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ABSTRACT
This paper demonstrates how to use multiple
KinectTM sensors to map a performer’s motion to mu-
sic. Skeleton data streams from multiple sensors are
merged in order to compensate for occlusions of the per-
former. The skeleton joint positions drive the performance
via open sound control data. We discuss how to register
the different sensors to each other and how to smoothly
merge the resulting data streams and how to map position
data in a general framework to the live electronics applied
to a chamber music ensemble.
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1. INTRODUCTION
In 2006 Peter Burwik and the XXth Century Ensemble Vi-
enna (exxj)1 started a project with the goal of developing
an interactive environment for a dancer and an instrumen-
tal ensemble, interacting through live electronics. The main
idea was to track the dancer’s movement and to use the
motion data for the control of live electronic sound trans-
formation of the ensembles instrumental playing. At early
experimentation stage Peter Burwik invited Johannes Kretz
to participate and consequently to develop the technical ba-
sis for further improvement. Since Kretz became director
of the Center for Innovative Music Technology (ZiMT)2 of
the University for Music and Performing Art Vienna, “exxj”
and ZIMT cooperated in several concerts.

2. OBJECTIVES
The particularities of the project require a tracking system
with the following characteristics:

High Precision A relatively high precision of motion
tracking is needed, because even small movements of
the dancer should have noticeable effects on the acous-
tic results. This is due to the fact that when cham-

1http://www.exxj.net/
2http://www.mdw.ac.at/zimt/
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ber musicians play contemporary music, the sensitiv-
ity and accuracy of the musician’s actions and their
sounding results are usually extremely subtle and ac-
curate. Therefore a system which would require rela-
tively large movements of the dancer (in the range of
20 cm or more), would create a disturbing imbalance
between the expression of the dancer and the ensemble
and therefore not deliver satisfying artistic results.

Low Latency For the same reason, the latency of the sys-
tem should be relatively small, so that the causality
of the acoustical effects introduced by the dancer’s
movements are obvious to the audience.

Ease of Use The system should ideally be easy to set up
and to transport (for tours of the ensemble). The per-
former should be able to move freely, without cables
or unwieldy tracking targets.

Low Cost As always, total costs are a determining fac-
tor. Most commercially available motion capturing
systems cost $10.000 and more. We wanted an in-
expensive system consisting of easily replaceable, off-
the-shelf components.

3. PROPOSED SOLUTION
After experimenting with Local Position Measurement
through radio waves [12] and optical infrared tracking with
rigid-body targets [9], we finally decided to explore a sys-
tem of connecting multiple Kinect sensors, which is less ex-
pensive than the above mentioned systems (by magnitudes)
and still offers a reasonable quality and stability of tracking
data.

The inexpensive Kinect sensor [7] has already been pro-
posed as a musical interface device [13], and it does not
require any rigid-body targets, which improves the visual
aesthetics of the performance a lot.

For our project we use skeletal information from the sen-
sor, especially the position of the skeletons extremities:
head, hands, and feet. The Microsoft KinectTM SDK pro-
vides real-time segmentation of the sensors depth images
into one or maximally two skeletons, but cannot overcome
the sensors inherent shortcomings: if not all joints of the
tracked person are visible, missing joint information is at
best inferred by the software (in most cases an approxima-
tion based on visible surrounding joints), but in many cases
just marked as ”not tracked”. While these drop outs are
an inherent property of all optical trackers, most non depth
camera based trackers reduce the occurrence of occlusions
by using multiple cameras in the first place. By using more
than one sensor, we can reduce occlusion and improve the
stability of our tracking set-up (Figure 1).
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Figure 1: Physical set-up of the performance. Two
sensors at 90°to each other extend the working vol-
ume of the trackers.

Previous work [1, 6] has shown that employing multiple
Kinect sensors with overlapping tracking volumes works,
albeit at reduced precision. By mechanically shaking the
sensors relative to each other, the interference between the
sensors can be reduced, but this method produces too much
acoustic noise for use in musical performances. These inter-
ference rises with the number of sensors, respectively their
projected infra-red patterns, but can be minimized by keep-
ing the sensors axis at a minimum angle to each other. For
our purposes, we have determined that an angle of about
90°works in satisfactory way, both with respect to sensor
interference and to occlusion reduction.

4. MERGING SENSOR STREAMS
Since we now have two or more data streams from non-
collocated sensor origins, we have to merge these redundant
streams into one stable skeletal data stream. For this, there
are two steps in the processing queue, where we could merge:

4.1 Merging point data
The Kinect sensors deliver depth images at a resolution of
640× 480 pixels at 30Hz. These images can be interpreted
as point clouds in 3D space. When the position and orienta-
tion of multiple sensors is known, their point clouds can be
merged to a single cloud. This resulting cloud can then be
treated to similar segmenting and skeletonizing operations
as the ones normally applied to the source depth images.
Such a method is used by iPi Soft [5] in their motion cap-
turing product. Their results are impressive, but their im-
plementation works only in an offline post-processing step,
while we need a real-time response with minimal delay.

Wilson et al. [14] have used merged point clouds for in-
teraction, but are using only the minimally necessary in-
formation for collision detection on planar surfaces, thereby
avoiding the generation of a skeleton completely.

Since we did not have neither time nor resources to im-
plement a new real-time skeletonizing algorithm for merged
point clouds, we opted for merging the already segmented
skeleton data streams.

4.2 Merging skeleton data
Since Microsoft’s KinectTM SDK [7] delivers up to two full
skeleton data streams per sensor in real-time, merging the
already skeletonized data seemed to us to be a sensible and
- given the time constraints - quickly implementable ap-

proach. While Kinect depth images contain about 40.000
pixels per person, the data of a complete skeleton con-
tains only the 3D positions of 20 joints, a more manageable
amount.

Since the skeleton data stream from the Microsoft SDK
is already filtered by Holt Double Exponential Smoothing
[2], which delivers satisfactory results, we refrained from
implementing our own post-filter for the position data.

Naive merging, which we implemented first, just takes
the mean of all available data points the sensors deliver for
a specific joint. While this approach works fine most of
the time, it also leads to jumps in the output values every
time a sensor loses a joint or resumes tracking it. These
jumps result from systematic errors depending on body and
limb orientation relative to the different sensors (visible in
Figure 3).

To compensate these systematic differences, we used a
simple empirical approach: we smoothed the difference vec-
tor resulting from a vanishing or re-appearing skeleton joint
over a small time interval (<300ms), thereby converting
sudden jumps in output values to a short period of drift
(Figure 2).
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Figure 2: Interpolated merge of points.

Figure 2a shows the merged point P̄t at time t as geo-
metric mean of At, Bt, and Ct, the three joint positions
delivered from the three sensors at time t.

Figure 2b shows the mean after B vanishes, e.g. by sensor
B being occluded. The merged point P̄t+1 jumps to the new
position along vector v.

Figure 2c shows the result of linearly interpolating the re-
sults position along vector v from time t to t+ n: the same
result position as in figure 2a is reached after n intermedi-
ary steps, avoiding a sudden jump in the resulting merged
position.

Points P1 and P3 normally change position during the
interpolation interval [t, t + n], so that the final position
P̄t+n in b) is of course not the same as P̄t+n in c).

In detail, this means that the position vector ~p of P is

calculated from the joint position vectors ~a, ~b, and ~c:

~pt =
~at +~bt + ~ct

3

and at time t+ 1, when sensor B has dropped out:

~pt+1 =
~at + ~ct

2

which leads to a difference vector of:

~v = ~pt+1 − ~pt
and the interpolation from t to t+ n is calculated as:

~pt+i =
~at+i + ~ct+i

2
+

(
n− i
n

)
~v

A higher order interpolation is possible, but would only lead
to complications when another change in sensor data avail-
ability should happen during the interpolation interval. If



this happens now, the calculation simply restarts, using the
last valid state of the interpolation output instead of ~pt to
calculate ~v.

5. SENSOR REGISTRATION
For the sensor fusion to work, we have to transform all sen-
sor skeleton data into the same coordinate system. This reg-
istration process has to be performed every time the sensors’
position is changed, e.g. every time a new performance is
set up. Our proposed method takes only a few minutes and
can be easily performed through the user interface. Input
to the registration algorithm are synchronized point clouds:
over a given time interval, we collect all available skeleton
data. Corresponding joint positions collected at the same
time from different sensors give us one registration data
record per joint per time sample. For our set-up we use
the coordinate system of one selected (primary) sensor and
register all other sensors’ coordinate systems to it. This
reduces the problem to a registration between one or more
pairs of coordinate systems, which is the well known abso-
lute orientation problem, which can easily be solved using
Horn’s method [3].

The execution of the registration procedure is simple:
while the data is collected, the performer moves slowly
through the overlapping field of view of the sensors, moving
his or her arms slowly to cover a large volume of data points.
The data collection procedure terminates, as soon as enough
point correspondences (about 200) have been collected. The
time needed for this varies slightly because of temporary oc-
clusions, but normally it takes about one minute, since we
are only using every tenth sample from the sensors to get
well-spaced points.

The registration transform itself is calculated in a few
seconds and the data is saved in a set-up specific file, which
can be reused until the positions of the sensors are changed.

The quality of the result is returned as a mean error value
(usually about 2-3 cm) and an optional interactive error vi-
sualization (Figure 3). There are two sources for these posi-
tion errors: the non-linearity of the sensor’s measurements
as documented in previous work [13], and the asynchronous
operation of the sensors, which can lead to sample errors of
up to 1/30th of a second.

−1
−0.5

0
0.5

1

0.5
1

1.5
2

2.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

X [m]Y [m]

Z 
[m

]

Figure 3: Visualization of the registration results.
The top point cloud is the users head, below are the
overlapping clouds of the hands.

6. IMPLEMENTATION
The Microsoft KinectTM SDK provides a managed API,
which made an implementation in C# the preferred choice.
Only for the implementation of Horn’s method additional
Matlab code was used.

We opted for a distributed approach using one PC per
sensor for two reasons: first, the high throughput of the USB
connection does not lend itself to extension cords, making a
single, central PC in a physically larger set-up impractical;
and second, the SDK only supports one sensor as an input
device, multiple sensors can only be accessed alternately.

The resulting set-up is illustrated in the block diagram
in Figure 4: the sensors are connected to their respective
PCs via relatively short USB 2.0 cables and the PCs are
connected to each other via LAN. We normally use ethernet
cabling, but WiFI is of course possible, if the environment
allows.

USB USB

USB

LAN (ethernet)

tracker PC #1 tracker PC #2

primary 
tracker PC

performance PC

working
volume

Figure 4: Block diagram of the set-up.

All communication via LAN uses the Open Sound Control
(OSC) protocol [11]. Currently, we mostly use the joint in-
formation of the extremities - head, hands, and feet - since
interior joints of the skeleton have proven to be tracked
not precisely enough. We use the same format for mes-
sages between the tracker PCs and between the primary
tracker (which implements the data fusion) and the perfor-
mance driving PC. This enables a simple set-up with only
one tracker to be used as test installation, eliminating the
registration and fusion steps completely.

7. APPLICATION FOR THE CONTROL
OF LIVE ELECTRONIC MUSIC

The skeleton data sent from the merging software are po-
sition data of numerous joints in 3 dimensions: hip center,
spine, shoulder center, head, left shoulder, left elbow, left
wrist, left hand, right shoulder, right elbow, right wrist,
right hand, left hip, left knee, left ankle, left foot, right hip,
right knee, right ankle, right foot. These data are transmit-
ted into the Max/MSP environment [15] via Open Sound
Control (OSC [7]) using UDP3.

A general framework in Max/MSP was developed at
ZiMT by Johannes Kretz in close collaboration and inten-
sive testing with The XX. Century Ensemble Vienna for ap-
plying the sensor data on various musical parameters of the
live electronic transformations of the instrumental sounds.
While the framework had to be designed in a way which al-
lows different composers with different aesthetics to imple-

3http://tools.ietf.org/html/rfc768



ment their work, certain general constraints of the project
limited its scope:

No Synthesis, No Sound Generation: A lot of re-
search has been done on mapping gestures to mu-
sical parameters in the context of sound synthe-
sis/generation, e.g.[4]. To the contrary for this project
synthesis or any sound generation or playback trig-
gered by the dancer was excluded from the very be-
ginning. The role of the dancer should always be to
modify the instrumental sounds through live electron-
ics, but not to add additional acoustic events.

No Choreography: One of the other premises of the
project was that the dancer should never follow any
kind of choreography. In any moment of the perfor-
mance the movements of the dancer should be musi-
cally functional, creating a clear visible relationship
between the cause (motion) and the effect (sound
modification). But any motion patterns from a chore-
ographic repertoire should be abvoided. Therefore
gesture recognition (e.g. through neural networks, [8])
is not required.

Therefore the mapping framework has to be seen as a play-
ground for the dancer, giving him/her a certain influence
over the distortion / alteration of the ensemble’s sound.
Practically the number of parallel mappings is (almost)
unlimited, allowing one-to-one, one-to-many and many-to-
many mapping connections [10].

As a first step we are calibrating the coordinates of the
joints provided in centimeters (distance from the main cam-
era) into an abstract range between 0 and 1 in order to make
the musical effect of the dancer’s motion independent from
the actual size of the working volume on stage.

Secondly we generate derived parameters from the mea-
sured data: distance of hands, distance of feet, speed of
left/right hand, speed of left/right foot, speed of head.
These parameters are also calibrated into a range between
0 and 1.

In a following step these data streams can now be used in
a general mapping module. The user selects a data stream
being either a coordinate (x/y/z) of a skeleton joint or one of
the derived parameters mentioned above. An output range
is given to control the amount of the affected musical pa-
rameter.

Additionally there are two possibilities for non linear
mapping: exponential/logarithmic mapping (figure 5)

y = xa

where (a, x ∈ R, a > 0, x ∈ [0, 1]), and s-shaped nonlinearity
(figure 6) obtained by adding the result of the sine function
to the linear/logarithmic/exponential mapping

y = xa + b sin(2πx)

where (a, b, x ∈ R, a > 0, b ∈ [−0.15, 0.15] , x ∈ [0, 1]).
When using the position coordinates of the dancers on the
floor (being x and z in the representation being sent from
the sensors), it has proved to be important to have several
mapping methods: a) positive/negative: in this case only
half of the coordinates range is used. For example if the x
coordinate is used in mode ”positive”, the mapping creates
constant minimum values from the left side of the stage un-
til the middle, and the musical parameter is scaled up to
the maximum value only between the middle of stage and
the right side. This method can be used to define areas in
the corners of the stage, where e.g. most distortion only
happens, if the dancer is moving out of the center of the
stage into the extreme areas of the working volume. b) The

opposite is possible in the ”both centered” mode, where the
maximum scaling is applied in the center of the stage, while
the minimum output value is sent at both sides at the end
of the stage.

Figure 5: Exponential mapping of parameters.

Figure 6: Sine mapping of parameters.

Finally the musical parameter to be affected is specified,
e.g. volume amount of distortion effect, center frequency
of filter, delay time in milliseconds etc. The system pro-
vides an arbitrary number of parallel parameter mappings,
so that several aspects of the motion tracking and affect
several musical parameters in parallel. Nevertheless prac-
tice has shown that more than 10 or 12 mappings in parallel
have usually resulted in the fact that the audience could not
perceive the interaction between movement and sound very
well.

8. RESULTS
Using multiple Kinect sensors for tracking a dancer on stage
is very stable and has proved reliable in a concert situation.
Nevertheless certain constraints had to be observed:

The maximum distance between the sensors and the
dancer was limited to approximately 3 to 4 meters, even
when the stage light was reduced to 50% from the normal
light level in the theater. Since the sensors need to project a
grid of infrared light on the dancer, strong theater lighting
”blinds” the sensors. Therefore a compromise between the
visibility of the dancer and the possible size of the working
volume had to be found. (See Figure 1). A larger working
volume would also have been desirable, but would have re-
quired to dim the lights even further down, which was not
acceptable for the audience.

The tracking latency is acceptable, usually a few tenths
of a second.

The system has proved to be very robust. Re-calibration
of the working volume for the merging software was only
required, when the positioning of the sensors was uninten-
tionally shifted by the participants. Otherwise the system
runs stably even during several hours of intense rehears-
ing and/or performing. The leaving and reentering of the
dancer to the working volume did not cause any tracking
problems, since the Microsoft SDK re-initializes the track-
ing quickly and without special calibration pose require-
ments.

As can be seen in figure 4, our set-up uses one laptop per
sensor. A three sensor system costs about $1.500 depending
on the laptop used. A broken sensor – always a possibility



in a stage environment – is inexpensive ($100) and easily
replaced.

So far three compositions have been realized with the
presented system, commissioned by The XXth Century En-
semble Vienna:

• Wolfgang Liebhart: ”Pas à pas”

• Se-Lien Chuang: ”coincident synchrisis I, II, III, IV”

• Johannes Kretz: ”Wortlose Räume III”

Nevertheless there is a wide range of compositions which
were realized with earlier combinations of hard- and soft-
ware. The experiences with the previous setups were es-
sential to build the current system and a lot of knowledge
and methods from there can be found in the current system,
which provides both, a flexible, but consistent relationship
between the dancers movements and the sounding effects as
well as the freedom to use it in various aesthetic contexts.

The concert of The XXth Century Ensemble Vienna on
the 9th Dec. 2012 at Palais Kabelwerk Vienna was a success-
ful demonstration of the systems capabilities and maturity.

9. FUTURE WORK
For future projects it would be desirable to use stronger
stage lights. It has to be examined if external custom hard-
ware for projecting a stronger/ brighter grid of infrared light
could be used to be able to augment the working volume and
allow a brighter stage.

The Microsoft SDK in its current version does not allow
to distinguish between front- and back-facing poses, which
makes tracking e.g. the left or right hand difficult when the
performer turns 180°. A heuristic to track the rotation of
the performer has still to be implemented.

The use of sensor data to control lighting and visual pro-
jections will also be implemented in future versions of the
project.
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