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Figure 1: Our new method improves the rendering performance of the Percentage Closer Soft Shadows method by exploiting the temporal
coherence between individual frames: The costly soft shadow recalculation is saved whenever possible by storing the old shadow values
in a screen-space History Buffer. By extending the shadow map algorithm by a so-called Movement Map, we can not only identify regions
disoccluded by camera movement, but also robustly detect and update shadows cast by moving objects: Only the shadows in the areas marked
red in the right image have to be re-evaluated. This saves rendering time and doubles the soft shadow rendering performance in real-time 3D
scenes with both static and dynamic objects.

Abstract

We propose a novel way to efficiently calculate soft shadows in
real-time applications by overcoming the high computational effort
involved with the complex corresponding visibility estimation each
frame: We exploit the temporal coherence prevalent in typical scene
movement, making the estimation of a new shadow value only nec-
essary whenever regions are newly disoccluded due to camera ad-
justment, or the shadow situation changes due to object movement.
By extending the typical shadow mapping algorithm by an addi-
tional light-weight buffer for the tracking of dynamic scene objects,
we can robustly and efficiently detect all screen space fragments
that need to be updated, including not only the moving objects
themselves, but also the soft shadows they cast. By applying this
strategy to the popular Percentage Closer Soft Shadow algorithm
(PCSS), we double rendering performance in scenes with both static
and dynamic objects – as prevalent in various 3D game levels –
while maintaining the visual quality of the original approach.
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1 Introduction

Shadows are employed in nearly every real-time 3D game that hits
the market these days: They not only improve the quality of the ren-
dered scene, but also contribute to a better scene perception. Still,
most game engines apply only hard shadows (with filtered edges)
and abstain from physically plausible soft shadows with varying
penumbra sizes due to the high performance impact.

The main reason for this is the complexity of the visibility problem
that is induced when area light sources are used instead of simple
point lights. In order to calculate a physically exact soft shadow
solution, either an infinite number of point light source samples
distributed over the area light source would have to be taken and
accumulated, or the visibility of the light source for each visible
fragment in screen space has to be evaluated [Sintorn et al. 2008].
Single-sample soft shadow approaches try to approximate this the-
oretical solution by calculating a hard shadow first, and apply a blur
filter kernel that is based on an approximation of the occluders be-
tween the light source and the shadowed surface. While methods
like Percentage Closer Soft Shadows (PCSS) [Fernando 2005] or
Back-projection techniques [Guennebaud et al. 2006; Guennebaud
et al. 2007; Atty et al. 2006; Aszdi and Szirmay-Kalos 2006;
Schwarz and Stamminger 2007; Baoguang et al. 2009] achieve
a quality level that is hard to distinguish from a physically cor-
rect shadow, the computationally expensive occluder analysis in the
pixel shader makes them prohibitively expensive to use in today’s
games.

Recently, various publications tackled the problem of reducing the
computational effort for expensive operations in the pixel shader
by introducing a so-called history buffer to exploit temporal coher-
ence [Nehab et al. 2007; Scherzer et al. 2007; Sitthi-amorn et al.
2008a; Sitthi-amorn et al. 2008b]. The main idea is to re-use the
calculated pixel values over several consecutive frames by storing
them in a screen-space buffer and reprojecting them into the next
frame. If the reprojected value is still valid (i.e. the fragment depths
between the two frames is below a given threshold), it can be used
to either omit a costly re-calculation or to improve the image qual-
ity.



In this work, we propose to combine the idea of reusing data from
previously rendered frames with the expensive calculation of per-
ceptually convincing soft shadows with varying penumbra size (see
Figure 1): Soft shadow intensities calculated with the PCSS al-
gorithm are stored in a history buffer and potentially reused in
consecutive frames. In case of shadows generated by area light
sources, this task can not be fulfilled with a simple per-fragment
depth comparison, as moving objects cast complex shadows on
completely different regions in the scene. We therefore propose
a simple and easy-to-implement enhancement to the shadow map
generation step, allowing shadows that have become invalid to be
detected with a single texture lookup. We further discuss the issues
introduced during the buffer reprojection, the limitations concern-
ing moving light sources, and give details on our implementation
and the achieved results.

2 Related Work

We give a short overview on publications related to our work. We
refer the interested reader to the book recently published by Eise-
mann et al. [Eisemann et al. 2011] and to [Hasenfratz et al. 2003]
for an in-depth overview on real-time (soft) shadows, and to a state-
of-the-art report on temporal coherence techniques in real-time ap-
plications by Scherzer et al. [Scherzer et al. 2011].

2.1 Real-time Soft Shadow Mapping

The Shadow Mapping algorithm is an image-based algorithm pro-
posed by Reeves et al. [Reeves et al. 1987] in 1978, and has been
extended and adopted in numerous further publications. The basic
idea is to first render the scene from the position of the light source
and store the depth values in a texture, called shadow map. This
discrete scene representation, containing the distances to all sam-
pled surface points illuminated by the light, is then used in a second
pass rendered from the point of view of the camera to calculate the
shadow value: Each visible fragment is transferred to light space,
and the distance to the light source is compared to the value stored
in the shadow map.

Although being fast and easy to use, this algorithm suffers from
aliasing and undersampling artifacts. Shadow filtering methods
like Percentage Closer Filtering (PCF), where the distance is also
compared to the neighboring values in the shadow map to gener-
ate a “shadow percentage”, or pre-filtering techniques like Variance
Shadow Maps [Donnelly and Lauritzen 2006], Convolution Shadow
Maps [Annen et al. 2007] or Exponential Shadow Maps [Annen
et al. 2008b] reduce this artifacts by blurring the shadow edges.
Apart from reducing the artifacts, the introduced “softness” of the
shadow is also perceptually more convincing than hard shadow bor-
ders, since nearly all light sources in reality have a certain extent.
Still, these blurry shadows do not reflect the fact that the size of the
penumbra (the “half-shadowed” area, from which the light source
is partly visible) varies depending on the distance relations between
the light source, occluders and receiver.

In order to simulate more accurate soft shadows with varying
penumbra sizes, Backprojection techniques ([Guennebaud et al.
2006; Guennebaud et al. 2007; Atty et al. 2006; Aszdi and Szirmay-
Kalos 2006; Schwarz and Stamminger 2007; Baoguang et al.
2009]) use a single shadow map not only for depth comparison, but
employ it as a discretized representation of the scene. The visibility
factor for a screen-space pixel is calculated by back-projecting the
shadow map texels onto the light source, where the amount of oc-
clusion is estimated. These approaches produce perceptually con-
vincing results in many cases, but are prone to artifacts and require
a costly blocker search in the shadow map.

Figure 2: The PCSS algorithm: By estimating a penumbra width
based on light size, average occluder distance and receiver distance
(see Eq. 1), the filter kernel size is adapted, generating visually
plausible varying penumbra sizes.

Percentage Closer Soft Shadows (PCSS) [Fernando 2005] extend
the PCF filtering method to support variable kernel sizes in order to
simulate varying penumbra sizes (see Figure 2, right): An average
blocker distance zavg is first calculated by searching for values in
the shadow map that are smaller than current pixel’s depth within an
initial kernel. Under the assumption that blockers and receiver are
planar and in parallel, the penumbra size wpenumbra is estimated
based on similar triangles (see Figure 2, left) using the relations
between pixel depth zreceiver and light source size wlight , and the
filter kernel is adjusted accordingly:

wpenumbra = wlight
(zreceiver − zavg)

zavg
. (1)

While the approach is comparably easy to implement and produces
visually pleasing soft shadows, the vast amount of texture lookups
(blocker search + large filter kernel) have a negative impact on ren-
dering performance. We therefore propose a way to overcome this
expensive calculation by exploiting temporal coherence techniques
(see Section 2.2). Based on this idea of an additional blocker search
for the estimation of the penumbra filter kernel size, adoptions of
the prefiltering techniques mentioned above have been proposed to
follow the PCSS pipeline [Yang et al. 2010; Annen et al. 2008a].
While the achievable performance of prefiltering techniques is su-
perior to a simple PCSS version, the implementation and handling
is rather complex.

2.2 Data Caching / Temporal Coherence

Reusing data from previous frames by reprojecting it into the cur-
rent frame has been independently proposed by Nehab et al. [Ne-
hab et al. 2007] and Scherzer et al. [Scherzer et al. 2007], and is
referred to as Reverse Reprojection. The idea is to store per pixel
information in an off-screen buffer - the so-called history buffer,
payload buffer or simply cache. This buffer is viewport-sized and
filled for all visible rasterized surface points. In consecutive frames,
the cached data is reprojected according to the scene motion, and
reused in the current frame whenever possible: By comparing the
stored depth against the current depth (within a given tolerance), it
is decided whether the pixel was visible in the previous frame, and
the data stored in its buffer location can usually be safely reused (ex-
cept for changes in the shading signals, e.g. a moving light source,
specular highlights, etc.). In disoccluded regions or areas that lay
outside the view frustum in the previous frame, the information has
to be recalculated. It has to be pointed out that due to the lookup in
the history buffer and the corresponding resampling, a reprojection



error is introduced whenever the viewpoint changes, see Section
3.3.

Depending on the application, the reprojected data can be used to
improve both image quality [Scherzer et al. 2007; Scherzer and
Wimmer 2008; Yang et al. 2009] and performance (by either reduc-
ing the need for expensive recalculations [Nehab et al. 2007; Sitthi-
amorn et al. 2008a; Sitthi-amorn et al. 2008b], or by distributing
expensive calculations into multiple frames [Scherzer et al. 2009]).
Reiner et al. [2012] use a similar cache structure to increase the ren-
dering performance in an interactive procedural modeling system.

2.3 Temporal Coherence and Shadows

Temporal Coherence in shadow calculation has been scientifically
discussed twice: Scherzer et al. [Scherzer et al. 2007] exploit tem-
poral coherence to converge to pixel-correct hard shadows. And in
Scherzer et al. [Scherzer et al. 2009], the costly calculation of phys-
ically correct soft shadows is spread over multiple frames, so that
the accumulated shadow values in the history buffer converge to the
exact solution. In contrast to these publications, we concentrate on
increasing rendering performance for plausible soft shadows, and
suggest a stable solution for dynamic scene objects - an unsolved
issue for both proposed techniques.

3 The Algorithm

We describe how to combine the idea of exploiting Temporal Co-
herence with the generation of soft shadows using the PCSS method
(Section 3.1). Especially the robust updates of soft shadows cast by
moving scene objects (Section 3.2) and the handling of the recon-
struction error introduced during the reprojection (Section 3.3) are
non-trivial issues and require special considerations.

3.1 Shadow Reprojection

We closely follow the Reverse Reprojection pipeline in order to
reuse soft shadow information (see Figure 3): Each fragment’s
shadow value, computed via PCSS (implemented exactly as in the
NVIDIA PCSS white paper [Kevin et al. 2008]), is not only used to
illuminate the corresponding scene surface, but also stored together
with the clip space scene depth in a 2-channel off-screen viewport-
sized history buffer (which is set as a second render target). If the
depth test as described in Section 2.2 passes, the old shadow value
is reused. Since reading the old buffer information and writing the
new data in the same rendering pass is not allowed on current GPUs,
we use two buffer textures and switch them in ping-pong style. As-
suming a static scene configuration, the costly PCSS evaluation has
to be only performed in regions of disocclusions or in areas which
have previously been outside the screen borders after camera move-
ments, significantly reducing the rendering load: Instead of a min-
imum of 16 texture lookups for the blocker search and the filtering
step each, only a single bilinear lookup in the history buffer has to
be executed.

3.2 Detecting Moving Objects

Whenever an object in the scene moves, the shadows cast on this
object as well as the shadow cast by it change, so that the corre-
sponding fragments in screen space cannot be reconstructed from
the history buffer and need to be recalculated. The invalidation of
shadow information that is cast on a dynamic object is trivial, as
these fragments automatically fail the depth test described in Sec-
tion 3.1. For the shadows cast by dynamic objects onto static ob-
jects anywhere in the scene, this depth test is completely irrelevant
(as of course no change in depth is induced by shadows), making

camera
movement 

previous frame (n-1) current frame (n)

History Buffer (2-channel texture)

depth shadow amount 

depth
comparison 

reproject

calculate 
new shadow

Figure 3: Shadow reprojection: Depth and soft shadow amount
from frame n − 1 are stored in the History Buffer. In frame n,
the buffer is reprojected, and the depth values are compared. If an
occlusion (marked red) is detected, a new soft shadow value has
to be estimated using the PCSS algorithm; otherwise, the stored
shadow can be re-used.

the invalidation a much more complex task, especially in the case
of soft shadows (see Figure 4).

Figure 4: Shadows from moving object. Left: Correctly shadowed
scene of a moving toy airplane using PCSS. Right: Naive reprojec-
tion using depth comparison only recognizes that the shadow on the
airplane needs to be updated, but does not indicate the need for a
shadow recalculation in the regions marked with red ellipses.

For this reason, we extend the shadow mapping algorithm by stor-
ing not only the depth from the view of the light source, but also
the information whether an object is currently moving, in a light-
weight binary mask buffer with the same size as the shadow map.
This buffer is set as a second render target, and can therefore be
written to in parallel to the depth map. We use an 8 bit buffer and
output a value of “1” (which is stored as “255”) in the shader for a
texel where a moving object is visible, and “0” otherwise, and refer
to this buffer by calling it Movement Map (see Figure 5). By look-
ing up this information during the shadowing pass with a prelimi-
nary texture fetch, it can immediately be decided whether a shadow
recalculation is necessary for the fragment, or if the history buffer
should be investigated. Additionally, shadow values in whose cal-
culation moving objects have been involved are marked as such in
the history buffer, so that they get updated when the dynamic object
casting the shadow has “moved on”, avoiding the shadow leaving a
“trail” (see the accompanying video for a demonstration of the ro-



Figure 5: Shadow mapping extension for dynamic objects. Left: A
scene with a static palm, casting a shadow onto the moving toy air-
plane. Middle: The depth map as known from the shadow mapping
algorithm. Right: The corresponding Movement Map, indicating
regions in which a moving object casts a shadow. Note that by
rendering dynamic objects first, the parts of the airplane that are
occluded by the palm can be stored as well. After the moving ob-
jects are stored, mipmaps are generated and used for an efficient
lookup during the shadowing pass.

bustness of this method even when objects in the scene are moving
very quickly).

A problem with this approach lies in the concept of using only a
single hard shadow map for the generation of physically plausible
soft shadows through filtering. The information regarding moving
objects is only valid for the original hard shadow, and needs to be
extended to reflect the penumbra region, i.e. the region that is partly
visible from the area light source. We divide the penumbra itself
into two regions that require special attention: the inner penum-
bra, representing the part that lies inside the hard shadow borders
and is connected to the fully shadowed umbra region, and the outer
penumbra, extending the hard shadow and fading out until the sur-
face is fully lit. The problems associated with these regions are (see
also Figure 6 and Figure 7):

(I) Inner penumbra of static objects: The inner penumbra of a
static object lying closer to the light source than a moving
object on the same “light ray” will block an update of the
area the moving object cast a shadow on, as the value in the
movement map is “0” (see blue ellipse in Figures 6 and 8).

(II) Outer penumbra of moving objects: Whenever an objects
moves, the approaching soft shadow is larger than the
“tagged” area in the movement map described above (see red
ellipse in Figures 7 and 8). It would therefore be necessary
to search for information in the map within a given radius
through costly texture lookups, annilihating the algorithmic
speedup gained by using the history buffer as described in
Section 3.1.

We solve these two difficulties by refining our strategy on how the
movement map is filled and used: By first rendering all moving
objects into both the depth map and the movement map, then re-
leasing the movement map as a render target, and finally rendering
the remaining objects, the fragments of the misleading static ele-
ments (problem I) are not depicted in the movement map anymore,
ensuring that all inner penumbra regions are updated correctly. At
the same time, the depth map itself represents the scene with the
correct ordering of objects and depth values as usual.

In order to solve problem II with the outer penumbra of moving
objects, we exploit the fact that (in contrast to the depth map) the
movement map can be prefiltered, and use the hardware-accelerated
mipmap generation procedure to efficiently create an image pyra-
mid of the movement map. Since we use an 8 bit buffer, a value of
“255” leaves a footprint over at least 5 mip levels using the pixel-
averaging mipmap generation algorithm, which proved to be suf-

ficient in all our tests (in case of a 10242 depth map, level 5 rep-
resents a search radius of 32 texels). This allows us to search for
a moving object within a given radius by simply checking if the
value of a texel in the desired mip layer is larger than zero with
only a single texture lookup. The selection of the correct mip level
is equivalent to the calculation of the initial occluder search radius
in the PCSS algorithm (see Equation 2), and is estimated by taking
the area light source size wlight (in UV space) and the distance of
the fragment zreceiver to it into account [Kevin et al. 2008]:

rsearch =
wlight ∗ (zreceiver − dNearplane)

zreceiver
(2)

Note that the size of the light source in UV space wlight is a cus-
tomizable parameter and has to be set by the programmer according
to scene scale and is “something you can change with artistic prefer-
ence” [Kevin et al. 2008]. The corresponding mip level of a shadow
map with size wSM can thus be found by evaluating

lmip = dlog2 (2 ∗ rsearch ∗ wSM )e, (3)

where wSM is the shadow-map resolution. With the movement map
prepared this way, we can efficiently and robustly detect soft shad-
ows of dynamic objects for any fragment in screen space, allowing
us to quickly decide whether a new shadow value has to be cal-
culated due to object movement, or if the history buffer should be
checked for reusable data.

3.3 Reconstruction Error

Reprojecting the history buffer from the previous frame to the cur-
rent one always comes at the cost of a certain reconstruction error in
case of camera movement. This problem is equivalent to transform-
ing a 2D image, and requires resampling of discrete data. Since the
best available native reconstruction filter on today’s graphics hard-
ware is bilinear interpolation, state-of-the-art publications in the
area of temporal coherence [Scherzer et al. 2011] advise to sam-
ple the history buffer accordingly, as most of them reuse the stored
data only for one or a few frames.

While this strategy may be sufficient in many use cases, we have
made the observation that keeping and reprojecting shadow values
for several hundreds or thousands of frames using bilinear interpo-
lation introduces an amount of additional softness in the shadow
that is noticeable in certain scene configurations. Interestingly, this
yields both positive and negative aspects for the soft shadows (see
Figure 9):

• The additional blur leads to a reduction of banding artifacts
that can occur when the penumbra size is large and not enough
samples are used during the PCF step. By applying our pro-
posed reprojection strategy, these artifacts disappear automat-
ically after a few frames.

• Unfortunately, the blurriness falsifies the penumbra size dras-
tically in contact areas, where shadow casters and shadow re-
ceivers touch each other. In such regions, the shadow is nearly
a hard shadow (i.e. there is hardly any penumbra visible), and
the introduced softening is therefore visually disturbing.

Depending on the scene configuration it can therefore be necessary
to make sure the accumulated reprojection error does not become
too large in order to avoid “oversmoothing”. We have evaluated two
strategies to overcome the problem (see Section 5 for details):

Using third-order (bicubic) texture sampling by manually imple-
menting it as a shader function, the amount of blur introduced dur-
ing the reprojection is significantly smaller, retaining small penum-
bras. Note that the applied bicubic filter has to reconstruct the his-
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Figure 6: Problems with inner penumbras of static objects: In a scene with static objects
only, the movement map stays empty (a). If a moving object enters the view frustum of the
light source (b), and static objects are rendered prior to moving objects, the data in the
movement map is not properly set as seen in Figure 5 due to z-buffering! This prevents a
proper update and causes artifacts in inner penumbra regions of static objects (blue ellipse).
See Figure 8 for a visualization of the artifacts caused by such special scene configurations
as well as the results in Figure 11 for an example on how to correctly handle these cases.
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Figure 7: Problems with outer penum-
bras of moving objects: If only a sin-
gle lookup in the highest mip level (i.e.
the “hard shadow” boundaries) is used
to evaluate shadow updates, the outer
penumbra regions of moving objects
are not properly updated (red ellipse).

Figure 8: Artifacts in the penumbra regions (as explained in Fig-
ure 6 and Figure 7) that are removed by our movement map gener-
ation strategy (see the results in Figure 11 for a proper handling of
these cases).

tory buffer by interpolation, and not by approximation, as other-
wise the shadow information “loses energy” and becomes unusable
within a few frames. Unfortunately, this makes the use of an opti-
mized B-Splines filter with only 4 bilinear texture fetches as pro-
posed by Sigg and Hadwiger [Sigg and Hadwiger 2005] impossi-
ble. Instead, we implemented a Catmull-Rom interpolation with
16 nearest neighbor texture fetches for the history buffer lookup,
which is used in frames whenever the camera has moved. While
this conceptually solves the problems with the reprojection error,
the application is only feasible if a high-quality PCSS version with
more than 16 texture lookups is used (e.g. 64 for the PCF step) –
or if future generations of GPUs support a corresponding bicubic
texture sampling in hardware.

Alternatively, a refresh strategy as described in [Scherzer et al.
2011] can be used to update the bilinearly reprojected texels be-
fore the accumulated error becomes noticeable. By dividing the
screen into groups in a grid, tiled regions can be updated periodi-
cally using a global clock. An amortized sampling strategy ensures
that newly calculated shadow values do not completely replace the
old ones, but that they are gradually blended, avoiding visible tran-
sitions caused by the update pattern.

Although refreshing the fragment pixels reduces the achievable per-
formance speed-up factor by approximately 10%, we opted for this
solution in most of our application scenarios, as it is highly config-
urable, simple to implement, predictable and stable. Bicubic texture
sampling has a larger performance impact and reduces the achiev-

Figure 9: The blur introduced by bilinear reconstruction has both
positive and negative effects. Top Row: Typical PCSS band ar-
tifacts (left) disappear after the camera has been moved and the
shadow has been reprojected several frames (right). Bottom Row:
Shadows in “contact regions” with a small penumbra (left) become
too soft due to reprojection (right).

able speedup by about 20% on today’s graphics hardware. Still, the
decision on whether the reprojection error needs to be minimized
and what strategy is applicable depends on the scene configuration,
the area light source size, the amount of movement and the desired
shadow quality.

4 Implementation

Our proposed technique to increase the rendering performance of
the PCSS algorithm can be implemented on all current shader-based
rendering frameworks. We have implemented the algorithm in a
C++ framework using DirectX10 for testing and evaluation pur-
poses. Based on the PCSS example provided in the NVidia white
paper [Kevin et al. 2008], we render the depth map into a 32 bit
render target with a size of 10242, and simultaneously use an 8 bit
texture render target of the same size as the movement map. Note
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Figure 10: Benchmark comparison of different scenes (see the accompanying video for a visual analysis of the recorded benchmarks). The
standard PCSS algorithm, our new method with a tiled update strategy, and our new method with bicubic reprojection have been tested
(FullHD resolution, 64 samples for both the blocker search and in the filtering step). In all three scenes, the same camera path has been
used for the walkthrough. In the first frame of the recording, the history buffers have been filled with data from preceding frames. Left: In a
static scene, where only the camera was moving, an average speedup factor of 2.5 could be achieved. Middle: In a scene with both static and
moving objects (representing a typical game scene), the average performance was increased by factor 2. Right: Even in a scene with only
dynamic shadow casters, the scene could be rendered at 130% of the speed of the PCSS version.

that conceptually, it would be sufficient to simply use a DirectX
Depth-Stencil Resource to save both the depth and the movement
information, but due to API limitations, we have to use two separate
render targets: The first issue is that a depth resource can only store
depth values between 0 and 1, but the original PCSS algorithm uses
linear depth values. Secondly, no mipmaps can be generated for a
DirectX stencil buffer resource.

For the history buffer, we use two screen-size texture resources with
two 32 bit channels each, where one texture is set as a render target
and stores the current information, and the other acts as the lookup
buffer for the information from the previous frame. After each ren-
dered frame, the two textures are swapped (“ping-pong”). While in
the first channel of the history buffer the current shadow value is
saved, the second channel stores the depth and (encoded by a neg-
ative sign) the information whether the shadow originates from a
moving object. The usage of such screen size buffers is related to
deferred shading approaches that have become a popular method in
today’s 3D games, and does therefore well integrate in such render-
ing systems.

5 Evaluation and Comparison

We have tested our algorithm in three different scenarios in
terms of necessary shadow updates and visual quality (see Fig-
ures 10 and 11): First, we evaluated our method in a completely
static scene, then replaced some objects by moving toy airplanes,
and finally tried to challenge our algorithm with a scene where all
shadow casters are moving. In these three scenes, we used exactly
the same camera path for the scene walkthrough. The system used
for the tests consists of an Intel Core i7 920 CPU with 6GB of RAM
and a Geforce GTX 580 GPU. See also the accompanying video for
a visualization of the results (we also demonstrate the robustness of
our approach with a very fast-moving shadow caster there).

We compared three different algorithms per scene in our bench-
marks: The standard PCSS algorithm, our method with a tiled re-
gion update strategy, and our method with bicubic reprojection (see
Section 3.3). In the PCSS step, we used 64 samples for both the
blocker search and the filtering step, allowing us to simulate a large
area light source with visually plausible penumbras. The screen
view port was set to a resolution of 1920x1080 (FullHD) for the
benchmarks.

As can be seen in Figure 10, our proposed algorithm outperforms
the standard PCSS algorithm in all three scenarios. It is easily com-
prehensible that the greatest performance improvement (250% of
the PCSS frame rate) can be achieved whenever most of the shadow

values in the scene can be reused (i.e. the scene is static). Still, a
significant performance boost (130%) can even be gained in a fully
dynamic scene where all shadows cast by the moving objects have
to be recalculated! This effect can be explained by the fact that
shadowless regions (in contrast to the standard PCSS algorithm)
do not need to perform the costly blocker search at all, but can
rely on the information in the movement map that is fetched with
a single texture lookup. In a scene with both static and dynamic
objects, comparable to situations often found in 3D games, the av-
erage frame rate is doubled.

In general, our proposed method benefits from the computational
complexity inherent in the chosen soft shadow algorithm: the more
expensive shader instructions can be saved through the reprojec-
tion, the higher is the speed-up. The relative performance boost
would therefore be even higher in a PCSS version with 128 tex-
ture lookups for the blocker search and 128 lookups for the PCF
filtering step, but lower when using a version with only 32 lookups
each. Note that the chosen PCSS light source size itself cannot be
seen as a direct influence factor for the prospective performance, as
the evaluation of pixels to recalculate takes place in screen-space
only: The camera position and the scene configuration have a sig-
nificantly larger impact (e.g. if the camera is very close to a penum-
bra region of a dynamic object, nearly the whole screen has to be
updated in the next frame – even if the light source itself is compar-
atively small).

As demonstrated in the close-up images of Figure 11 and the ac-
companying video, the perceivable differences between the differ-
ent algorithms are negligible and hardly noticeable. Even if shad-
ows in contact areas become softer than the PCSS version due to bi-
linear reprojection, the tiled region update strategy combined with
amortized sampling quickly covers up the introduced blur within a
few frames.

6 Discussion and Conclusion

We have presented a new method to accelerate the computation-
ally expensive PCSS algorithm by exploiting temporal coherence
techniques and by extending the shadow-mapping algorithm by a
so-called movement map – a light-weight 8 bit buffer storing the
location of moving objects in light space. By pre-filtering this map
through mipmap generation, it can be easily decided with a single
texture lookup whether the soft shadow value stored in a screen-
space history buffer can be reused or has to be re-estimated.

The algorithm is easy to integrate into an existing rendering frame-
work, and can be robustly used for all kinds of different scenes.
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Figure 11: Top Row: Result screenshots from the benchmark scene with static and dynamic objects. Left: PCSS, 169 FPS. Middle: Fast
PCSS with tiled updates and amortized sampling strategy, 384 FPS. Right: Fast PCSS with bicubic reprojection of the history buffer, 360
FPS. Bottom Row: Close-up views of critical areas (contact shadows, overlapping penumbras) show that the achievable visual quality of our
new approach is nearly equal to the quality of the significantly slower PCSS version.

The achievable performance gain (between 250% in static scenes
and 130% in fully dynamic scenes) comes at the cost of memory
consumption, though: Apart from the 8 bit buffer for the movement
map, two more 32 bit 2-channel screen-size buffers have to be allo-
cated for the history buffer.

A limitation of our proposed algorithm is its application in scenes
with moving light sources: While our algorithm can robustly han-
dle such cases by setting all values in the movement map (i.e. in
the “view frustum”) of the light source to “255”, obviously no
speedup can be achieved. In this worst case, our algorithm is mini-
mally slower (2-5%) than the standard PCSS algorithm, as it has to
perform the mipmap generation and the additional movement map
lookup. In scenarios with both static and moving light sources (e.g.
with a static sun light source from above, and a headlight on a car
driving around in the scene), using our method can still improve
rendering performance: as long as the moving light source does not
force an update of all fragments in screen space, at least the soft
shadow from the static light source can be efficiently reused.

It has furthermore to be pointed out that the due to the varying
amount of pixels that need to be updated, the frame rate of our ap-
proach is not as constant as when using the original PCSS method
(see Figure10). This may be of concern whenever the overall ren-
dering performance of the application is close to a critical threshold,
e.g. 30 FPS.

We hope to be able to extend our idea to further soft shadow algo-
rithms in order to make their use feasible in 3D games and appli-
cations – especially the real-time calculation of physically correct
soft shadows in dynamic scenes is still a challenge yet to be solved.
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