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Abstract—In this paper we present a data-flow system which supports comparative analysis of time-dependent data and interactive simulation
steering. The system creates data on-the-fly to allow for the exploration of different parameters and the investigation of multiple scenarios.
Existing data-flow architectures provide no generic approach to handle modules that perform complex temporal processing such as particle
tracing or statistical analysis over time. Moreover, there is no solution to create and manage module data which is associated with alternative
scenarios. Our solution is based on generic data-flow algorithms to automate this process, enabling elaborate data-flow procedures, such as
simulation, temporal integration or data aggregation over many time steps in many worlds. To hide the complexity from the user, we extend the
World Lines interaction techniques to control the novel data-flow architecture. The concept of multiple, special-purpose cursors is introduced
to let users intuitively navigate through time and alternative scenarios. Users specify only what they want to see, the decision which data is
required is handled automatically. The concepts are explained by taking the example of the simulation and analysis of material transport in
levee-breach scenarios. To strengthen the general applicability, we demonstrate the investigation of vortices in an offline-simulated dam-break
data set.

Index Terms—time-varying data, visual knowledge discovery, visualization system design, temporal navigation, multiple simulation runs, data-
flow, dynamic data management
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1 INTRODUCTION

Decision support systems with integrated simulation and

visualization capabilities are rapidly gaining importance in

fields such as industrial engineering and response planning.

However, the decisions the user can make vary greatly

depending on the use case and on local conditions. An

inflexible, hard-to-modify system requires much work to

be done every time the decision space changes. Modern

data-flow systems avoid this issue by offering a modular

architecture that allows the user to add or change simulation

and visualization components through an interactive flow

diagram [1], [2]. In such a graphical interface, the modules

(nodes) are represented as boxes that have input and output

ports (Figure 1a). By changing the connections between

ports and adding new nodes, the system can be adapted as

the situation requires it.

Adding simulation capabilities to data-flow systems

poses interesting new challenges. If a certain simulation

state is requested, the system needs to make sure that

the previous states are already computed. This additional

dependency seems unnatural for data-flow systems because

the data-flow models computation order through connec-

tions only. A similar challenge arises with time-dependent

visualizations. Pathlines, which can be used to study ma-

terial transport, require a whole time span from its inputs.

Again, a simple data-flow connection insufficiently repre-

sents the additional temporal dependencies. The situation

gets even more complicated if decision-support systems

are used to analyze alternative scenarios. The results of

a module can depend not only on multiple time values, but

also multiple alternative parameter values.
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Fig. 1. Investigation of material transport through water in (c)
a levee-breach scenario. (b) World Lines navigate the under-
lying (a) data-flow nodes across time and multiple simulation
runs (visualized as tracks) to calculate (d) pathlines that
describe the transport phenomena in alternative scenarios.

In this paper, we show how we solve all of the above

problems using generic data-flow algorithms. The user can

introduce various simulation, analysis and visualization

functionalities as simple data-flow modules, with the arising

dependencies transparently resolved behind the scenes. For

example, if asked to produce pathlines, the system can

automatically generate the data required by using an in-
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Fig. 2. Definitions. A frame is defined by a time value and
a track. (a) The multiverse is the space of all frames. (b)
The capabilities of a node is a subset of the multiverse and
consists of all frames the node can produce data for. (c) The
jobs of a node are a subset of the capabilities the node has
to generate data for.

tegrated simulation on the fly. The same algorithms allow

the World Lines [3]–[5] (Figure 1b) to be used in classical

visualization scenarios by loading pre-simulated data.

We exploit the data-flow modularity to extend a levee-

breach scenario (Figure 1c) with analysis and visualization

nodes to investigate the material transport through the water

using pathlines (Figure 1d). This data-flow setup is used as

an example throughout this paper in order to explain the

presented concepts.

1.1 Problem Description

During the execution of a data-flow system, each node

calculates and outputs one or more data items. A data item

can be requested for every frame, a coordinate consisting

of a time value and a track which identifies a parallel

world. The space of all frames is a multiverse and can be

represented by a two-dimensional grid (Figure 2a), as we’ll

do in the figures of this paper.

Depending on its type, settings and position within the

network, a node is capable of producing data for a particular

subset of the multiverse. We refer to this subset as the

capabilities of a node (Figure 2b). For example, the terrain

node in Figure 3 generates only one data item, which

represents the static, geometric boundary conditions of the

simulation. The time-dependent simulation and pathlines

nodes are capable of generating data for several frames.

The set of frames these nodes can produce depends not

only on the node itself, but also on the frames for which

input data is present. Thus, we require a data-flow algorithm

to compute what the nodes can produce, and a visualization

to present these capabilities to the user (Q1).

The investigation of alternative scenarios requires the

ability to manually extend the capabilities of a node

(Figure 3, Q2). By default, the levees node in Figure 3

calculates one geometric data item that models the intact

levees of the city. To manually enforce a levee breach,

the node needs to be able to calculate an additional data

item. To be able to explore alternatives as needed, a generic

system for capabilities extension is required.

With the evaluation and visualization of capabilities at

hand, we further require interactive navigation concepts

that let users select what they want to see (Figure 3, Q3).

For this purpose, a mechanism is needed that automatically
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Fig. 3. Challenges when navigating a complex data-flow
system. (Q1) The system lacks a visualization to report what
the view nodes can generate. (Q2) The user needs control
mechanisms to increase the number of data items a node
can produce, e.g., to generate an additional data item in
the levees node that models a levee-breach. (Q3) Intuitive
navigation concepts are missing to let users select what they
want to see. The data-flow network corresponds to the setup
in Figure 1 which has the task to generate pathlines.

assigns jobs to the nodes. A job is a subset of the capa-

bilities which a node has to compute data for (Figure 2c).

In existing systems, the user was responsible for assigning

jobs to each of the involved nodes manually.

1.2 Proposed Solution

Our solution is based on two additional data-flow passes

used to evaluate node capabilities and to enable job as-

signment. The user controls the system via World Lines,

which operate on top of the data-flow. As illustrated in

Figure 4, the multiverse can be mapped onto the visual

entities representing frames that World Lines provide. To

show the user what can be calculated and visualized, the

framework first determines the capabilities of all the view

nodes. In this computation, the data-flow is traversed in

topological order from the source nodes to the view nodes.

This downstreaming of capabilities is illustrated through

grey arrows on the data-flow connections in Figure 4.

After the capabilities of all view nodes in the network are

calculated, their union is highlighted in World Lines.

To allow the user to study alternative scenarios, the node

capabilities can be extended by providing new settings. The

new settings can be introduced at the level of an entire

track or individual frames. For example, in Figure 4 both

the levees and the terrain are defined by a single settings

object valid across the whole multiverse. Should the user

wish to experiment by breaching a levee, this can be done

by branching a new track off the parent track (Figure 5,

S2). The user specifies a new set of settings describing

the breach, valid across the newly created track. The levee

node can then produce two distinct data items, one where

the levees are intact, and another which models a breach.
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Fig. 4. Proposed solution, part one. (S1) A data-flow down-
stream process (grey arrows on connections) is in charge
of computing node capabilities. World Lines visualize the
unified capabilities of the view nodes, i.e., all frames the view
nodes can show.
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Fig. 5. Proposed solution, part two. (S2) The capabilities of
a node can be extended through the specification of track
settings. Interactively, this is accomplished via branching in
World Lines. Here, the user branches with a parameter of the
levees node to model a breach. The extended capabilities are
downstreamed the data-flow to update the World Lines view
with the newly created track.

As can be seen in Figure 5, the extension of the capabilities

triggers another downstreaming pass, causing the World

Lines to update and show the newly available capabilities.

Once the capabilities are shown, the user can perform

interactive job assignment via multiple cursors (Figure 6,

S3). For each view node, the World Lines view provides

an individual cursor. The position of the cursor determines

which frame or frames a view node is to visualize. These

frames are the view nodes’ jobs. The jobs of all other

0:050:02S3. Job assignment
(Interact with multiple
cursors)

Upstreaming 
jobs
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Fig. 6. Proposed solution, part three. (S3) The user tells
the view nodes what to calculate through interaction with
multiple cursors. We utilize a data-flow upstream process
(yellow arrows on connections) which assigns jobs to other
nodes automatically.

nodes are determined by a data-flow upstream process

which guarantees that each node in the network generates

the required information. In this process, the data-flow

is traversed in topological order from the view nodes to

the source nodes. This upstreaming of jobs is illustrated

through yellow arrows on the data-flow connections in

Figure 6. Once the upstreaming is complete, a standard

data-flow pass can be done to calculate all the necessary

data items, and display the results of the calculation.

To demonstrate our solution, we consistently use the

levee-breach scenario throughout the paper. This example

is later joined by two more case studies - a more complex

real-world simulation scenario and a study of vortices in

pre-simulated dam-break data loaded from files.

The contributions of this paper can be summarized as

follows:

• A generic data-flow system which combines modules

that perform complex, temporal processing such as

simulation, integration and aggregation across time

and alternative scenarios.

• Interactive data-flow navigation through World Lines

using multiple special-purpose cursors.

• Data-flow algorithms for automatic node configuration

according to user requests.

• A multiverse hierarchy of settings and computed data

to enable flexible experimentation with all parameters

in a data-flow setup.

• Providing a unified approach to analyzing both pre-

computed data and simulated data produced on-the-fly,

using World Lines as the interface.

2 RELATED WORK

In 1989, Upson et al. [2] published a seminal paper on

the data-flow based visualization system AVS [6]. In the
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following years, this topic received a surge of attention

and several large systems besides AVS, such as IRIS Ex-

plorer [7], the Visualization Data Explorer [8] or VTK [9]

have been developed. The data-flow model is based on a

topologically sorted graph. To generate visualizations, the

nodes are executed in a downstream process, where data

flows from the source nodes to the sink nodes. Each visited

node is in charge of an independent sub-process [10]. From

its input ports, a node fetches all data that is required to

compute the results of the sub-process. The resulting data

items are passed on to connected nodes via output ports.

Temporal processing in data-flows In its original de-

sign [2], the data-flow model cannot encompass complex

algorithms that do any temporal processing such as particle

tracing or statistical analysis over time. However, the man-

agement of time-dependent data in data-flows has seen little

attention. AVS [6] and IRIS Explorer [7], for example, have

no explicit model for handling time. Instead, nodes can have

a time-step setting which calls for a specific implementation

to process different time values, e.g., to load data from files

according to a user-defined time step. In this data-driven

approach, only one time step can be processed at a time

and has to be forwarded by one or more source nodes.

Amira [11] and Avizo [12] support temporal processing

through a global time-value setting which is automatically

assigned to all nodes. In case of intricate data-flows, where

nodes require access to multiple time steps at once, this

system quickly reaches its limits.

VTK [9], including VisIt [13] and Paraview [14], are

based on a demand-driven pipeline as opposed to the data-

driven model where the data only flows downstream. In

the demand-driven approach, users can request data from

the sink nodes. This information is then communicated to

nodes that are further upstream through an additional data-

flow process. Childs et al. [15] exploit this technique to

optimize large data visualization, loading only those parts

of the data which are required to visualize the requested

features. Biddiscombe et al. [16] extend the VTK data-flow

with a demand-driven approach to support nodes which

perform complex temporal processing. In this system, nodes

can request – and consequently access – multiple data items

of different time steps from nodes that are further upstream.

To realize this, the authors suggest a combination of down-

stream and upstream processing. We improve this work by

adding formalisms to the data-flow process, resulting in a

general model which requires very little developer interven-

tion. This leads to numerous improvements, including the

ability to operate in a multiverse setting where data from

alternative scenarios is involved.

Interactive navigation in time The time slider [17] is

the predominant interaction element for time navigation

in media players and audio or video editing tools. This

component has been largely adopted for time navigation

in scientific visualization systems. These systems often

provide multiple coordinated views of the same data set

to let users productively combine the information gathered

from different views [18]. There are different approaches

to accomplish a coordinated time navigation among the

Capabilities visualization

Scope-based settings

Job assignment

Downstreaming capabilities

Downstreaming data

Upstreaming jobs

Fig. 7. Flow chart of the basic steps in the navigation cycle.
Image production involves three data-flow traversals (green)
and three steps in the World Lines view (blue). The only tasks
the user performs are cursor movement (job assignment) and
modification of settings through World Lines.

linked views, if the underlying logic is a data-flow model.

To achieve time synchronization, the time parameter can

be global or can be converted to a node connector and

streamed down the nodes [6]. Voreen [19] relies on a

property-linking mechanism to achieve time synchroniza-

tion between views. In general, there is no visual interface

to achieve a more sophisticated, synchronized navigation

behavior between different views, e.g., to enforce a tem-

poral offset between two views to study the evolution of a

tsunami wave. The comparative analysis of multiple simula-

tion runs could benefit from a time-value synchronization,

if each view is associated with one particular simulation

run, enabling a direct comparison of alternative outcomes

through navigation in time.

Previous work with World Lines involved the extension

of the classic data-flow paradigm with a special meta-flow

used to communicate settings between nodes [20]. This

mechanism and the algorithms of this paper complement

each other, but have orthogonal purposes. The meta-flow

emulates only the most basic features of the presented

algorithms by sharing time values between nodes.

3 OVERVIEW OF THE NAVIGATION CYCLE

In this section, we provide an overview of the most

important components in the multiverse navigation cycle.

The chart in Figure 7 depicts an operational step-by-step

work-flow of the data-flow tasks (green boxes) and World

Lines tasks (blue boxes). The terms used in the paper are

summarized in Table 1.

Downstreaming capabilities The multiverse navigation

always begins with this data-flow process which evaluates

the computable frames of all view nodes. The capabilities

of a node are calculated as an intersection of the capabilities

of its input nodes. This intersection is further modified by

nodes which perform temporal processing. For example,

a simulation node appends frames to show how far the

simulation can proceed.
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TABLE 1
Terms used in the paper.

node data-flow module with input and output ports
input nodes all nodes directly connected to the input ports

output nodes all nodes directly connected to the output ports
settings object collection of node parameters

track user-interface element repr. an alternative scenario
frame coordinate consisting of a time-step and a track,

also the user-interface representation
scope data structure repr. either a frame

(per-frame scope) or a track (per-track scope)
scope set collection of scopes

capabilities scope set repr. data a node is able to produce
jobs scope set repr. data a node is required to produce

cache scope set repr. data a node has produced
settings set scope set repr. all settings objects of a node

Capabilities visualization The capabilities of all view

nodes are transmitted to the World Lines view. World

Lines employ a frame-wise representation to visualize the

received capabilities.

Scope-based settings In this optional step, users configure

the settings of nodes. If the user creates a new branch or a

setting influences a node’s capabilities, the downstreaming

of capabilities is triggered again.

Job assignment Each view node is associated with a cursor

in the World Lines view. If a cursor moves, one or more

frames from the related view node have to be computed.

Upstreaming jobs The user request is communicated from

the view node upstream to all connected nodes in the data-

flow.

Downstreaming data The final step concerns the standard

data-flow execution where each node performs its allocated

jobs to compute all requested data. The navigation cycle

starts anew if the user assigns additional jobs using cursors

or modifies node settings.

4 SCOPES

Before explaining the data-flow algorithms in more detail,

it is necessary to introduce the concepts of scopes and

scope sets. As mentioned before, data-flow connections lack

any sort of temporal or parameter-related information. To

remedy this, almost all the objects in our system have

additional information attached to them in the form of

scope-based structures. Since the design of these structures

has a great effect on the performance and abilities of our

algorithms, they will be explained here in detail.

4.1 Scope and Scope Set

Almost all the objects in our system can be said to occupy

some subset of the multiverse or originate in it. Were it

not for the fact that some changes can be applied to entire

tracks only, we could use frames as the building blocks of

our system. Instead, we define a scope as the basic unit

in the system, and we define it dually: A scope can be

either per-frame or per-track. Per-frame scopes are defined

by a time value and a track and functionally identical to a

frame. On the other hand, a per-track scope encompasses

all the frames belonging to the same track. This definition

a) Multiverse

b) Database (hash table)

c) Scope-set illustration

d) Scope-set data structure

per-track scope

Scope

per-track time value

track id

key :
value:
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data or
settings

per-frame scope

ordered set
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 tr
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Fig. 8. Relations between the multiverse representation (a)
and internal data structures (b,c,d). (b) Data is stored at
different scopes. (a) A per-frame scope (blue) is defined by
a particular time value and track, a per-track scope (green)
covers all time values of a track. (c) A scope set is a collection
of scopes, (d) internally represented by an ordered set of
track structures.

allows us to treat all sorts of changes the user can introduce

to the system the same way in the algorithms that follow.

Examples of scopes are shown in Figure 8a.

Scope sets are defined as a collection of unique scopes.

They can contain both per-track and per-frame scopes, as

can be seen in Figure 8c which illustrates how we represent

scope sets for the explanation of our algorithms. Scope

sets are used to represent how object values are distributed

across the multiverse. The values are not stored in scope

sets - they only serve as a repository of scopes which can be

used as a key to retrieve the actual object values from hash

tables (Figure 8b). For example, the scopes can describe

capabilities, but also data items which a node has computed.

The implementation of scope sets is important to the

performance of our algorithms, making it necessary to stop

considering a scope set a black box. To show the example

of the internal organization of a set, we will use the example

scope from Figure 8c. The insides of this particular set is

shown in Figure 8d. The time-values of all the per-frame

scopes belonging to the same track are stored in a single

ordered set. This set, along with a boolean for the per-

track scope, is stored in a map. The map associates track

identifiers with the track-specific data. To see why sets are

organized as they are, it is time to define the basic operation

that can be performed on scope sets.

4.2 Hierarchical Lookup

The reason why it is possible to have multiple data or

setting values associated with a single node stems from

the hierarchical nature of World Lines. To explore different
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Fig. 9. An example for a hierarchical lookup chain in a scope
set. The input scope is assumed to be at position 1. The
scopes are inspected in the given order

simulation or visualization parameters, the user can create

new tracks by branching off existing ones. However, it

would be impractical if unaffected nodes would perform

unnecessary calculations recreating existing data. In the

flooding scenario, for example, it is not necessary to

recalculate the terrain for every parameter modification. In

this case, the terrain should be fetched from the scope of the

root track, no matter what scope is currently being handled

by the data-flow. This is why every node has a hierarchy

of different values it can produce represented by a scope

set.

Algorithm 1 ScopeSet::hierarchicalLookup

input: Scope scope

output: Scope resultScope

1: track ← scopeSet.getTrack(scope.trackId)

2: while scopeSet.exists(track) do
3: if scope.type==per-frame and

track.hasTimeValue(scope.timeValue) then
4: resultScope.trackId ← scope.trackId

5: resultScope.type ← per-frame

6: resultScope.timeValue ← scope.timeValue

7: return resultScope

8: else if track.containsPerTrackScope then
9: resultScope.trackId ← scope.trackId

10: resultScope.type ← per-track

11: return resultScope

12: end if
13: track ← track.parent

14: end while
15: throw("Scope not found")

When producing new data items from input nodes whose

scopes are not identical to the processing node, a hierarchi-
cal lookup must be performed to retrieve a matching scope.

Figure 9 provides an example for such a lookup chain. At

the beginning, the lookup algorithm searches for the given

scope directly (1). If nothing is found, the lookup continues

in the scope of the track associated with the given scope

(2). From there, the algorithm searches in the parent track,

starting at the scope which has the same time value as

the given one (3). If this scope is not present either, the

scope of the parent track is inspected (4). This recursive

search goes up the track hierarchy until a matching scope

is found (5,6). The implementation of the lookup procedure

0
1

check a in b

2

check b in a

cap(a) Result

cap(b)

Fig. 10. Intersection of two scope sets, cap(a) and cap(b),
implemented as a mutual lookup. The arrows on the left
denote the track hierarchy.

is presented in Algorithm 1. The runtime of the lookup

is of order O(n · logm) where n is the number of tracks

and m the number of time values associated with a track.

It should be noted that this is a worst case analysis. In

common scenarios, the factor n will behave more like logn
because the World Lines tree usually has logarithmic depth.

Our choice for the lookup chain is motivated by the need

for flexible parameter experimentation. In Section 7 we will

demonstrate how to exploit this feature for the animation

of parameters which are valid across many tracks. In the

following sections, we explain how to use scope sets to

evaluate capabilities, to assign jobs and to cache computed

data.

5 CAPABILITIES

The capabilities of a node consists of all scopes for which

the node is able to produce data. While the capabilities of

all nodes have to be calculated, the user is interested in the

capabilities of the view nodes only - the end results that

can be produced.

5.1 Downstreaming Capabilities

At the beginning of the multiverse-navigation cycle, nothing

is known about the results the nodes may produce. Source

nodes can determine their capabilities based on the input

data or settings used, but for all other nodes a downstream

process must be performed. To calculate a node’s capa-

bilities, the capabilities of all of the input nodes need to

be already calculated. Once prepared, they are combined

with the following condition: Any scope that cannot be

matched within the other input nodes’ capabilities has to be

discarded. An unmatched scope signifies that not all input

nodes can provide data necessary to calculate the output at

this scope and thus cannot be part of the node capability.

In mathematical terms, the operation can be expressed

as the scope-set intersection

cap(node) =
⋂

n∈inputs(node)

cap(n). (1)

The intersection operation is performed pairwise, being

both commutative and associative. Figure 10 illustrates

an example to explain the intersection of two scope sets

denoted as cap(a) and cap(b). The related track hierarchy

comprises three tracks, both track 1 and track 2 are a

direct branch from track 0. As shown in Figure 10, it is

implemented as a two-way lookup. We attempt to match
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Algorithm 2 ScopeSet Intersection ∩
input: ScopeSet set[0], ScopeSet set[1]

output: ScopeSet result

1: result ← emptyScopeSet

2: for i = 0 to 1 do
3: other ← (i+1) mod 2

4: for each scope ∈ set[i] do
5: if set[other].hierarchicalLookup(scope) then
6: result.insert(scope)

7: end if
8: if scope.type == per-track then
9: track ← set[i].getTrack(scope.trackId)

10: while set[other].exists(track.id) do
11: otherTrack ← set[other].getTrack(track.id)

12: for each otherScope ∈ otherTrack do
13: if otherScope.type == per-frame then
14: scopeToInsert ← otherScope

15: scopeToInsert.trackId ← scope.trackId

16: result.insertScope(scopeToInsert)

17: end if
18: end for
19: track ← track.parent

20: end while
21: end if
22: end for
23: end for
24: return result

scopes of cap(a) in cap(b), and then scopes of cap(b)
in cap(a). Every scope matched by a hierarchical lookup

(not the found matching scope) is added to the resulting

scope set (see also Listing 2, lines 4-6). The only exception

to this rule are the per-track scopes. Should the lookup

of a per-track scope fail, the scope is decomposed into

per-frame scopes which are matched individually. Any of

the matched per-frame scopes are added to the result as

well. An example of this can be seen in Figure 10, where

the lookups of the two track-global scopes in cap(a) fail

in cap(b). However, the decomposition of the per-track

scopes results in three successful lookups each, which

are added to the result of the intersection. Due to the

unlimited number of possible per-frame scopes, this view

of the decomposition cannot be effectively implemented in

practice. Our optimization is shown in Listing 2, line 8-21.

The runtime of the complete intersection is of order O(2 ·
n2 ·m · logm+ 2 · n2 ·m) = O(n2 ·m · logm) where n is the

number of tracks and m the number of time values in the

larger of the two input scope sets. The first term accounts

for the hierarchical lookups and the second term covers the

special case.

5.2 Visualization of Capabilities

Upon completion of the capabilities downstreaming pro-

cess, we need to report the results to the user. World Lines

are ideally suited to visualize the per-frame scopes present

inside the results. Figures 11a and 11b show screenshots

View ASim

View BPathlines

Integration range = [-5 frames, +9 frames]

View X Adaptive time stepsFile Reader

9 frames

9 frames

‘cut-off’

5 frames

c

b

a

Fig. 11. Frame-wise representation of tracks to visualize
capabilities. (b) Capabilities of node ’View B’, which is con-
nected to the pathlines node, contain less frames than the
capabilities of (a) ’View A’. (c) Visualization of adaptive time
steps loaded from external files.

of World Lines displaying the capabilities of view nodes.

Tracks are always drawn according to when they start

and end, but dark gray borders beginning at frames’ time

values highlight the subset of frames that can actually be

calculated. Adaptive time steps, vital to the performance of

some simulations, are easy to display in this way, as shown

in Figure 11c.

There are cases when some frames cannot be calculated,

such as the one involving the pathlines node in Figure 11b.

This integration node requires access to a certain number

of frames before and after the desired frame. Some frames

at the beginnings and ends of tracks do not satisfy this

condition, which shows as a lack of borders on the track.

If view nodes from both Figures 11a and 11b are present,

World Lines will highlight frames present in at least one

capabilities, making the result look like Figure 11a.

6 JOBS

The jobs of a node are defined as all the scopes for which

the node has to compute data. The user determines these

for the view nodes using cursors. The necessary jobs of

all other nodes are automatically computed in the correct

order.

6.1 Navigation through Multiple Cursors

The notion of a cursor used to select which frame is

visualized was introduced by the original World Lines [4].

The cursor determines the active frame, which is the desired

job of the entire system of linked views. While this concept

has served us well, it has its disadvantages, the primary

being that it is not possible to navigate multiple views for

comparison, each showing different frames. To overcome

this limitation, we provide a cursor for every linked view,

as can be seen in Figure 12.

As with the original cursor, the basic properties of the

cursor include the time value and the World Line. The
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Fig. 12. Navigation using two cursors (a)(b). The World Line
which belongs to the active cursor (b) is colored in blue. The
cursors can be configured and customized.

World Line (blue) is a user-defined path through the tree of

tracks. The cursor’s horizontal position determines the time

value, which defines the frame the cursor is on based on the

information from the World Line. By marking the cursor

as active and moving it, a new job based on the cursor’s

position is created and executed.

A property that was not present in the original cursor

is the list of associated nodes. A single cursor can be

configured to control multiple view nodes at once, issuing

multiple jobs with each movement.

6.2 Upstreaming Jobs

After the jobs have been assigned to the view nodes, the

jobs of all other nodes are automatically evaluated via an

upstream process (Figure 6). For each of these nodes, the

result depends on the jobs of all output nodes. In principle,

a node has to compute data for any scope that is requested

by any of its output nodes. In mathematical terms, this

operation can be expressed as the scope-set union

jobs(node) =
⋃

n∈outputs(node)
jobs(n). (2)

As its name implies, the scope-set union simply merges

all the scopes of its scope-set operands together, avodiding

duplicate entries (see also Listing 3). The union produces a

set of jobs we call output jobs, but which are not necessarily

equivalent to the set of jobs the node must perform. Nodes

with global scopes such as the terrain node only need to

produce one data item regardless of which scopes this data

item is used to calculate. The real scope set of jobs the node

must perform is calculated by performing a hierarchical

lookup of every output job in the node’s capabilities, and

inserting the matching capabilities scope into this scope

set. In this way, the system is guaranteed to produce the

minimum of calculations necessary, leaving no room for

redundancy. The runtime of the scope-set union amounts to

O(n ·m), where n denotes the number of tracks and m the

number of time values in the largest scope set. The ordered

internal nature of the scope sets allows this operation to be

performed quickly.

Algorithm 3 ScopeSet Union ∪
input: ScopeSet set[0], ScopeSet set[1]

output: ScopeSet result

1: result ← emptyScopeSet

2: for each scope ∈ [set[0], set[1]] do
3: result.insert(scope)

4: end for
5: return result

6.3 Downstreaming Data

As soon as we know the jobs of all nodes, the requested

data can finally be produced. In this step, the data-flow

is traversed in a downstream process to execute all nodes.

During execution, a node loops over its assigned jobs to

produce data for each scope inside. If the node has to fetch

data from an input node, another hierarchical lookup is

performed to automatically retrieve the correct data items.

This way, data at per-track scope can be fetched from input

nodes even if the node is processing a per-frame scope. This

is a common use case in the flooding scenario, where the

simulation node has to fetch the static terrain and the track-

specific levees no matter what simulation step is currently

being handled (see also Figure 5).

We employ another scope set, the cache (Table 1), to

remember all scopes for which the node has generated data.

The actual computed data is cached inside a hashtable. This

approach allows for arbitrary caching strategies which are

useful for the task at hand. In our current implementation,

all data is kept due to frequent navigation in time and

across tracks. In order to prevent excessive memory use,

the system is able to swap out computed data to the hard

disk. When a node fetches data from its inputs, the data is

pinned. Pinned data is loaded from the disk if necessary,

and cannot be swapped out as long as it remains pinned.

7 SCOPE-BASED SETTINGS

To study alternative scenarios with World Lines, we require

the ability to manually extend the capabilities of a node.

In the use case of the levee scenario, we want to model

different types of levee breaches. Each breach is modeled

by branching off a new track. Consequently, additional

settings objects are constructed and assigned to the related

levees node. The settings objects are internally treated much

as another input to the node. Like the data items produced

by nodes, each of these receives a scope, and is stored in

a hash table with the scope as a key. When a data value is

calculated, the appropriate settings object is also retrieved

via a hierarchical lookup.

The present settings affect the capabilities calculation.

The scope set of the settings, the settings set, can cause

additional capabilities scopes to be generated. Including the

settings set into the capabilities calculation is simple:

cap(node) =

⎛
⎝ ⋂

n∈inputs(node)

cap(n)

⎞
⎠∩ s(node). (3)
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Fig. 13. Scope-based settings. The root track has key-frames
(white dots) that comprise individual settings for the camera
position. The numbers depict the search path for settings
when calculating the frame indicated by cursor a. The camera
setting of the root track is found. At cursor position b, the
system fetches the camera location defined at the parallel
frame in the root track.

When a new track is created using the World Lines, the

settings set is updated, causing the desired capabilities

extension.

Scope-based settings can be exploited to achieve inter-

esting effects. With the proposed solution, settings can

not only be assigned to whole tracks but to individual

frames too. For example, in Figure 13, we experiment

with time-varying camera positions. Two frames of the root

track define explicit camera locations along the river. As

a consequence of the lookup mechanism, these locations

transfer into child tracks unless explicitly overridden. When

navigating to the frame at the position of cursor b, the scene

is rendered with the same perspective as defined for the

parallel frame in the root track.

To achieve smooth transitions of settings between several

frames, we adapt an interpolation technique based on key-

frames [13]. The frames that explicitly define settings

become key-frames, and the parameter values of frames

inbetween are interpolated. This way, the user can animate

parameters over time. In Figure 13, we apply this func-

tionality to simulate a camera moving along the river. This

animation is present in all the child tracks as well.

8 SCOPE-SET MODIFIERS

The nodes we have used to demonstrate the algorithms so

far are simple nodes (Figure 14a). These nodes process

values from only one scope at a time, and both the nodes

and the node creators are oblivious to the actual scopes

involved. However, with the presented framework, any kind

of time-varying or track-dependent node can be imple-

mented. As an example, we consider a time-interpolation

node which is capable of producing new data for additional

frames through temporal interpolation of its input data. The

evaluation of capabilities according to Equation 1 is no

longer sufficient.

0 1 2 3 4 t

in out

a) Standard
out

World Lines

in

b) Interpolation

# steps to insert = 1

in out

d) Simulation

in out

c) Integration

int. range = [-1,+1]

in out

e) Aggregation

brush:

Fig. 14. Scope set modifiers are nodes which manipulate
their computed capabilities (grey) and assigned jobs (yellow).
A distinction between input (left) and output (right) capabili-
ties and jobs has to be made. The top, left image depicts
the World Lines structure involved. (a) In the standard case,
input and output capabilities and jobs are equal. (b-e) Scope-
set modifiers insert or remove scopes to have access to all
required data.

The left scope set of Figure 14b illustrates the capabilities

intersection the algorithms described so far would produce.

The time-interpolation node is capable of producing more

data. The node notes this by extending the capabilities set

to the one shown on the right-hand side of the node. When

one of the extended capabilities is selected as an output

job, the node has to determine the input jobs necessary

for interpolation manually rather than rely on lookups. The

time-interpolation node is a typical example of a scope-set
modifier which alters its capabilities and jobs.

Scope-set modifiers get a chance to alter their output

capabilities and input jobs after they have been calculated

using the normal algorithms. Although any type of scope-

set modifier can be implemented in our framework, we have

identified certain categories of these that we will describe in

more detail. All nodes in a category share a certain type of

behavior. This allows us to provide a base implementation

which, much like a simple node, reduces the quantity

of scope manipulation that the user must perform to a

minimum. An explanation of how various categories work

can be seen in Figure 14. Some of these also rely on special

types of cursors to ease the manipulation of navigation-

related node parameters. Figure 15 lists the available cur-

sors together with example visualizations.

8.1 Integration

Integration nodes require a range of input data to generate

their output. The aforementioned pathlines module is a

typical example for this node category. In Figure 14c, the
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Fig. 15. Special purpose cursors. The right column displays
renderings corresponding to the active cursors of the left
column. (a) Standard cursor for navigation to a single frame.
(b) Integration cursor to manipulate the integration range of
the pathlines node. World Lines show the capabilities of ’View
B’ only. (c) The user increases the forward integration time,
consequently less frames can be produced for ’View B’. The
rendered lines become longer. (d) Brush cursor to select
multiple frames for comparative analysis.

integration range is set to one time step in both forward and

backward direction. Thus, the first scope of the root track

and the last scopes of the two tracks are removed from the

input capabilities to form the actual, modified capabilities.

If jobs are assigned, the node inserts further scopes to

request input scopes that cover the complete integration

range.

The integration cursor can be used to visualize and

control the integration range of an integration node. To

achieve this, the cursor is attached a red ribbon that follows

the World Line (Figure 15b) associated with the cursor. The

ribbon forms a stair-case pattern if spanning multiple tracks

of the World Line. The users can drag the knobs of the

component to extend or shorten the integration range. In

Figure 15c, the user increases the forward time. The image

to the right shows the effects on the pathline rendering.

8.2 Simulation

Nodes of the simulation category can produce an unlimited

amount of per-frame data. The data is produced from initial

and boundary conditions supplied through input nodes.

In Figure 6, the simulation node receives the boundary

geometries from the terrain and the levees nodes. These

dependencies often remain static within a track, i.e., a

specific simulation run. The simulation node modifies the

capabilities, outputting only per-frame scopes based on

track start times and track durations. If jobs are assigned to

the node, causality needs to be accounted for. All the frames

causally preceding the desired frame have to be simulated

before it, and are thus inserted into both the input and the

output jobs. The input jobs in Figure 14d are represented

by yellow borders since they are not a subset of the input

capabilities, and the new output jobs are represented by

blue dots.

8.3 Aggregation

The frame-wise representation of node capabilities in World

Lines supports the interactive specification of a brush, i.e.

a selection of frames, through a rubberband tool. Brushed

frames receive a thick, green border on their top and bottom

sides (see node inlay of Figure 14e). The brushing mech-

anism supports a comparative visual analysis of multiple

frames. Aggregation nodes can receive a brush in order to

compute an analytical or visual representative of all data

items marked by the brush. The buildings in Figure 15d,

for example, are colored according to the dangers posed to

them in the selected frames.

Internally, the brush is converted into a scope set which

replaces the original input jobs (see left of Figure 14e).

This way, the node has access to all input-data items

required to compute the aggregation result. The brush
cursor can be used to move the brush along with the

cursor (Figure 15d). This is useful if we want to monitor

the temporal evolution of many tracks to, e.g., inspect the

robustness of an ensemble simulation.

9 ADVANCED NAVIGATION TOOLS

The data-flow algorithms we’ve described so far allow us

to transparently and efficiently perform any calculation the

data-flow allows us. We can use this property to design

complex interactions without having to worry about what

they will involve. As mentioned before, a cursor can

be associated with a list of views in order to navigate

their nodes synchronously. In this case, the affected nodes

receive jobs for the computation of exactly the same frames.

There are cases where the analyst is interested in inspecting

the temporal evolution of nodes that are offset to each other

with respect to time or parallel worlds. This is useful, for

example, to monitor the evolution of several simulation

scenarios in several views side by side (Figure 16).

For this purpose, the concept of nested cursor grouping

has been developed. A cursor group is formed through se-

lection with a rubberband tool. Every action that is applied
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Fig. 16. Cursor grouping supports the synchronous com-
parison of material transport in three different levee-breach
scenarios. The cursor group consists of three integration cur-
sors, each of which has its own World Line. When moving the
cursor group, the linked views display the temporal evolution
of the pathlines synchronously.

to one cursor of the group modifies all other members

too. In a context menu, the user can specify whether the

contained cursors should share a common World Line or a

common time value or both. Figure 16 shows a group of

three integration cursors to generate pathlines. All cursors

share a common time value, but each of them has its own

World Line to enable animated, comparative inspection of

parallel worlds in three views. By moving the cursor group

forward in time, we can compare the evolution of pathlines

for three different levee-breach locations. Cursor groups

can also be further nested, i.e., included into other groups

in order to define complex view-linkage behavior. The

important thing to note is that behavior such as this, where

several frames are requested from a single node at once,

would be incredibly difficult to perform with a normal data-

flow system. By improving the underlying system, we have

thus succeeded in improving the visualization capabilities

of the system as well.

10 CASE STUDY

To highlight the fact that our system is modular and useful

for various problem types, we prepared two quite different

case studies. Both of these use the data-flow algorithms to

produce results that would have been significantly harder

to obtain without the support our system provides.

10.1 Vortex Analysis of Pre-simulated Data

In this case study, we are given the data produced by a

fluid simulation of a breaking dam consisting of 88 adaptive

timesteps. The goal of the study is to analyze the vortices

present in the fluid. Several visualization tools are present

at our disposal: slices, pathlines and isosurfaces of λ2 (a

measure for vortex strength [21]). While we can combine

these to create single images, with World Lines we can

use the branching functionality to record the user work-

flow during visual analysis. In this respect, the contribution

is similar to the VisTrails approach [22] which utilizes

a graph-based representation of the analysis steps. The

basic purpose of the VisTrails history-tree is to return the

system state to previous states which can be regarded as

a sophisticated version of undo/redo functionality. There

are no flexible, time-dependent navigation tools, nor is it

possible to synchronously compare the results obtained at

different steps of the recorded work-flow. These limitations

are not given if using World Lines for the analysis of time-

dependent data.

To begin with, we create two additional tracks in the

World Lines view that comprise different isovalue settings.

The two isovalues are chosen so that they highlight areas

of different vortex strength. Figure 17c and Figure 17d

visualize the isosurfaces (red) related to the two λ2 values,

giving a good idea of the vortex structures contained. In

addition to the isosurfaces, we add the pathlines to help

understand the flow surrounding the vortices better. The

time span they involve is controlled and shown by the

integration cursor. To provide a visual context, we render

the free surface of the simulation data in a transparent blue

color. For an overview on the area, we show a slice image of

λ2 in Figure 17b. This slice is also embedded in Figure 17a.

When navigating in time, we find that the vortex struc-

tures move significantly in vertical direction. To catch

the features within the slice image, the vertical offset of

the slicing plane needs to be adjusted. To remember the

optimal positioning for each time value, we assign scope-

based settings to the related frames of the root track (see

key-frames in World Lines of Figure 17). Hereby, the

slicing plane automatically assumes the optimal offset when

navigating in time and across tracks.

The ability to record the exploration path using scope-

based settings provides the basis for a thorough, compara-

tive analysis of different parameters. In combination with

the navigation through multiple cursors, we were able to

quickly identify relevant vortices in the data. Moreover,

results were easily reported to other users by navigating

the recorded work-flow. By examining the work-flow, the

user can see where and why the decision to use a different

visualization parameter was made.

10.2 Movement of Swept-Away Vehicles

In the second case study, we decided to examine the

problem of vehicle-caused danger during a flood. Our

partners have provided us with the data necessary to create

a scenario based on a real town’s flood protection system,

seen in Figure 18. A river prone to flooding flows through

the town, and mobile walls are used to stop the water from

spilling into the town.

However, these mobile walls are not perfect defenses,

and should they fail or break, a torrent of water may spill

into the town. The danger becomes much greater if heavy

mobile objects such as cars are not removed, as the water

may carry them at high speeds, causing much damage. The

goal of the study is to try and determine which cars would

be the most dangerous if not removed.
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Fig. 17. Vortex analysis in a pre-simulated scenario of a breaking dam (screenshot). (a) The overview renders the free surface
of the water while embedding (b) a slice of λ2. Green colors highlight areas of high vortex strength, red colors depict low
values. (c,d) Two views compare isosurfaces for different λ2 values which are calculated for track 1 and track 2, respectively.
Since vortices move vertically over time, we adjust the slice position through key-frames.

Given a fixed distribution of cars, we experiment with

an unknown breach location to see the dangers posed by

car movement. From the data-flow point of view, the data

is provided via a simulation node which produces data on

demand. To visualize how the cars move, we employ a

node which displays the movement paths of the cars as a

line, colored according to distance moved. This node is an

integration node, requiring the simulation node to produce

both future and past frames of the visualized frame. It

then connects the individual car positions computed by the

simulation using a B-spline. In that sense, the node does

not perform any numeric integration, but from a data-flow

perspective, it acts like an integration node. We employ

three views in parallel, showing three breach locations,

which can be seen in Figure 19.

As the user navigates across different time values, the

same view produces all three images, causing three integra-

tions to happen. In turn, these cause the simulation node to

produce any data that is missing. All of these actions are

invisible to the user, who moves a grouped cursor and sees

the images update.

11 EVALUATION

The evaluation of the algorithms described in this paper

proved to be troublesome because of their nature – if they

work as they are intended to, the user is not aware of their

presence. The only manifestation of their use is the ease

with which additional functionality is integrated. Therefore,

we evaluate whether the various features our algorithms

enable would be useful to domain experts, whether they

would consider using them, and whether the more advanced

interface elements are intuitive.

Our first interviewed expert is a renowned hydrologist

performing research related to flood simulation. The dis-

cussion revealed that to him, modularity can be seen as

the most important feature. Many institutes studying flood

simulations have their own simulation engines, and would

prefer to use a system capable of integrating them easily.

Our base simulation implementation allows this to be done

with a minimum amount of effort. Another feature that

caught his eye are the pathlines, which he would like to

use to visualize and analyze transport of material such as

driftwood or leaking oil.

We also engaged a second expert, another hydrolo-

gist, specializing in flood modelling. The second study’s

multiple and integration cursors struck him as useful for

the purpose of examining and comparing the data. The

presentation aspect of the system shown in the first study

also proved interesting, as a way of animating and showing

the evolution of multiple attributes of interest, such as

soil moisture. Both the pathlines and the car lines bear

resemblance to his current field of study: the transportation

of sediments along riverbeds. An echo of the first expert’s

comments could be heard when asked if he would consider

using the system: yes, but on the condition that a specific

simulation engine could be used.
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Fig. 18. The simulated scenario used in the second case
study. The river that flows through the town (a) is held at bay
by the mobile protection walls (b). The parked cars pose a
great danger if still present when a flood happens.

Aside from the two in-depth conversations summarized

here, the system and coincidentally the algorithms have

been presented to a number of experts and potential users.

They all liked both the navigation enabled by World Lines

and the advanced functionality brought by the scope-set

modifier nodes, but also wanted to be sure that their simu-

lations and use cases could be adapted to be used alongside

these. Given that it is the algorithms of this paper that

make this possible by allowing the time- and multiverse-

dependent nodes to be interchangeable and modular, we

consider it a proof for the relevance of our system.

12 PERFORMANCE

In the following subsections, we try to quantify the over-

head of our approach as well as the memory it saves.

12.1 System Overhead

There are two sources of overhead within the presented

system - the capabilities and the jobs calculation. As

Table 2 shows, the capabilities update is the more expensive

of the two. However, capabilities change rarely and an

interactive response is not necessary for a streamlined user

experience. Given that the data-flow of the swept-away

vehicles simulation is very complex (55 nodes, 10 tracks,

600 timesteps), the measured time needed is a very positive

result.

The jobs calculation is performed with almost every

action the user makes. It is thus crucial that its cost is

insignificant compared to the time necessary to execute a

job. The timings in Table 2 confirm that this is the case.

The measurements shown there are performed when the

user moves the cursor ahead one frame, with the previous

frame already computed. After a cold start of the system,

the jobs calculation can take significantly longer (up to

3ms in case of the Moving Vehicles case). This is because

every node needs jobs to be assigned to it, and in case of

a simulation node, the number of jobs can be quite large.

However, even in this case, the jobs calculation is a minimal

overhead, comparing favorably to the execution time. With

more precise simulations using a better resolution and more

time, the system overhead becomes even less significant.

12.2 Memory Savings

One of the biggest advantages of the system is that addi-

tional computations can be avoided thanks to our hierar-

chical approach. As we are not aware of another system

with similar capabilities, we compare it to a naive system

computing all the data for each requested frame.
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TABLE 2
Performance timings for the two case studies

Case
Study

Update
Capabilities

Update
Jobs

Execute
Simulation

Execute
Remainder

Vortex
Analysis

8.5 ms 0.13 ms N/A 3.97 s

Moving
Vehicles

84 ms 0.3 ms 10 s 2.7 ms

TABLE 3
Memory usage for the vortex analysis for a single frame

Data Type
Input
Data

λ2
Free

Surface
Path
Lines

Isosurface Total

Size (MB) 76 2.5 2.8 0.02 1.3 82.62

Table 3 lists the memory size of the individual data

objects for a single frame. Assuming the three tracks from

the vortex analysis case, the naive system would require

three times the total amount, or 247.86MB. Thanks to the

hierarchy, only the isosurface has to be recomputed for the

different tracks. Therefore, with the presented approach,

only 85.22MB are used, which is a reduction to one third

of the memory used by the naive system.
In case of the Movement of Swept-Away Vehicles case

study, the memory savings are marginal as the memory

consumption is dominated by the simulation data. This

data differs from track to track, and only small amounts of

memory can be saved using our approach. This example

highlights that both system and memory overhead are

mainly dependent on the use case and the user interaction.

Our system is designed to improve performance wherever

it is possible.

13 CONCLUSION

The data-flow pipeline is known as the most generic ar-

chitecture for modular visualization environments. Indeed,

many modern systems are built upon the data-flow ap-

proach [9], [12], [13]. Even though all of these systems

have some capabilities of working with time-dependent

data, none provide a generic formalism for the automatic

management of time-varying data. A strategy to handle

alternative scenarios as induced by multiple simulation runs

is also largely missing. As a result, either programmers

or users have to make sure that nodes can access data

from all time steps required to compute the requested

results. In this paper, we have shown how to extend the

data-flow model with algorithms which enable elaborate

data processing across many time steps and alternative

outcomes. By combining the new data-flow model with

the interactive exploration power of World Lines, the com-

plexity of temporal and multiversal processing is hidden

from the user. Intuitive navigation concepts let users easily

choose what they want to see, and internally, the work load

is distributed to the nodes automatically.
All of the discussed features have been implemented in

Visdom [23]. The framework supports simulation nodes,

different kinds of temporal integration nodes such as path-

lines or streak surfaces and many forms of data aggregation.

Extending Visdom with new time-dependent nodes requires

little effort from the programmer, because the management

code resides in the core of the system. With the presented

concepts, World Lines can now be used to explore parame-

ter spaces of any node, not only those of simulation nodes.

The ability to cache and visualize computed results for

different parameters in form of interactive tracks and frames

enables a flexible comparative analysis of parameter spaces.

Even though the current implementation is single-

threaded, the presented concepts do not prohibit paralleliza-

tion. To the contrary, the explicit computation of jobs and

their dependencies allows for parallelization based on jobs

and not just on nodes. This can have a huge impact on

computation time as nodes can already start computing

results when their input nodes are still running. In a

decision-support system, this gives the user the possibility

to analyze simulation data while the simulation itself is still

running and producing results.

Another limitation of our current implementation is a

lack of a caching strategy. Even though we are able to

control the memory usage by swapping out data to the hard-

drive, we do not swap data based on frequency of use, nor

delete data that could be easily recomputed. Introducing

a cache manager would be simple, as the current design

supports data eviction, and regenerates data automatically

when needed. As future work, we therefore plan on study-

ing various caching and eviction strategies.

The data-flow is a splendid example of modular architec-

ture. By simply adding and connecting nodes, the user can

integrate diverse functionalities into the desired processing

scheme. In our opinion, the greatest contribution of our

work is that it allows complex components such as simula-

tions, integrations or interpolations to be introduced in the

same way as the simplest filter node. It was not impossible

to add these before, but the amount of work necessary to do

so has been lowered significantly. Easier experimentation,

in conjunction with the presentation abilities, can contribute

to the interesting work currently happening in the area of

ensemble simulations and uncertainty visualization. There

exist many different application areas where these tech-

niques could be used - traffic simulations, computer fluid

dynamics, and climate research being just some examples.

We hope that our approach will help the spread and reuse

of advanced visualization techniques.
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