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Abstract

The realization that we see lines known to be parallel in
space as lines that appear to converge in a corresponding
vanishing point has led to techniques employed by artists
since at least the Renaissance to render a credible impres-
sion of perspective. More recently, it has also led to tech-
niques for recovering information embedded in images per-
taining to the geometry of their underlying scene.

In this paper, we explore the extraction of vanish-
ing points in the aim of facilitating the reconstruction of
Manhattan-world scenes. In departure from most vanishing
point extraction methods, ours extracts a constellation of
vanishing points corresponding, respectively, to the scene’s
two or three dominant pairwise-orthogonal orientations by
integrating information across multiple views rather than
from a single image alone. What makes a multiple-view ap-
proach attractive is that in addition to increasing robustness
to segments that do not correspond to any of the three dom-
inant orientations, robustness is also increased with respect
to inaccuracies in the extracted segments themselves.

1. Introduction
In this paper, we explore the extraction of vanish-

ing points in the aim of facilitating the reconstruction of
Manhattan-world scenes (cf. Coughlan and Yuille [7]), in a
manner most closely akin to that of Sinha et al. [21]. Owing
to the geometry of image formation, a set of lines parallel in
space project to lines in the image plane that converge in a
corresponding vanishing point (cf. Figure 2). Under known
camera geometry, that vanishing point back-projects to a ray
through the camera center itself parallel with the project-
ing lines. Accordingly, if we are able to compute the van-
ishing points corresponding to the scene’s dominant three
pairwise-orthogonal line orientations, we have in our pos-
session normal vectors corresponding to each of the scene’s
dominant three pairwise-orthogonal plane orientations.

In departure from most vanishing point extraction meth-

Figure 1. A Manhattan-world scene with extracted line seg-
ments respectively corresponding to its dominant three pairwise-
orthogonal orientations, identified using our approach.

ods, ours extracts a constellation of vanishing points across
multiple views rather than in a single image alone. Doing so
makes the method more robust both to segments that do not
correspond to any of the three dominant orientations and to
inaccuracies in the extracted segments themselves. By mak-
ing use of a strong orthogonality criterion per view, optimal
segment intersection estimation and a novel tripod fitting
technique, our approach thus allows for the extraction of re-
sults that correspond closely to the dominant three pairwise-
orthogonal orientations of a Manhattan-world scene.

2. Related Work
The literature on the extraction of vanishing points dates

back to the late 1970’s and straddles the fields of pho-
togrammetry, computer vision and robotics. Knowledge of
vanishing points has been put to use in scene reconstruc-
tion, partial camera calibration and the navigation of robots
and autonomous vehicles. Since our focus is on scene re-
construction, however, we direct our attention to extraction
approaches accordingly.
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2.1. Extraction Approaches

Extraction techniques tend to involve what amount to an
accumulation (or grouping) step followed by an estimation
(or search) step, perhaps repeated for some number of iter-
ations. In the accumulation step, line segments are grouped
according to the condition that they come close enough to
sharing a common point of intersection, which is interpreted
as a candidate vanishing point. In the estimation step, one
or more optima are chosen from among the results of the
accumulation step. Finally, a subsequent re-estimation of
the corresponding candidate vanishing points is often per-
formed vis-à-vis their respective inlier segments.

Tessellating the Gaussian Sphere. The Euclidean unit
sphere S2 centered on the camera center C ∈ R3 is (lo-
cally) topologically equivalent to the corresponding cam-
era’s image plane π. One extraction strategy in the litera-
ture involves tessellating this Gaussian sphere and tallying
the number of great circles that pass through each accumu-
lation cell, with maxima assumed to represent the vanishing
points corresponding to dominant scene orientations.
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Figure 2. The projections l1, l2 ⊂ π of two lines `1, `2 parallel in
space converge in a corresponding vanishing point v in the image
plane π. Note that the lines `1, `2 in space have the selfsame ori-
entation as the ray extending from the camera center C through v.
We call that ray the back-projection of v with respect to the given
camera. We call the plane through C and a line ` the line’s inter-
pretation plane. The unit sphere centered on the camera center C
is called the Gaussian sphere.

Barnard [3] was the first to avail himself of the Gaus-
sian sphere as an accumulation space for extracting vanish-
ing points. Quan and Mohr [17] improve upon Barnard’s
approach by carrying out a hierarchical sampling and by
making use of a better tessellation. Lutton et al. [14] first
extract candidate vanishing points using a related sampling
approach and subsequently use a second sampling approach
to choose three vanishing points assumed to correspond
closely to the scene’s dominant three pairwise-orthogonal
scene orientations. Shufelt [20] observes that spurious max-
ima on the Gaussian sphere can arise both on account of

weak perspective effects, and on account of textural effects
leading to segments that do not correspond to dominant
scene orientations. Accordingly, he introduces one Gaus-
sian sphere technique that incorporates a priori knowledge
about the geometry of objects of interest, and another that
incorporates edge precision estimates in the aim of compen-
sating for the influence of textural effects.

The Intersection Constraint. For three lines in the image
plane to be the projection of lines parallel in space, the nor-
mals of their interpretation planes must (ideally) be copla-
nar. This fact motivates van den Heuvel’s [22] introduc-
tion of an intersection constraint for triplets of image seg-
ments. Given n image segments, van den Heuvel clusters
over the subset of the total

(
n
3

)
possible triplets of interpre-

tation plane normals that satisfy his intersection constraint,
with clusters themselves constrained such that each triplet
of interpretation plane normals they respectively contain
satisfy the intersection constraint. Roughly speaking, the
largest cluster is then chosen to correspond to the first van-
ishing point; another two are subsequently extracted, con-
strained to be collectively close to pairwise-orthogonal with
the orientation estimated from the first vanishing point.

The Image Plane as Accumulation Space. Magee and
Aggarwal [15] compute the intersections of all

(
n
2

)
pairs of

lines through image segments and cluster them on the unit
sphere. Rother [18] presents an approach that likewise op-
erates over the set of all such intersections, but instead uses
a voting scheme coupled with single-view constraints on
camera geometry (cf. Liebowitz and Zisserman [12]). Part
of Rother’s contribution is a distance function d(v, s) for
determining the extent to which an image line segment s
corresponds to a given (candidate) vanishing point v.

Expectation Maximization. Košecká and Zhang [10]
cast the problem of extracting the vanishing points corre-
sponding to the scene’s dominant three pairwise-orthogonal
orientations in terms of an expectation maximization (EM)
framework. Pflugfelder [16] introduces his own EM frame-
work, and integrates segment information over a video
stream for a static camera. Advantages of making use of a
video stream include greater robustness to single-frame sen-
sor noise and the ability to incorporate additional dynamic
information that may appear in the scene, due for instance
to human activity or changes in lighting conditions.

Extraction across Multiple Views. Werner and Zisser-
man [23] present a multiple-view approach for extracting
the dominant three pairwise-orthogonal orientations across
k uncalibrated views of the scene. They begin by computing
vanishing points per view assumed to correspond closely
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to the scene’s dominant three pairwise-orthogonal orienta-
tions, which they proceed to match combinatorially across
the k views. They estimate the corresponding orientations
by minimizing the reprojection error with respect to each
corresponding vanishing point’s inlier segments.

Antone and Teller [1] combine a Hough approach with
an EM framework and knowledge of intrinsic camera pa-
rameters to extract candidate vanishing points across multi-
ple views and then match them across cameras. Candidate
scene orientations are found by fitting a plane to line seg-
ment interpretation plane normals. Matching of vanishing
points corresponding to common orientations is then used
to carry out a refinement of relative camera rotations.

Most closely akin to ours is the method of Sinha et al.
[21]. They begin by extracting up to n candidate vanishing
points per view using a RANSAC-based approach (cf. Fis-
chler and Bolles [8]) with support defined in terms of in-
lier count with respect to the distance measure d(v, s) of
Rother; a segment s is an inlier of a candidate vanishing
point v if d(v, s) < TRoth for some threshold TRoth. Once
up to n candidate vanishing points have been extracted in
each of the k available views, Sinha et al. back-project each
candidate vanishing point to its corresponding normalized
direction vector, which they place on a unit sphere. Next,
they cluster the points on that unit sphere, extracting the
cluster center best aligned with the up vector for most of the
cameras. From among the remaining clusters, they obtain
another two, collectively constrained to correspond closely
to pairwise-orthogonal orientations.

2.2. Re-estimation

Given a set Sv of image segments determined to be in-
liers of a candidate vanishing point v ∈ P2, Caprile and
Torre [4] re-estimate v by computing a weighted mean of
the intersections of the lines l ∈ P2 corresponding to the
segments s ∈ Sv. A more accurate approach involves fitting
a point v ∈ P2 to the set of lines l ∈ P2 corresponding to
the segments in Sv by minimizing with respect to point-line
incidence (cf. Collins and Weiss [6], Cipolla and Boyer [5]),
which can be solved using the SVD. It is this re-estimation
approach that we use in our implementation (cf. Section 3).
An approach that produces potentially even better intersec-
tion estimations is the maximum likelihood intersection es-
timation technique of Liebowitz [11], which can be solved
using Levenberg-Marquardt (cf. Lourakis [13]).

3. Implementation
We begin with the recovery of camera geometry for each

of the k available views (cf. Irschara et al. [9]). Individu-
ally in each of those views, we then extract a set of image
line segments S and compute a constellation C of two or
three candidate vanishing points, collectively constrained
to satisfy an orthogonality criterion and individually re-

fined by computing an optimal point of intersection vis-à-
vis candidate vanishing point inlier segments. We then map
the orientations corresponding to those candidate vanishing
points to antipodal points on the unit sphere, given by corre-
sponding unit direction vectors. We proceed to extract three
pairwise-orthogonal orientations—which we expect to al-
ready correspond closely with the dominant three pairwise-
orthogonal orientations of the underlying urban scene—by
fitting a tripod centered at the sphere’s origin to those said
points (cf. Figure 3).

3.1. Extracting a Constellation from a Single View

Individually in each of the k available views, we at-
tempt to extract a pair or triplet of vanishing points that al-
ready come close to corresponding to the dominant three
pairwise-orthogonal orientations of the underlying scene.
We do this in each given view by iterating over a number
N1 of constellations of candidate vanishing points chosen
at random, and choosing the constellation with best support
that satisfies an orthogonality criterion. We then compute
an optimal re-estimation of each candidate vanishing point
v ∈ C of the winning constellation C with respect to the
inlier segments Sv ⊆ S of v.

Candidate Vanishing Points. Given a calibrated view of
the scene and a set S of line segments s that we have ex-
tracted from that view, we compute candidate vanishing
points from the intersections of the image lines l ⊂ R2

corresponding to the segments s ∈ S . We obtain the ho-
mogeneous representation l ∈ P2 of a line l in the image
plane corresponding to an extracted image segment s from
the homogeneous endpoints p1,p2 ∈ P2 of s,

l ∼ p1 × p2. (1)

Given the homogenous vectors l, l′ ∈ P2 that represent the
two lines l, l′ ⊂ R2, we compute the intersection of l, l′

once again using the vector product,

v ∼ l× l′, (2)

yielding the candidate vanishing point v ∈ P2 correspond-
ing to the segments s, s′.

Accumulation. It is the distance measure F (i)
min =

F (i)(̂li) = d2⊥(l,xa
i )+d2⊥(l,xb

i ) of Liebowitz [11] (cf. Fig-
ure 4) that we use in our grouping of segments si ∈ S with
respect to a candidate vanishing point v ∈ P2; accordingly,
given a candidate vanishing point v, we consider each seg-
ment si for which F (i)

min < TLieb to be an inlier of v, and
the set Sv ⊆ S to be the set of all such inliers. Pflugfelder
[16] at length describes the merits of calling on this distance
measure over other distance measures available in the liter-
ature, such as the distance function d(v, s) of Rother [18]
used in Sinha et al.
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(a) Recovery of camera ge-
ometry for the k available
views.

π

C

(b) Extraction of a con-
stellation of two or three
candidate vanishing points
in a single view, constrained
to correspond closely to
pairwise-orthogonal scene
orientations.

(c) Antipodal unit direc-
tion vectors correspond-
ing to the orientations
computed from candi-
date vanishing points ex-
tracted across the k avail-
able views.

(d) The pairwise-
orthogonal orientations
corresponding to the
best-fit tripod.

Figure 3. The processing pipeline of our approach.
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Figure 4. The line l̂i = argminl F (i)(l) is the line through v that
minimizes the quantity d2⊥(l,x

a
i ) + d2⊥(l,x

b
i ) = dai · dai + dbi · dbi

with respect to the segment si. Note that mi is not necessarily the
midpoint of si.

Optimal Intersection Estimation. Given a set of n lines
li ∈ P2, the least-squares point of intersection with respect
to point-line incidence is given by the vector v̂SVD ∈ P2

that minimizes the quantity∥∥∥[l1 · · · ln
]>

v̂SVD

∥∥∥2 , (3)

where each vector li is scaled to unit length (cf. Cipolla
and Boyer [5]). This minimizing vector v̂SVD is the vector
corresponding to the smallest singular value of the singular
value decomposition of the n× 3 matrix

[
l1 · · · ln

]>
.

Orthogonality Criterion. For a pair of candidate vanish-
ing points v1,v2 ∈ P2, our orthogonality criterion requires
that the unit direction vectors d1,d2 ∈ R3 corresponding
to their back-projections be within a tight threshold of or-
thogonality (cf. Figure 3(b)); i.e., |d>1 d2| < Tortho. For a
triplet v1,v2,v3 ∈ P2, we check each pair di,dj , i 6= j,
of corresponding back-projections for orthogonality in the
same manner.

A Constellation’s Vote. Given a constellation C of two or
three candidate vanishing points, its vote is given by

vote(C) =
∑
v∈C

∑
si∈Sv

1− F
(i)
min

TLieb
, (4)

where F (i)
min is, once again, the error of the optimal line l̂i

through the candidate vanishing point v with respect to the
segment si; the set Sv contains all inlier segments si of v,
such that as before, each F (i)

min constrained to be smaller
than the threshold TLieb.

Pseudocode. For each of the k views of the scene, we
extract a constellation C of two or three vanishing points
corresponding to the (ideally) dominant three pairwise-
orthogonal orientations of the scene. We provide the pseu-
docode in Algorithm 1.

Algorithm 1 Extracting a Constellation of Vanishing Points
from a Single View

1: for N1 iterations do
2: take 6 distinct image line segments at random

from S and compute the candidate vanishing points
v1,v2,v3

3: for all 4 constellations C ∈ {{v1,v2}, {v1,v3},
{v2,v3}, {v1,v2,v3}} do

4: voteC ← vote(C)
5: if |C| = 3 yet the constellation with the greatest

vote thus far encountered contains only a pair of
candidate vanishing points, and the constellation
C satisfies the orthogonality criterion then

6: store C as the constellation with best support
7: else if voteC is the greatest constellation vote thus

far encountered and the constellation C satisfies
the orthogonality criterion then

8: store C as the constellation with best support
9: end if

10: end for
11: end for
12: return the re-estimation v̂SVD of each candidate van-

ishing point v in the constellation with best support
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3.2. Optimizing across k Views

A vanishing point back-projects to a ray through the
view’s camera center C whose direction can be given as
either of an antipodal pair of unit vectors. Let the set T—
which we call a tripod—contain three orthonormal vectors
t ∈ R3. Let the set K contain the k constellations C of
two or three candidate vanishing points extracted across k
available views. Let X be the set of antipodal pairs of unit
vectors corresponding to the back-projection of each van-
ishing point from the union of the k constellations C ∈ K.
We proceed by fitting a tripod T to the antipodal unit direc-
tion vectors in X by iteratively rotating the tripod T with
respect to the vectors in X close to the tripod’s axes.

An Iteration of Tripod Fitting. Given, without loss of
generality, a vector t1 ∈ T = {t1, t2, t3} and the set X1 ⊂
X of the unit vectors in X within an angle Taxis of t1, the
mean unit vector µ1 of the vectors in X1 is given by the
normalized sum of all x ∈ X1,

µ1 =
∑
x∈X1

x
/∥∥∥∥∥∑

x∈X1

x

∥∥∥∥∥ . (5)

Let the matrix R1 be the matrix that rotates the vector t1 into
the vector µ1. We treat the denominator of the right-hand
side of (5) as a measure of confidence ω1 =

∥∥∑
x∈X1

x
∥∥ in

the rotation given by R1, the magnitude of which depends on
the cardinality of X1 and on the extent to which the vectors
x ∈ X1 are clustered together. Having also computed the
rotation matrices R2, R3 and weights ω2, ω3 corresponding,
respectively, to the axes t2, t3 ∈ T , an axis t ∈ T rotates
to t′ by our tripod fitting technique according to

t′ =
ω1R1t + ω2R2t + ω3R3t

‖ω1R1t + ω2R2t + ω3R3t‖

=
(ω1R1 + ω2R2 + ω3R3)t

‖(ω1R1 + ω2R2 + ω3R3)t‖

=
At

‖At‖
= Rt.

(6)

In order to express the transformation in (6) in closed form,
we seek the orthogonal matrix R for which Rt gives t′.
By the SVD, we can decompose the matrix A such that
A = UΣV>, where U, V> are orthogonal matrices and Σ is
a diagonal matrix; the orthogonal matrix closest in a least-
squares sense to the matrix A is R̂ = UV> (cf. Schönemann
[19]). For a single iteration of our tripod fitting algorithm,
the tripod T thus rotates to T ′ according to

T ′ =
⋃
t∈T
{R̂t} (7)

Initialization. We run our fitting algorithm k times, once
for a tripod corresponding to the back-projections of the
candidate vanishing points in each of the k available con-
stellations C ∈ K. If a constellation C contains only a pair
of candidate vanishing points, we compute the third axis
of the corresponding tripod T from the vector product of
its first two. Since we demand that our final tripod have
pairwise-orthogonal axes, we orthogonalize every tripod T
that we use to initialize our tripod fitting algorithm. This
reduces to orthogonalizing the matrix T =

[
t1 t2 t3

]
in

the same manner as presented above; i.e., T = UΣV>, and
so T̂ = UV> =

[
t̂1 t̂2 t̂3

]
.

Support. From among k runs of our tripod fitting algo-
rithm, we choose our best-fit tripod from among the k out-
comes based on cosine similarity (cf. Banerjee et al. [2]).
For each of the k outcome tripods T , we compute

γT =
∑
t∈T

∑
x∈Xt

cos(x>t), (8)

which expresses the aggregate cosine similarity between
each tripod axis t ∈ T and every vector x ∈ Xt, and is thus
a measure of the tripod’s support. We accordingly choose
the tripod with best support as our best-fit tripod.

Pseudocode. We obtain a best-fit tripod with respect to
X as the final result with best overall support from among
k runs of an iterative fitting procedure, with each run dis-
tinctly initialized with a tripod corresponding to one of the k
available constellations C ∈ K. The result with best support
is the tripod T that, within N2 iterations of initialization,
yields the highest weight γT . We present the pseudocode in
Algorithm 2.

4. Evaluation
We examine our algorithm’s performance by consider-

ing three Manhattan-world data sets: opera, museum and
ares. We first demonstrate the outcome of a run of our al-
gorithm on each of the three data sets by identifying the re-
spective inlier segments of the vanishing points correspond-
ing to the projection per view of the extracted pairwise-
orthogonal scene orientations (cf. Figures 5, 6 and 7). On
account of lack of space, not all images are shown here; the
complete data sets have been made available on our web-
site.1 We then provide a depiction of the antipodal direc-
tions extracted across all views of each data set, and with
them the corresponding best-fit tripods (cf. Figure 8). We
compare these with the antipodal directions (note that they
are not antipodal in their paper) extracted via the approach
of Sinha et al. [21], numbering—as in their paper—eight

1www.vrvis.at/publications/PB-VRVis-2011-011/
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Algorithm 2 Fitting a Tripod with Pairwise-Orthogonal
Axes to the Antipodal Directions Extracted across k Views

1: K ← the set of k constellations C obtained across k
views using Algorithm 1

2: X ← the set of antipodal unit vectors corresponding to
the back-projection of each candidate vanishing point
contained across all k constellations in K

3: for all k constellations C ∈ K do
4: T ← the set of vectors corresponding to the back-

projections of the pair or triplet of candidate vanish-
ing points in the constellation C

5: if the set T contains only a pair of vectors then
6: T ← T ∪ {t1 × t2}, where t1, t2 ∈ T
7: end if
8: T ← orthogonalize(T ) {the tripod initialization}
9: for N2 iterations do

10: for all 3 pairwise-orthogonal axes t ∈ T do
11: Xt ← all x ∈ X with cos−1(x>t) < Taxis
12: ωt ← ‖

∑
x∈Xt

x‖
13: µt ←

∑
x∈Xt

x/ωt

14: Rt ← the matrix that rotates t into µt

15: end for
16: A←

∑
t∈T ωtRt

17: R̂← orthogonalize(A)
18: T ←

⋃
t∈T {R̂t}

19: end for
20: γT ←

∑
t∈T

∑
x∈Xt

cos(x>t)
21: end for
22: return the tripod T with best support γT

per view; to these, we likewise fit a tripod in our manner,
since their clustering approach anyway does not guarantee
orthogonality in its output tripod. Finally, we compare in-
lier proportions for the three data sets across three runs,
respectively, for both our approach and for our tripod fit-
ting applied to the directions—which we made antipodal—
obtained via the approach of Sinha et al. (cf. Figure 9).

Remarks on Complexity and Parameters. Given n line
segments extracted in a single view, there exist a total of(
n
2

)
∈ O(n2) candidate vanishing points from among which

to choose. The complexity of obtaining the genuinely best-
support triplet of vanishing points from an image thus calls
for iterating through

((n
2)
3

)
∈ O(n6) unique triplets. It is in

order to overcome this crippling complexity that we opt in-
stead to obtain our best-support result in Algorithm 1 from
among a (typically) much smaller number N1 of constella-
tions chosen at random. In this respect, we note that we set
the number N1 to 1000 across all runs and for each of the
three data sets in the evaluation of our algorithm. The pa-
rametersN2 and Taxis in Algorithm 2 were kept the same at

25 and 15◦ (in radians), respectively, between fitting to the
antipodal directions obtained via our method as well as to
those obtained via that of Sinha et al. TLieb in Algorithm 1
was set to 15. Running time was within two minutes for
each respective data set and run on a 2.4 GHz quad-CPU
Windows box with 8 GB of RAM.

5. Conclusion
The problem of extracting vanishing points has remained

an active field of research since the 1970’s, owing primar-
ily to problems of accuracy and robustness. Our method—
tailored to urban reconstruction and most closely akin to
that of Sinha et al. [21]—contributes to the literature by
making use of a combination of a strong orthogonality crite-
rion per view, optimal segment intersection estimation and
a novel tripod fitting technique. Divergence in correspond-
ing antipodal directions obtained per view via our approach
(cf. Figure 8(a,c,e)) motivates the suggestion that small er-
rors in extracted line segments can have a material effect on
the accuracy of vanishing point estimates; fitting a tripod in
our manner to those antipodal directions thus offers a way
to integrate information obtained across multiple views to
yield a close approximation of the three dominant pairwise-
orthogonal orientations of a Manhattan-world scene. In
our experiments, our algorithm gave results that correctly
classified most image segments to respective corresponding
vanishing points and was stable across runs, without param-
eter tuning between data sets (cf. Figure 9, top row). Per-
formance of our tripod fitting approach on the directions
obtained via the method of Sinha et al. (cf. Figure 9, bot-
tom row) suggests that our algorithm could be robust even
to more challenging data sets.
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(a) (c) (d) (f)

Figure 7. The ares data set with its dominant three pairwise-orthogonal scene orientations extracted using our approach, with the inlier
segments of their corresponding vanishing points shown in red, green and blue, respectively. It is provided as a ‘toy’ data set, and serves to
illustrate the relative quality of antipodal directions obtained using our method and that of Sinha et al. (cf. Figure 8(e,f)).

(a) opera (our approach). (b) opera (Sinha et al.). (c) museum (our approach). (d) museum (Sinha et al.). (e) ares (our approach). (f) ares (Sinha et al.).

Figure 8. Antipodal unit direction vectors extracted across all views of the given data set, with the corresponding best-fit tripod shown red.
The tripods obtained using our approach correspond to Figures 5, 6 and 7, respectively.
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Figure 9. Inlier proportions (number of inlier extracted image segments with respect to a vanishing point divided by total number of
extracted image segments) for the three data sets across three runs. The top row corresponds to the results obtained using our approach; the
bottom, to our tripod fitting with respect to the antipodal directions obtained via the approach of Sinha et al. In both cases, the solid lines
refer to the respective run that gave rise to the corresponding tripod in Figure 8; the dotted and dashed lines refer, respectively, to the two
additional runs.
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