·ni∀i, i.e., each subsequent ellipse’s center is in the
front halfspace of the preceding ellipse. This simplifies the run-time
search for ellipse pairs needed for interpolation, as described above.
This block structure is also used for empty space skipping. Blocks
with no ellipse links do not need to be searched for implicit surface
intersections, and can be skipped entirely if they are transparent due to
the transfer function.

6 RESULTS

We implemented our segmentation and visualizations system on a
Windows XP PC equipped with quad-core Intel Xeon 3.0 GHz CPU,
16 Gigabytes main memory, and NVIDIA Quadro 5800 and Tesla
C1060 GPUs. We used a single CPU core and one GPU to compare
the running time on each architecture. The CPU version is imple-
mented using the ITK image processing library (http://www.itk.org).
The main computational code is similar on the CPU and GPU for a
fair comparison.

6.1 Segmentation

The running time of the CPU level set solver for 100 iterations on a
512×512 image is 7 seconds. It is only 0.3 second on the GPU, which
shows about 23 times speed-up. Our GPU image registration runs less
than a second on a 512×512 image (500 iterations). The total running
time of our segmentation method per slice, without user interaction, is
only about a second, which is sufficient for interactive applications.

To assess the performance of our segmentation method, we have
segmented multiple axons in two EM datasets and measured the total
and per-slice times, the amount of user intervention, and the ellipse
approximation errors. The first dataset is an adult mouse cortex that
consists of 101 slices of 1008× 1065 2D image, where each pixel
has five nanometers resolution and the section thickness is about 30
nanometers. The second dataset is an adult mouse hippocampus that
consists of 50 slices of 1278× 756 2D image, where each pixel is
four nanometers wide and the section thickness is 29.4 nanometers.
Figure 8 shows 3D renderings of the segmented axons and Table 1
lists the segmentation result for each dataset.

In the mouse cortex dataset, axons A to D were traced using only
axis-aligned tracking directions and axons E to H were traced using
arbitrary tracking directions. All axons were traced along the z-axis
in the mouse hippocampus dataset. Roughly between five to ten per-
cent of the total number of slices were manually edited for correct
segmentation for the mouse cortex dataset, and up to 20 percent of
the total slices were edited on the mouse hippocampus dataset. Note



Fig. 8. Result images from NeuroTrace. Left: Volume rendering with edge enhancement in the upper part of the volume. Middle: Eight axons from
the mouse cortex dataset. Right: Eight axons from the mouse hippocampus dataset.

Mouse Cortex Mouse Hippocampus

Slices Edits Total Time Compute Time Ellipse Error Slices Edits Total Time Compute Time Ellipse Error

A 101 14 6 m 50 s 3 m 59 s 3.584 (3.98%) 50 4 2 m 27 s 1 m 40 s 7.014 (5.12%)
B 101 12 5 m 24 s 3 m 30 s 7.468 (6.13%) 50 9 3 m 19 s 2 m 2 s 2.380 (2.73%)
C 101 8 4 m 54 s 3 m 7 s 5.407 (5.62%) 50 10 3 m 13 s 2 m 1 s 4.292 (3.97%)
D 101 11 5 m 11 s 3 m 8 s 5.115 (5.13%) 50 4 2 m 18 s 1 m 30 s 3.534 (4.76%)
E 127 7 4 m 19 s 3 m 2 s 1.775 (2.46%) 50 6 2 m 28 s 1 m 43 s 1.819 (1.76%)
F 121 4 4 m 42 s 3 m 0 s 1.890 (3.01%) 50 11 3 m 47 s 2 m 15 s 0.773 (0.64%)
G 105 15 5 m 20 s 2 m 52 s 2.230 (2.66%) 50 9 3 m 14 s 2 m 15 s 4.966 (3.37%)
H 111 7 5 m 49 s 3 m 35 s 3.996 (4.28%) 50 8 2 m 49 s 1 m 39 s 0.630 (0.67%)

Table 1. Axon segmentation results for the mouse cortex and hippocampus datasets.

that the image resolution of our input EM data is up to a factor of five
higher than those used in previous work [13, 17]. The data contains
more complex neural structures and is very challenging for automated
methods. Total times and computing times are not significantly differ-
ent between axons, and about half of the total time is used for compu-
tation.

Our ellipse-based 3D neuron representation can greatly reduce the
memory footprint. For example, for an axon of 350 nm diameter we
need about 70× 70 pixels where the pixel width is 5 nm, which re-
quires 9800 floats to store two distance fields. In contrast, to represent
an equivalent 3D ellipse we only need to store nine floats, three for
center and six for two axis. This yields a compression ratio of more
than a factor of a thousand. Table 1 also shows the average distance
between the ellipse and the membrane of neurons. The relative ellipse
approximation errors, shown in parenthesis, range only between 0.6
to six percent of the longest axis of the ellipse, which is acceptable
considering the high compression ratio we achieve.

6.2 Visualization

The prefiltering and edge-detection methods (Figure 9) were both im-
plemented entirely in CUDA and achieve interactive framerates. Fil-
tering blocks on-demand and caching them for later reuse allows the
user to change filters and filter settings interactively. Especially de-
noising prior to calculating the edge metric improved the results con-
siderably. The best results were achieved using anisotropic diffu-
sion filtering. For our local histogram-based edge metric we found
a histogram with 64 bins to be sufficient for our data. Also, a sim-
ple average-based histogram difference operator showed good results
compared to the computationally more complex χ2 distance metric.

For our caching scheme we used 83 sized blocks, but this can be ad-
justed according to the resolution of the data. At the moment our im-
plementation of the cache is based on CUDA arrays, but in the future
we would like to use 3D textures to improve tri-linear filter perfor-
mance during raycasting.

The dimension of EM data is highly anisotropic, with z-slice dis-
tances that can be a factor of 10 or more larger than pixel resolution.
This poses real problems for volume visualization, since the visible

edges from axons are shifted by large amounts between slices. Even
though our filtering and edge detection method works better than tradi-
tional transfer functions, the results are sometimes still ambiguous and
confusing, requiring closer inspection of the 2D slice views to identify
the ROI.

6.3 User Study

We have conducted informal user studies of our segmentation method
to assess the usability and accuracy of NeuroTrace by comparing it
with Reconstruct [9]. We selected six test subjects in total. Two (Ex-
pert 1 and 2) are expert neuroscientists, and the other four (Novice
1 to 4) are novices with no previous neural process segmentation ex-
perience. We conducted two user studies, where each study required
four test subjects (two experts and two novices) to perform segmenta-
tion of the same axon (axon E in the mouse cortex dataset and axon A
in the mouse hippocampus dataset). We measured the total time and
segmentation accuracy for both systems. We also received qualitative
feedback from the users.

To measure the segmentation error, we used the Dice metric [8] that
is commonly used to quantitatively measure the accuracy of segmen-
tation algorithms [29]. The Dice metric measures similarity between
two sets A and B using 2|A∩B|/(|A|+ |B|), where | · | indicates set
size. In our case, A is the ground truth set of pixels, and B is the set
of pixels from the segmentation result. Dice values range between 0
and 1, where 1 implies a perfect match. We compute the Dice value
for each 2D segmentation by comparing it to ground truth that was
obtained by careful manual segmentation. Table 2 and 3 show the to-
tal segmentation times and average Dice values, and Figure 10 and 11
show plots of Dice values for each slice.

For manual segmentation using Reconstruct there is no significant
difference between the two groups in terms of the total time, but the
results from the novice users are less accurate than those of the ex-
pert users. In contrast, the results using NeuroTrace do not show a
significant difference between the two groups, and the novice users
usually generated slightly less errors (higher Dice values) than the ex-
perts (Table 2). That indicates that the semi-automated NeuroTrace is
less prone to lead to human errors. In addition, NeuroTrace provides



Fig. 9. Left: Volume Slab visualization; Top: Original data; Middle: Gra-
dient magnitude displayed on the top slice; Bottom: Local-histogram
edges; Right: Volume Rendering; Top: Original data; Middle: Gradient-
magnitude shaded; Bottom: Pre-filtering and edge enhancement with
opacity weighting.

Reconstruct [9] NeuroTrace
Time Average Dice Time Average Dice

Expert 1 8 min 0.914696 5 min 0.934154
Expert 2 18 min 0.949794 5 min 0.931165

Novice 1 7 min 0.900107 7 min 0.937665
Novice 2 17 min 0.903862 6 min 0.936873

Table 2. User study results from the mouse cortex dataset.

Reconstruct [9] NeuroTrace
Time Average Dice Time Average Dice

Expert 1 6 min 0.954107 4 min 0.956324
Expert 2 14 min 0.962313 4 min 0.955967

Novice 3 9 min 0.952097 2.5 min 0.955685
Novice 4 7 min 0.943439 3.5 min 0.954875

Table 3. User study results from the mouse hippocampus dataset.

better segmentation results up to three times faster than Reconstruct.
Note that Expert 2 is an exception because he spent longer time than
usual and performed very accurate segmentations using Reconstruct.
It is also interesting to note that the results of Reconstruct become less
accurate over time, especially for novice users (Figure 10 Novice 1
and 2). This can be explained by fatigue due to the laborious manual
segmentation.

The users have given highly positive feedbacks about the usability
and accuracy of NeuroTrace compared to Reconstruct: “A lot easier to
use; more efficient; automatic function is nice; trustworthy” (Novice
1). “Less work-demanding and accurate” (Novice 2). “Automatic
segmentation was far easier to use and quicker” (Novice 3). “It is a
more practical program to use and all of it’s tools are very helpful
and useful” (Novice 4). “It proceeds automatically, can tilt the trac-
ing plane” (Expert 1). “Fast, user friendly, easy to correct; visualiza-

tion of the segmented data” (Expert 2). The suggestions for improve-
ments include the addition of advanced user interface functions such as
browsing of neural tracks and editing previous history, and adaptation
to different data modalities, e.g., optical fluorescent confocal micro-
copy. Our neuroscientist collaborators are currently using NeuroTrace
in their Connectomics research.

7 CONCLUSIONS AND FUTURE WORK

In this paper we introduced NeuroTrace, a novel interactive segmen-
tation and visualization system for neural processes in EM volumes.
The main contributions are a novel semi-automatic segmentation and
3D tracking method, efficient volume rendering with on-the-fly filters
and edge detection, a scalable implementation of these methods on the
GPU, and a novel workflow that has been shown to be more accurate
and efficient than current practice.

In the future we would like to implement a greater variety of fil-
ters and edge-detection approaches (e.g., Canny edge detection). Also
we plan to automatically adjust pre-defined filter settings and opac-
ity windowing function depending on the resolution of the input data.
The biggest challenge are the extremely large z-slice distances in EM
datasets. The integration of shape based-interpolation or directional
coherence methods into the volume rendering might be a promising di-
rection to solve this problem. We also would like to extend the current
segmentation and tracking method to handle merging and branching of
neural processes. Simultaneous tracking of multiple neural processes
in a GPU cluster system would be another interesting future direction.
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