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Abstract—Network packet traces, despite having a lot of noise,
contain priceless information, especially for investigating security
incidents. However, given the gigabytes of flow crossing a typical
medium sized enterprise network every day, spotting malicious
activity and analyzing trends in network behavior becomes a
tedious task. Computational mechanisms for analyzing such data
usually take substantial time to reach interesting patterns and
often mislead the analyst into reaching false positives or false
negatives. Therefore, the appropriate representation of network
traffic data to the human user has been an issue of concern
recently. Much of the focus, however, has been on visualizing
TCP traffic alone while adapting visualization techniques for the
fields that are relevant to this protocol’s traffic, rather than on the
multivariate nature of network security data, in general, and the
fact that forensic analysis, in order to be fast and effective, has to
take into consideration different parameters for each protocol. In
this paper, we bring together two powerful tools: SiLK (System
for Internet-Level Knowledge), for command-based network
trace analysis; and ComVis, a generic information visualization
tool. We integrate the powers of both tools by aiding simplified
interaction between them, using a simple GUI, for the purpose
of visualizing network traces, characterizing interesting patterns,
and fingerprinting related activity. We applied the visualizations
on anonymized packet traces from Lawrence Berkley National
Laboratory, captured on selected hours across three months. We
used a sliding window approach in visually examining traces
for two transport-layer protocols: ICMP and UDP. The main
contribution of this research is a protocol-specific framework of
visualization for ICMP and UDP traffic data.

I. INTRODUCTION

A broad overview of the network traffic analysis prob-
lem includes data collection, storage and management, trend
analysis, feature detection, event characterization, and timely
response to a particular incident [1]. SiLK [3], the system for
Internet-Level Knowledge, is a collection of traffic analysis
tools developed by the CERT Network Situational Awareness
Team (CERT NetSA) to facilitate security analysis of large
networks [2]. It supports the efficient collection, storage, and
analysis of network flow data. The SiLK tool suite provides
the ability to rapidly query large historical traffic data sets
and, if properly installed on the backbone or border of a
large, distributed enterprise or mid-sized ISP, SiLK gives
great powers to the security analyst. However, these powers
are faced with the limitations of the human analyst’s ability
to extract useful information from textual representations of
SiLK’s output. In addition, SiLK supports a large number of

commands and flag combinations. This is a double sided coin,
as much power as it adds to a typical analysis scenario, it
can be very confusing to even an experienced user. In order
to focus on the analytical reasoning task at hand, a security
analyst should be spared from at least part of the hard coding
tasks that SiLK requires. Therefore, flow records and other
statistical information that are output from different SiLK tools
need to be presented using visualization techniques that suit
the multivariate nature of network traffic data and, hence,
truly enhance the human’s ability to identify trends, outliers
and to recognize familiar fingerprints of well known attack
tools. Information visualization can be of great importance to
the field of network security because: (1) Many attack tools
and their host operating systems, can be identified by their
visual signatures. (2) Many visualization techniques can have
fixed memory requirements despite the high network traffic
volumes, which makes them more resistant to overload and
resource consumption that can incapacitate the traditional IDS.
(3) False positive and false negatives are significantly reduced.

ComVis [4] is a coordinated multiple views system that
implements a number of interactive multivariate visualization
techniques. Developed by the VRVis research team, ComVis is
an attractive option for visualizing SiLK data for the following
reasons: (i) the support for multiple views gives flexibility for
exploring the multidimensional nature of network traffic data;
(ii) brushing and linking capabilities cut a long trip short in
detecting malicious activity and creating visual fingerprints for
them; (iii) the support of parallel coordinates is an important
feature in multivariate visualization tools; (iv) a data view
allows close inspection of the details of a spotted pattern; and
(v) the tool’s interoperability with other applications, through
its support of command line parameters and of a common
data format, comma separated value (csv), made it a powerful
choice for the seamless interaction with the SiLK tool suite.

This paper describes a framework of interaction between
SiLK on one side, working as a background engine to query
and analyze anonymized network traces from the Lawrence
Berkley National Laboratory (LBNL), and ComVis on the
other side as an information visualization interface. Section II
gives an overview of background and related work. Sec-
tion III discusses the interaction technique. Most importantly,
Section IV describes a case study that tests the proposed



framework to aid the main tasks of a security analyst: trend
analysis, event characterization, and scan fingerprinting. Fi-
nally, Section V concludes the paper. The main contribution of
this research is a protocol-specific framework of visualization
for ICMP and UDP data. The resulting views led us to a
number of guidelines that can be vital in the creation of “smart
books” describing best practices in using visualization and
interaction techniques to maintain network security.

II. RELATED WORK

Network intrusion and scan detection techniques can be
categorized into misuse detection, which detect previously
encountered attacks, through matching them with patterns of
well-known attacks (e.g. IDIOT [14] and STAT [12]); and
anomaly detection systems [23], which maintain a number
of established normal usage profiles. Any significant devi-
ation from these profiles is flagged as an anomaly, which
raises an alert for a possible intrusion. Examples of anomaly
based detection methods are IDES [17] and the architecture
proposed by Zhang et. al. [24]. A major drawback of these
algorithmic systems is that they rely solely upon machine-
detected signatures and statistical anomalies for the purpose
of spotting malicious activity. Each of these techniques has its
own shortcomings when it comes to automatically detecting
network intrusions without human interference. For example,
misuse detection systems cannot detect new intrusions if their
behavior does not match any of the known patterns, and
anomaly detection systems can be trained slowly over time to
overlook malicious activity. Another drawback of traditional
IDS is that they have a binary status of the network, either
there is intrusion alarm or not, they do not maintain state
information of the network.

These shortcomings call for human interference to obtain
accurate judgements that can resolve time-critical situations.
However, maintaining network situational awareness for the
human expert to aid such judgements is a necessary and
arduous task. Efficient information visualization techniques
are needed to display network traffic information in a way
that maintains this awareness without misleading the human
analyst. Some of the most famous network traffic visualization
tools include NVisionIP [16], and VisFlowConnect [22], and
FlowScan [21]. A problem with these tools is that they provide
no flexibility in changing the displayed attributes. Also color
encoding is of little relevance. Other problems include the fact
that Important attributes are shown only for a single machine
at a time, and trends in traffic volumes across time are not
visualized.

Conti et al. used parallel coordinates to examine the visual
fingerprints left by the attack tool in use in [5] and [6].
This provides insight into the attacker’s methodology and
aids law enforcement forensics Other tools for NetFlow data
visualization and processing include NetFlow Sensor (NFSen)
[11], Stager [18] a web based application for presenting most
types of network statistics, the time-based Network traffic
Visualizer (TNV) [8], BLINd Classification (BLINC) [13],
and NFlowVIs developed by Fischer et al. [10]. More recent

techniques include Secure Decisions’ VIAssist [7], and the
Dalhousie FloVis tools [9].

III. INTERACTION METHODOLOGY

The SiLK tool suite provides great flexibility in the collec-
tion, storage, and analysis of network flow data. This comes
at the price of supporting a large number of command-line
tools and numerous parameters for each. Memorizing the exact
syntax of such commands and the required parameters for each
becomes a tedious task for the analyst especially during time-
critical forensic analysis procedures. An analyst investigating
an attack incident for the purpose of preventing further damage
to the local network, will have too little time to check the
manual for the appropriate parameters to rwfilter, to obtain
the relevant data set from the repository. Therefore, having
an appropriate visual interface to a vital SiLK tool such as
rwfilter, and linking its output directly to the visualization tool,
helps the analyst focus on the analysis task at hand instead
of spending their time and effort in memorizing hard-coded
commands.

During the course of our analysis, we have come to an
understanding of the most commonly used SiLK tools and
their most often utilized parameters and we have included
these in a simple, yet efficient, graphical user interface (GUI),
that can be easily integrated in any information visualization
tool. The advantages of this GUI are several, including the
fact that the analyst is spared from most of the command-line
confusion and from memorizing the order in which parameters
need to be entered.

The GUI will walk the analyst through a series of steps to
specify some of these parameters, acting only as a reminder
for the order in which they need to be specified and sparing
the analyst from memorizing the exact name of each flag (e.g.
–proto rather than –protocol to specify the desired protocol
number). The analyst still has to be aware of the format
of SiLK commands in order to include the more advanced
parameters in the analysis. In that case the GUI gives her
the ability to review the generated SiLK command and edit
it before it is passed to the SSH form and executed on the
UNIX machine. Another advantage is that the GUI spares
the analyst from switching between different platforms when
the visualization tool is Windows-based, as is the case with
ComVis. Figure 1 is inspired from [2], with the modification
that it depicts our proposed framework instead of rwfilter’s
normal flow.

IV. CASE STUDY

An enormous amount of traffic is captured daily on a
typical enterprise network. The task of isolating productive
traffic from background radiation [20] is a challenging one.
We break this task down into three processes which we
test ComVis’ ability to perform: (i) trend analysis, (ii) event
characterization, and (iii) fingerprint generation. The novelty
of the proposed security visualization technique relies in the
use of linked 2D time-based scatter plots along with the
famous parallel coordinates. The greatest advantage of these



Fig. 1. The order of steps in which the GUI guides the user to interact
with the underlying SiLK repository and to load data into ComVis. A tabbed
window is used in which the first tab prompts for rwfilter’s input and selection
parameters, then partitioning parameters are entered using a second tab,
followed by a third tab for display parameters used in rwcut command. The
last tab lets the analyst edit the generated command and execute it.

TABLE I
PART OF SILK OUTPUT DESCRIBING TRAFFIC CAPTURED ON DECEMBER

15TH, 2004.

Date Records Bytes Packets
2004/12/15T08:00:00 17971.30 121098598.67 237319.61
2004/12/15T09:00:00 18728.46 117956277.81 215969.81
2004/12/15T10:00:00 6621.93 30439031.58 70462.56
2004/12/15T11:00:00 10553.46 95623170.15 151840.06
2004/12/15T12:00:00 18881.72 30495363.68 114856.27

time-based 2D plots relies in their ability to narrate how
different security parameters varied across time. A sample
trend analysis scenario is described in section IV-A. Linking
these variations to other parameters, further characterizes the
nature of each security event as explained in section IV-B;
while linking them to the parallel coordinates view leads to
an identifiable visual fingerprint for the attack as shown in
section IV-C.

A. Trend Analysis

An analysis session typically starts with an overview of
trends in the data set; in order to give a contextual feel
of which particular time slots witnessed relevant security
incidents. When did traffic peaks occur? How long did they
last? How much of these peaks was incoming traffic? how
much of it came from sources in foreign countries? are some
of the questions that need to be readily answered by such
overview. We take a sample day from the available traces and
examine ways to extract such information from the data set.

SiLK supports a number of aggregation tools that can pro-
vide statistical overview of a trace. The closest tool to answer
the above questions is rwcount which calculates volumes over
time samples. Table I displays sample results of an rwcount
call with bin-size equals one hour for a day worth of traffic.
Applying traditional visualization techniques on the informa-

Fig. 2. ComVis visualizing SiLK flows captured on one day. A brush is
used to highlight incoming traffic.

tion presented in Table I can improve its readability, but it
still comes short in answering most of the questions sought by
the specialist. Alternatively, we loaded all traffic encountered
on that day in ComVis. Incoming traffic is selected using a
brush, therefore, is displayed in red. The plot shows that the
peak time slots witnessed greater variability in flow duration as
shown in the top left scatterplot. Peak times are very clearly
delineated in this particular view which conveys their exact
start and end times. The top right view plots destination port
on its y-axis. Horizontal lines represent a number of flows
being received at a particular port consecutively. Brushing
such patterns resulted in fan shapes on the parallel coordinates
view. These are most likely to be scanning activity that went
undetected by the data set providers who recorded these flows
as non-scanning traffic [15]. The question of foreign countries
contributing to incoming traffic can be calculated using SiLK’s
rwuniq tool; or, more efficiently, we can add a fifth view in
ComVis that displays a histogram of source country codes.
The brush automatically appears in the new histogram and
our questions are immediately answered. Once such overview
is conveyed to the analyst, zooming in on a smaller range of
ports, IP addresses, or time frames, is a natural next step.

The output of the trend analysis stage is a relevant subset of
data that the analyst loads in ComVis to zoom in on intriguing
events. From there, the most important target for the visual-
ization tool is to convey that an event indeed happened within
the given time frame; and to provide as much characterizing
details as possible about the event to aid forensic analysis.

B. Event Characterization

In this section, we test the ability of our visualization
framework to provide visually identifiable patterns for different
types of scans. Certain trends were found in the data sets
containing scanning activity that makes use of UDP flows.
For instance, several traces have shown great imbalance be-
tween inbound and outbound UDP traffic; with the amount of
outgoing traffic sometimes exceeding double the amount of
incoming traffic. This significant increase in outgoing traffic



should be considered an indication of a possible worm infec-
tion on the home network and must be investigated. Despite
the suspicion raised by such trends, their absence in a data set
does not rule out the possibility of major security incidents.
Therefore, after an appropriate overview of trends is properly
displayed, more focused detection methods are necessary to
spot and isolate instances of malicious activity. In the LBNL
data set at hand, Pang et al. [19] used a heuristic to isolate
scanning behavior, by looking for hosts that visited more than
20 distinct IP addresses from which at least 16 were strictly in
ascending or descending order. Of course this heuristic misses
out all scanning action that targeted less than 20 hosts on the
local network. In this section, we describe how visual patterns
were found in the same traces that can be used to characterize
and isolate different scans.

Despite the strengths of parallel coordinates in fingerprint-
ing individual scanning tools as noted in [5], dealing with large
amounts of trace records can greatly clutter the parallel view
and scanning action becomes impossible to isolate from benign
traffic. This is particularly where the brushing and linking
capabilities of ComVis come handy, as we have found that
port, and sometimes IP address, usage over time gives a less
cluttered view of security events. Once such an event is spotted
in a 2-dimensional view, a brush is used to link this finding
to the parallel coordinates view in which a unique visual
fingerprint is obtained. The generation of such fingerprints
is covered in more detail in the next section. For now, we
give a few sample findings in the data set that were readily
obtained by inspection of the 2D time plots. Figure 3 depicts
an example. A straight line is observed on the 2D plot with
the source IP address at the y-axis and time at the x-axis.
This conveys the fact that a single external IP address, issued
a large number of flows within a small time frame, using four
source ports and targeting one destination port 5000 on a range
of internal hosts. The scan used single packet flows, each
was 29 bytes long and had zero duration. This pattern was
brushed using the 2D scatterplot and linked to the parallel
coordinates plot, which was characteristic of this particular
scan’s behavior; it showed us that the suspected host targeted
a large number of internal hosts hitting the same destination
port on each, namely port 5000.

The above example showed how capable ComVis is of
alerting the user that an incoming attack took place at a
particular instance of time.

C. Scan Fingerprinting

1) ICMP Probes: Since ICMP traffic does not use any
values for source and destination ports, the most relevant flow
fields of interest, when fingerprinting ICMP probes, are ICMP
type and code fields. All ICMP probes that originated from
external hosts, reaching internal destinations, had a number of
common characteristics that we summarize as follows:

• ICMP type field = 8.
• Percentage from total incoming ICMP traffic on that day

is above 75%.

Fig. 3. Incoming UDP scan detected on October 4th. A straight line appears
in the 2D plot (bottom left) which, when brushed, highlights a fan on the
parallel plot (bottom right). The histogram (top right) is used to verify that
no false positives are included and the 2D plot (top left) shows that all flows
have the same byte length.

• Visual fingerprint on parallel plots appears as two fans
coming from sources at opposite ends of the IP address
range and targeting the same destination subrange.

• Byte length = 33 and 37 were used as a main selection
criteria to rule out false positives. i.e. When selected,
these values narrowed down the brushed records to only
those involved in scanning activity.

• Source country codes include Korea and China as the
major contributers at all times.

• Visual fingerprints on 2D plots using start time as the
x-axis and source IP address at the y-axis appear very
similar.

These similarities have led us to create a unified visual
fingerprint among the ICMP daily traffic sets as depicted in
Figure 4. We always included a parallel view, which was found
to be the most characterizing fingerprint of ICMP probes,
along with a histogram depicting the ICMP type of these
probes, and two scatter plots (2-dimensional each) which plot
the source IP’s and destination IP’s behavior across time.

It appears from the visual fingerprints that the sources and
destination are the same. To test this hypothesis, we created
three IP sets containing subnet masks sourcing these probes
during months: October, December, and January. We assume
that these monthly sets will contain a number of common
subnet masks for the attacker IP’s, assuming a 24-bit masking.
The results show that there was a total of 633 distinct attacking
subnets in the data set. Only 2 of which were common across
all three months, 8 common subnets in October and December
alone, 39 in December and January, and 14 in October and
January. Despite these common values, it is quite obvious
that the greater amount of values in each set were distinct.
Therefore, the similarity of the visual fingerprints can be
attributed to the type of scan and the tool in use rather than
the use of particular IP addresses.

2) UDP PortScan: The Internet Assigned Numbers Author-
ity (IANA) maintains official assignments of port numbers



Fig. 4. Visual fingerprints of incoming ICMP probes in December 2004.

UDP port numbers for specific uses. Despite the fact that
IANA does not enforce adherence to these assignments, port
numbers can act as guiding clues about the involved activity
in a captured trace. Table II lists the 10 most popular UDP
ports that were targeted by incoming traces in our data set. The
total number of flows targeted at such ports, their percentage,
whether or not these flows involve scanning traffic (according
to the sensor field), and the associated application or service
for each port are all listed in Table II. Given these guidelines
from SiLK results, we decided to take a look at each of these
port’s activity in ComVis to test the tool’s ability to create
visual fingerprints for activity on relevant ports.

Port 1037 on a single host (131.243.63.32) received the
largest amount of traffic in the available traces. This port
was not targeted by any flows in the 2004 traces. All of its
incoming traffic was received during the three days of January
2005 that we have in our traces. Loading all incoming UDP
traffic on these three days in ComVis and using a brush to
select out port 1037 traffic, we obtained the view shown in
Figure 5. Note the patterns in source IP usage across the three
days. Two source ports were used in the attack (port 53 and
port 9052) as seen in the parallel plot. examining each of
the three days worth of traffic alone in ComVis resulted in
the exact same fingerprint in the parallel plot. A reasonable
explanation here can be the assumption that the attack has
been issued by the same IP addresses, and targeted the same
port on the same machine.

However, this assumption is rejected by creating IP sets
from the subnet masks of the attacking sources (assuming /24
CIDR blocks), we found little similarities in the subnets used.
For instance, 5902 subnets were found on January 6th, and
8486 subnets on January 7th. The intersection set between
the two days constitutes only 55.8% of the january 6th set
and 38.8% of the January 7th set. Given the variability of
sources used, the visual fingerprint created by ComVis must
be attributed to source and destination ports and the attacking
tool’s behavior in diversifying its sources across time.

Port 9875 witnessed longer lasting activity that spanned all
three months. Visual snapshots were taken for each month

TABLE II
MOST COMMONLY TARGETED PORTS IN THE LBNL NETWORK.

Port No. Flows of Total Scanning Application
1037 33,869 49.3% Yes AMS
53 18,702 27.2% Yes DNS

9875 4,996 7.3% No unknown1

5000 2,624 3.8% Yes Sockets de Troie (Trojan)
123 2,145 3.1% Both Network Time Protocol 2

42659 1,024 1.5% No
10002 596 0.9% No rscs2
10003 484 0.7% No rscs3
1027 341 0.5% No calendar access protocol
1026 336 0.5% No win-rpc,

calendar access protocol

Fig. 5. Visual fingerprint of port 1037 activity.

separately. Figure ?? depicts the visual fingerprint of this port’s
activity during October 2004 (a), December 2004 (b), and
January 2005 (c). Despite the variation of trends of traffic in
the three time frames (see the histograms in the lower right)
and the interleaving scanning action involving other ports on
other hosts (top and bottom left views), the visual fingerprint
of port 9875 activity remains the same in the parallel plot
view, and source IP and port usage exhibit similar patterns in
all three shots.

One may argue that the similar fingerprints may signify
a set of attacks issued by the same hosts and therefore are
depicted similarly by ComVis. To rule out this possibility, we
created sets of sourcing IP addresses, using SiLK set tools,
one set for each month’s activity; and examined the amount
of commonality among them. Results have shown that 100
distinct IP addresses issued the flows hitting port 9875 across
the entire data set; only 31% of which were common across
the three sets.

Other ports in our traces have exhibited similar fingerprints
using ComVis visualizations as was the case with the above
examples. For the sake of compactness, we only list a few
ports here and include only the parallel plot view for each in
Figure 6

V. CONCLUSION

The proposed approach contributes to the existing research
efforts in visualizing network security traces in terms of the
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Fig. 6. Visual fingerprints of: (a)port 137, (b)port 1026, (c)port 5000, (d)123,
and (e)10002. These fingerprints were unique for each port across the data
set.

flexible integration of a variety of visualization techniques
with parallel coordinates, which is so far considered to be
the most effective technique in fingerprinting network security
incidents. In addition, the back-end interconnection scheme
between ComVis and SiLK provides support for querying the
repository and obtaining fast analytical results. These advan-
tages, combined with the ComVis features such as composite
brushing, make the proposed approach and its implementation
appealing to network forensic analysis. Future work will focus
on using this approach on large resolution displays to take the
full advantage of visual and analytical capabilities.

ACKNOWLEDGMENT

This work was supported in part by a grant from The Arab
Academy for Science and Technology.

REFERENCES

[1] E. Bethel, S. Campbell, E. Dart, K. Stockinger, and K. Wu. Accelerating
Network Traffic Analytics Using Query-Driven Visualization. IEEE
Symposium on Visual Analytics Science and Technology, 2006.

[2] T. S. Micheal Collins, Andrew Kompanek. Analysts Handbook: Using
SiLK for Network Traffic Analysis. CERT Network Situational Aware-
ness Group, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA 15213-3890, for silk version 0.10.3 edition, November
2006.

[3] CarnegieMellon. http://tools.netsa.cert.org/silk/.

[4] K. Matkovic, W. Freiler, D. Gracanin, and H. Hauser. ComVis: A
Coordinated Multiple Views System for Prototyping New Visualization
Technology. In Information Visualisation, 2008. IV’08. 12th Interna-
tional Conference, pages 215–220, 2008.

[5] G. Conti and K. Abdullah. Passive visual fingerprinting of network
attack tools. In Proceedings of the 2004 ACM workshop on Visualization
and data mining for computer security, pages 45–54. ACM New York,
NY, USA, 2004.

[6] K. Abdullah, C. Lee, G. Conti, and J. Copeland. Visualizing network
data for intrusion detection. In Systems, Man and Cybernetics (SMC)
Information Assurance Workshop, 2005. Proceedings from the Sixth
Annual IEEE, pages 100–108, 2005.

[7] J.R. Goodall and D.R. Tesone. Visual Analytics for Network Flow
Analysis. In Proceedings of the 2009 Cybersecurity Applications &
Technology Conference for Homeland Security-Volume 00, pages 199–
204. IEEE Computer Society, 2009.

[8] J. Goodall, W. Lutters, P. Rheingans, and A. Komlodi. Preserving the
Big Picture: Visual Network Traffic Analysis with TN. Visualization for
Computer Security, IEEE Workshops on, pages 6–6, 2005.

[9] T. Taylor, D. Paterson, J. Glanfield, C. Gates, S. Brooks, and J. McHugh
FloVis: Flow Visualization System.

[10] F. Fischer, F. Mansmann, D. Keim, S. Pietzko, and M. Waldvogel.
Large-Scale Network Monitoring for Visual Analysis of Attacks. In
Visualization for Computer Security: 5th International Workshop, Vizsec
2008, Cambridge, Ma, USA, September 15, 2008, Proceedings, page
111. Springer, 2008.

[11] P. Haag. Nfsen: Netflow sensor. nfsen. sourceforge. net, 2008.
[12] K. Ilgun, R. Kemmerer, and P. Porras. State Transition Analysis: A Rule-

Based Intrusion Detection Approach. IEEE Transactions on Software
Engineering, pages 181–199, 1995.

[13] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: multilevel
traffic classification in the dark. In Proceedings of the 2005 conference
on Applications, technologies, architectures, and protocols for computer
communications, pages 229–240. ACM New York, NY, USA, 2005.

[14] S. Kumar and E. Spaord. A Software Architecture to support Misuse
Intrusion Detection. In National Information Systems Security’95 (18th)
Proceedings: Making Security Real. DIANE Publishing, 1996.

[15] L. B. N. Laboratory and ICSI. http://www.icir.org/enterprise-
tracing/overview.html. Technical report.

[16] K. Lakkaraju, W. Yurcik, and A. Lee. NVisionIP: netflow visualizations
of system state for security situational awareness. In Proceedings of the
2004 ACM workshop on Visualization and data mining for computer
security, pages 65–72. ACM New York, NY, USA, 2004.

[17] T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, C. Jalali, H. Javitz,
A. Valdes, P. Neumann, and T. Garvey. A Real-time Intrusion-detection
Expert System (IDES). SRI International, Computer Science Laboratory,
1992.

[18] A. Oslebo. Stager A Web Based Application for Presenting Network
Statistics. In Network Operations and Management Symposium, 2006.
NOMS 2006. 10th IEEE/IFIP, pages 1–15, 2006.

[19] R. Pang, M. Allman, V. Paxson, and J. Lee. The devil and packet trace
anonymization. ACM SIGCOMM Computer Communication Review,
36(1):29–38, 2006.

[20] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson.
Characteristics of internet background radiation. In Proceedings of the
4th ACM SIGCOMM conference on Internet measurement, pages 27–40.
ACM New York, NY, USA, 2004.

[21] D. Plonka. FlowScan: A Network Traffic Flow Reporting and Visualiza-
tion Tool, November 2000 University of Wisconsin-Madison http://net.
doit. wisc. edu/plonka/lisa. LISA 2000 Conference Proceedings, Dec,
2000.

[22] X. Yin, W. Yurcik, M. Treaster, Y. Li, and K. Lakkaraju. VisFlowCon-
nect: NetFlow Visualizations of Link Relations for Security Situational
Awareness. In Internet Proceedings of the 2004 ACM Workshop on
Visualization and Data Mining for Computer Security (VizSEC/DMSEC-
2004), 2004.

[23] Y. Zhang and W. Lee. Intrusion detection in wireless ad-hoc networks. In
MobiCom ’00: Proceedings of the 6th annual international conference
on Mobile computing and networking, pages 275–283, New York, NY,
USA, 2000. ACM.

[24] Y. Zhang, W. Lee, and Y. Huang. Intrusion Detection Techniques for
Mobile Wireless Networks. Wireless Networks, 9(5):545–556, 2003.


