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Abstract. We have grown accustomed to performing elaborate queries on textual data, 
e.g. via online search engines, file system managers and word processors. In the past 
decade, retrieval methods that also work on non-textual data have become mainstream 
(e.g. face recognition software). Sadly, these developments have so far not caught on 
for data mining within geometrical data, e.g. 3D meshes generated in the course of 
architectural work. Specifically during data exchange, such a search functionality would 
be handy, as it often happens that geometry is exported but object identity is lost - think, 
for example, of generative geometry or exported BIM data. In this paper, we present an 
example of such a search functionality, based on angular search. Our method is inspired 
by regular expressions, a string matching technique commonly employed for matching 
substrings. 
Keywords. Shape retrieval; angular search; sub-mesh; regular expressions.

NAÏVE IDEA
Instead of an introduction, let us jump directly to 
the idea behind the search algorithm and see how 
it can be applied within the architectural workflow: 
Assume that we have imported a large mesh into a 
modeling environment, in which all information but 
the list of vertices and faces is lost. Such a situation 
can occur during data exchange, entailing two ma-
jor problems: 
1.	 there is no object identity, i.e. we have to manu-

ally select vertices and faces belonging to an 
object in order to work with it. This can be a 
challenging task, though, as geometry might 
overlap (see Figure 1a). 

2.	 In cases where there is more than one instance 
of the same geometry, a manual approach is 
highly tedious. Furthermore, the modeling 

environment has to load identical geometry 
multiple times into memory, which may pro-
hibit working smoothly with the mesh for lack 
of performance. What is needed is an approach 
that can replace instances of the same geom-
etry by a reference to a single one.

Our contribution concentrates on solving the 
mentioned problems and additionally brings for-
ward a “search and replace” functionality for 3D 
meshes. In more detail, we present an algorithm that 
•	 can find shapes IN meshes (i.e. sub-meshes), giv-

en a search pattern in the way of a set of paths 
(which we interpret as succession of angles); 

•	 can restore object identity, thus making it possi-
ble to work with a possibly inaccessible collec-
tion of vertices and faces;
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•	 can replace found geometry by a reference to a 
single geometry container;

•	 can replace found geometry by a different ge-
ometry.

Figure 1 gives two results obtained with the ap-
proach: In Figure 1a, object identity was restored 
from a previously inaccessible polygon soup. In Fig-
ure 2b, we have searched for the given outline and 
replaced each occurrence by a different geometry. 
The latter takes 19s on a 2.4GHz single-core proces-
sor (C++ implementation, mesh containing 12064 
vertices), which is moderately fast. The pattern is 
given as own mesh, which is automatically compiled 
into a search description which our algorithm needs. 

In the coming sections, we will describe exactly 
how the search is done and how the mentioned 
compilation proceeds (see “Background” and “Elabo-
ration”). We further provide details on the studies 
conducted (see “Studies”), which have served as 
test-bed and ground for discussion concerning the 
future development of the tool. Before concluding, 
we also deliver details on the two implementations 
existing so far (see “Implementation”).

BACKGROUND
The approach is based on two underlying methods, 
regular expressions and angular search. Therefore, we 
first take a quick look at both, before elaborating the 
details of the presented method. 

Regular expressions
A regular expression (regex) is a textual search tech-
nique that specifies a searched string by supply-
ing a grammar of characters to match. We do not 
intend to give an elaborate introduction into this 
topic here, as this information is widely available 
and considered a standard technique in computer 
science. We instead forward the interested reader to 
(Forta 2004) and focus further explanations on the 
constructs that the search algorithm uses (also see 
Table 1):
•	 A string is a sequence of characters, a mesh a 

set of vertices connected by edges. We search 
for paths within that mesh, taking the se-

quence of angles between each pair of edges 
on that path as criterium.

•	 Meshes can be tesselated, meaning that each 
edge can be subdivided. The intermediate 
points do not contain significant information 
when we consider only angles as matching cri-
terion. We thus adopt the regex repetition, in 
order to “jump over” points that lie in the same 
direction as previously encountered ones.

•	 The specified angular paths can self-inter-
sect. In order to check that the same point is 
reached, we adopt the notion of back-referenc-
es, i.e. the storage of a point that was reached 
so far for later equality comparison.

Throughout the paper, we will use a couple 
of termini found in regular expressions. To begin 
with, we use the word automaton to signify a list 
of matching criteria (transitions) that are evaluated 
sequentially. As example, take the following regular 
expression “ab”. This specifies two transitions “a” and 

Figure 1 

Searching and replacing in 

meshes. (a) Restoring object 

identity from a polygon soup. 

(b) Searching and replacing 

geometry within a mesh.
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“b” which are put into a list (“a” “b”). Implicitly, two 
more transitions are added to the head and the tail 
of the list, namely MATCH and FAIL. Both signify a 
stop condition - in the first case, the algorithm has 
found the supplied string, in the second case, the 
algorithm has failed. The list of transitions thus be-
comes (FAIL, “a”, “b”, MATCH). An automaton has a 
transition pointer, placed initially on the second item 
of the list (“a”). Each transition type has its own way 
of matching. In the simple case mentioned, we have 
a character transition, which compares the current 
character in the string to the one specified. If both 
are equal, the transition pointer is advanced (“b”). 
This process is repeated until we finally encounter 
MATCH. In the case that the criteria specified in the 
current transition are not satisfied, an error flag is 
raised and the transition pointer is set to the preced-
ing transition.

Angular search
Angular search is concerned with finding a se-
quence of angles in a given geometry. Examples of 
such algorithms are to be found in the automotive 
industry, in the form of a search tool for mechanical 
parts in a large CAD database (Berchtold and Kriegel 
2004). However, in the concrete case mentioned, 
only section plans were taken into account, and the 
whole algorithm was limited to 2D retrieval. In con-

trast, our algorithm searches in 2D or 3D and addi-
tionally takes proportions into account (i.e. surplus 
to the angular search). Examples of other shape re-
trieval techniques, which use statistical data instead 
of angles, are the ShapeSifter tool that is based upon 
features such as surface area, volume etc. (Sung, Rea, 
Corney, Clark and Pritchard 2002) and the Princeton 
Shape Search Engine which can compare sketches 
to sections (Funkhouser, Min and Kazhdan 2003).

ELABORATION
Our search technique describes an angular path the 
transition types given in Table 2. The most important 
one is the angle transition (ANG), which tries to find 
an edge pairs having a given angle, extending from 
the current point. This is usually followed by a clo-
sure transition (CLO), which jumps over any interme-
diate points lying at the same angle (as mentioned, 
these do not contain significant information). As 
further transition types, we have begin and end of a 
regular expression group (BOR, EOR), backreference 
(REF) and begin-at (BAT). These are described in due 
course, using examples to help understanding. As in 
regular expressions, we also have FAIL and MATCH; 
the latter reports the points encountered during the 
whole matching process, i.e. the sub-mesh found.

We will now walk through the different pos-
sibilities for implementing a regular expression au-

Regex construct matches e.g. becomes in 3D regex algorithm
character sequence, e.g. abc abc angle sequence, e.g. 90° 10°
repetition (one or more times), e.g. a+ a, aa, aaa match vertices in same direction
backreferences, e.g. (a|b)\1 aa,bb match previously encountered point

Table 1 

Regular expressions versus 3D 

regular expression.

Transition long name meaning
FAIL Failure Transition ends execution, reporting failure
MATCH Match Transition ends execution, reporting a submesh
ANG Angle Transition at current point, find edge pairs having angle
CLO Closure find points in the same direction 
BOR Begin of Regex Group begins a new regex group (for backreferencing)
EOR End of Regex Group ends a regex group, storing the curring point 
REF Backreference references a previously matched point or point at a certain 

percentage of a visited edge
BAT Begin-At begins matching at a previously matched point

Table 2 

Transition types used in the 

automaton.
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tomaton, starting with the 2D case and extending 
this to 3D. We also give details on the used compiler, 
which converts a search pattern (a mesh consisting 
of paths) into an automaton.

The 2D regex automaton
Two different modes are considered in the 2D case: 
If this is the first ANG to be matched, then an inner 
angle (0...360°) between edge pairs situated at the 
current point is found. In all other cases, the edge 
last taken is already fixed: The automaton then 
searches for a next edge at the correct angle with 
reference to the previous one. Depending on re-
quired strictness, angles are compared using a toler-
ance interval. The same applies to the matching of 
intermediate points. In the case no suitable angle is 
found, the algorithm gets to the previous transition 
and tries the next edge pair.

Figure 2 brings examples of such a 2D search: 

In Figure 2a, we search for an angle of 125 degrees 
formed by the current point (shown in the center), 
the previous point (shown as a tiny rectangle) and 
a possible next point (shown as circle). Two cases 
are distinguished: (Case 1) If there is yet no previ-
ous point (because we have just started), we try the 
combination of all neighbor points twice (neighbor 
1 - current point - neighbor 2; neighbor 2 - current 
point - neighbor 1), since that establishes the march-
ing order of the algorithm. (Case 2) In case that there 
is a previous point, as shown, the algorithm tries to 
continue along a non-visited neighbor which has 
the correct inner angle. Regardless of which of both 
cases the algorithm has dealt with, the marching 
direction has been fixed (shown by an arrow). The 
next transition, a closure, consumes all points of the 
mesh lying in that direction, which allows us to skip 
past points that contain no significant angular infor-
mation.

Figure 2	  

Transitions. (a) Angle and clo-

sure (b) backreference to point 

and (c) to edge, (d) branching 

at a point using the Begin-At 

transition, (e) branching 50% 

of an edge, counting from its 

start. (f ) Relative edge lengths 

used to introduce proportions.
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In Figure 2b, a backreference (REF) is shown 
where the path self-intersects. Two steps are needed 
to make such checks for self-intersection possible: 
The preceding transitions are enclosed in a begin-
of-regex (BOR) and end-of-regex (EOR) group, in this 
case: the first regex group (#1). Internally, the au-
tomaton stores all points encountered when match-
ing that group. The backreference REF 1 checks 
whether the current point corresponds to the last 
point encountered in regex group #1.

A variation of a backreference is given in Figure 
2c: Here, REF 50% checks whether the current point 
corresponds to one of the matched points of a regex 
group situated within a certain percentage of the 
edge length. Thus, this specific flavor of REF checks 
for self-intersections with an edge.

Figure 2d shows a fork: The regex has so far 
matched regex group #1, arriving at the point 
shown in the center. It is now possible to begin at 
that point when matching, using the begin-at transi-
tion at group 1 (BAT 1). In the example shown, one 
might BAT 1 for matching the right path, before ex-
ecuting BAT 1 to find the left path.

One may also begin matching at a certain per-
centage of a previously encountered edge, as shown 
in Figure 2e: From the matched points of the given 
regex group, the algorithm selects the ones lying 
within a tolerance interval around the given per-
centage (BAT 50%) and tries to match onward from 
these.

Introducing proportions
So far, the regex algorithm is length-invariant, as it 
considers only angles. However, relative length does 
make a difference when looking at proportions: A 
square is not the same as a rectangle, for example. 
Thus, we introduce length as shown in Figure 2f: 
Initially, we memorize edge lengths relative to the 
length first edge within the search pattern (reference 
length). During matching, we can reject points if 
they do not lie at a certain distance of an edge start, 
in the following manner: The edge start is given as 
an ANG transition, the edge itself is matched via a 
following CLO. The next ANG represents the edge 
end (and, at the same time, the start of a new edge). 
When trying to match the latter angle, one would 
usually start at the last point matched by CLO and 
then go back point by point until we have either 
found the angle or there are none left. However, 
because the relative edge length is known, we can 
consider only points established by CLO that are 
situated at a certain distance of the edge length 
(expressed in percent of the reference length). This 
minor modification is all that is needed to include 
proportions.

Tolerance intervals
A point yet unaccounted for are the tolerance values 
which govern the strictness of the search algorithm. 
We have three such intervals, as given in Figure 3:
•	 Angular tolerance (Figure 3a) defines what de-

viations from a prescribed angle is acceptable.

Figure 3	  

Tolerance values. (a) Angular 

tolerance at points, (b) closure 

tolerance for marching for-

ward, (c) percentual tolerance 

for matching edges.
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•	 Closure tolerance (Figure 3b) specifies what de-
viations from the marching direction are to be 
accepted. 

•	 Percentual tolerance (Figure 3c) states the in-
terval around a percentage of an edge’s length.

These three values are specified globally, for the 
time being. However, results obtained with the help 
of some basic test cases (see “Studies”) show that 
this is a possible weakness of our algorithm, as we 
cannot easily adapt to sub-meshes that contain 
parts which require a more fine-grained, localized 
notion of tolerance. Thus, this part is likely to be ex-
tended in future implementations.

The 3D regex automaton
For the 3D case, the 2D regex algorithm is extended. 
In order to fix a next edge ei+1, we need to take the 
last two edges ei and ei-1 into account (refer to Figure 
4a): The cross product ei x ei-1 gives the normal vec-
tor n of the plane in which the last two edges lie. A 
suitable next edge is one that (1.) has the correct an-
gle between ei and ei+1 (same as in the 2D case) and 
additionally (2.) has the correct angle between n 
and ei+1.  Because of this, we need at least four points 
in the mesh to be searched. 

An ambiguity arises for cases in which there is 
an ANG 90° following an ANG 90° (see Figure 4b), 
since it is not clear whether to march left (“outside”) 
or right (“inside”). This case can be resolved through 
projection: Let (prev. ANG’s b, prevpoint, testpoint, 
neighbor) be successive points, neighbor being the 
candidate for marching onward. Then, we have to fix 
three lengths p, q and r, as follows (refer to Figures 
4c and d): p is the length (prev. ANG’s b, prevpoint). 

An intermediate point neighbor’ is a point situated 
at length p on the edge (testpoint, neighbor). The 
distance (prev. ANG’s b, neighbor’) is defined to be q. 
r is the length (prev. ANG’s b, testpoint). If q is small-
er than or equal to r, we can conclude that we have 
an “inside” winding (Figure 4c). In all other cases, we 
have an “outside” winding (Figure 4d). The winding 
criterion is added to the transition specification and 
compared at runtime with the mesh, for cases in 
which successions of 90° angles are present.

The regex compiler
The regular expression description is translated 
automatically from a search pattern made of paths 
(ordered edges) into a regex automaton. Briefly 
outlining the algorithm, we sequentially translate 
each edge pair into an ANG CLO (first pass). In that 
process, we ignore co-linear edges. However, these 
are needed later for checking intersections (second 
pass): (a) In case the end vertex of the forward edge 
was already visited, we generate a REF after ANG 
CLO. There are two distinct cases: If the visited ver-
tex was co-linear (i.e. it was ignored during the first 
pass), we generate an edge reference (REF %). In 
all other cases, we surround the edge that leads to 
the point with BOR..EOR and generate a backrefer-
ence to that regex group (REF #). (b) In case the start 
vertex of the forward edge was visited, we generate 
a BAT before ANG CLO in the previous fashion (co-
linear: BAT %, else BOR…EOR BAT #).

STUDIES
Under this section, we examine the studies con-
ducted with the regex algorithm in some detail. In 

Figure 4	  

3D regex. We need an ad-

ditional angle at each next 

point, (a) the angle between 

the previous normal and 

the next leg. (b) There is an 

ambiguity for successive 90° 

angles. Through comparison 

of lengths, we can find out 

whether we have an (c) inside 

or (d) outside winding.
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all cases, we have applied a single regex pattern 
(acting as input) to a scene (also an input), produc-
ing an output in the form of a set of selected ver-
tices and edges of the found sub-meshes. During 
evaluation, the number and type of matched sub-
meshes (not all were “correct” in a visual sense, even 
though the angles and proportions matched) were 
compared to the type of regex used (ranging from 
“closely resembling” the searched sub-mesh to more 
perturbed versions). In a post-step, the replacement 
algorithm has been used on the selected point- and 
edge-sets or their connected components, typically 
placing and orienting an object such that it fit into 
the resulting bounding box. The latter is quite trivial 
to extend to arbitrary geometry that would be ill-
suited for bounding-box placement, using specific 
rules stated in a scripted program of the modeling 
platform. 

Basic test cases
During the development of the approach, we have 
used a set of basic test cases for assessing the algo-
rithm:
•	 In the simplest case, we have looked at a set of 

spheres (Figure 5a) with increasing tesselation 
(4, 8, 16, 24 vertices as base). As result, we could 
show that a regex of k ANG transitions can only 
find objects with tesselation greater or equal 
to k (a 8-ANG regex will find the 8-, 16- and 
24-sphere but not the 4-sphere).

•	 Proportions were tested on a scene resem-

bling a room, simplified as cubes of different 
sizes (Figure 5b). We were able to find different 
geometries based on their proportions, how-
ever, it must be mentioned that we also had 
counterintuitive cases where geometry is so 
proportionally close that one regex intended 
for a specific type of furniture also returned a 
different geometry (not a false positive in the 
classical sense, though). We have furthermore 
perturbed the regex pattern, and checked that 
angular precision can comfortably cope with 
such errors.

•	 We tested the 3D “search and replace” algo-
rithm using the colosseum mesh shown in 
Figure 5c. For every instance of the matched 
search pattern (shown red in the lower part of 
Figure 5c), we used the bounding box to locate 
the replacement. The orientation (heading, 
pitch, roll) of the replacement was concluded 
from the found points in comparison with the 
search pattern. Further tests for “search and 
replace” were also conducted with a pyramid 
(Figure 5d) and a gerbera, which was turned 
into a lily by replacing each leaf (Figure 5e).

Reconstruction of destroyed synagogues
We are currently testing the 3D regex algorithm 
on large-scale models in the context of virtual re-
construction of destroyed synagogues, mainly 
stemming of the period 1890-1910 (see Figure 6). 
Though hundreds of synagogues were in this era 

Figure 5	  

Basic Test Cases. (a) Sphere 

Matching (b) Proportion 

Check. Replacement of (c) 

Openings (d) Pyramid steps 

(e) Leafs.
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built all over Europe, a significant portion has been 
destroyed in 1938. The option of re-erecting these 
sacral buildings is not on the agenda, particularly 
due to a missing usership locally. By way of a virtual 
reconstruction a certain degree of commemoration 
is facilitated. However, issues of incompleteness and 
missing bits and pieces of information play a central 
role in the process of reconstruction. 

The collection of already realized 3D models 
serves as a knowledge base for ongoing reconstruc-
tion activities. However, the secure detection of 
already existing modeled elements - aiming at “re-
use” - is cumbersome. First of all a subset of suitable 
entities has to be identified and eventual adapta-
tion of the existing modeling properties might be 
considered. Instead of a laborious manual search 
through individual models, the goal is to be pointed 
in a straight-forward and structured way to (similar) 
building elements in the whole model collection. 
The 3D-model itself can be regarded as a structured 
database. Extracting information from a large set 
of models would enhance the orderly subsequent 
re-use of already modeled geometries. Any further 
building models added to the collection would pre-
sumably donate to the range of so far not recorded 

geometries.
To which kind of geometrical representations 

would this predominantly apply? In the past years 
the following sets of entities are for the building 
type “synagogue” of repetitive nature: furniture, 
bima and torah ark, ornaments, doors and windows, 
banisters, columns and ceiling beams, tower and 
dome elements. For our study, we have taken a first 
step in matching repetitive geometry, in the form 
of doors and windows (which we model as arcs, see 
Figure 6 for an overview), ornaments (Figure 7a), col-
umns (Figure 7b) and ornamented windows (Figure 
7c). We are far from finished with that undertaking, 
but the first results are already quite promising with 
respect to insights that would occur in a “real” pro-
ject situation where geometry is to be searched.

To begin with, the mesh we are trying to search 
in can be considered a pathological case: Albeit be-
ing seemingly well-structured (see Figure 8a), a clos-
er look reveals that it is composed of a multitude of 
overlapping components with little or no semantic 
interconnectedness. In the example in Figure 8b, we 
can see a door that is formed by a wall in the back-
ground (which is shared with another door to the 
left), a single arc in the foreground, and several ar-

Figure 6 

Matching “windows” in the 

synagogue case study. (a) 

Overview of matches, (b) 

arc - real size, (c) proportional 

size, (d) non-proportional size, 

(e) connected arc - real size, 

(f ) proportional size, (g) non-

proportional size.
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bitrarily connected arcs in the middle. Matching has 
proceeded only in the foreground arc, since that is 
at least connected. The truth is that, however, a de-
signer would not know why the regex cannot match 
the whole door shown. What would be needed is 
an algorithm that can combine overlapping geom-
etry in order to facilitate a “what you see is what you 
match”-sort of approach, which we have still not 
produced (future work). 

Furthermore, there is a subtle influence by the 
regex chosen for arcs. Figures 6b and 6e show the 
real sizes of arcs that are matchable in the mesh. 
However, as the regex is size invariant, it actually 
“sees” only relative proportions as depicted in Fig-
ures 6c and 6f. Even if we increase percentual toler-
ance, we still get false positives, such as those above 
the main entrance (see Figure 6a). Optionally com-
paring the actual size of the pattern to the found in-
stance may solve the problem, but this is again to be 
done as future work.

Choosing a regex without proportions reveals 
that the arcs all have the same radius (see Figures 
6d and 6g). However, this is a bad choice, since that 
would also match every half-circle (height of the 
lower part close to zero). Without proportions, the 
situation is even worse in connected search patterns 
(Figure 6g), since we could get a deformed match 
which is hardly what we wanted in the first place. 
There is no way to circumvent this problem - match-
ing without proportions just produces bad results 
(or, more precisely, results which are correct from an 
angular view but counterintuitive to us).

IMPLEMENTATION
At the moment, we have two different implemen-
tations: A plugin for the Maxon™ Cinema4D® mod-

eling environment (written in C++), and a more 
academical implementation utilizing the NetLogo 
programming language. The first one was written in 
2002 as part of the diploma thesis of the first author; 
the second one is a vanilla implementation that 
seeks to faithfully implement what was written in 
the thesis, in order to have some degree of quality 
control for this paper. NetLogo is rather slow with re-
gards to performance, but its visualization capabili-
ties and functional programming language make it 
an ideal test-bed for exploring further extensions of 
the approach.

Coming to performance, we disregard the Net-
Logo implementation (which is rather slow because 
of running on a Java Virtual Machine with added 
NetLogo stack on top). The C++ implementation is 
better - at average, 650 vertices per second per core 
(2.4 GHz 32-bit processor), although this largely 
depends on the mesh structure (good tesselation, 
connectivity/density), precision settings (more toler-
ance means more possibilities are tried, which slows 
down the algorithm) and the use of proportions 
(not using them generates more possibilities, again 
slowing down the program). For example, in the 
synagogue use case described earlier, the algorithm 
would find occurrences of the simple arc show un-
der Figure 6c in either 6min 30s when the precision 
values were very strict (regex exactly resembling the 
sub-mesh, all precisions set to 1) or 1h 40min for a 
very loose setting (regex approximating the sub-
mesh, angular and closure precision 30, percentual 
tolerance 10). This boils down to a performance of 
either 1500 (strict case) or 100 vertices (loose case) 
per second per core, with raises a variety of ques-
tions and analysis tasks for future work.

Figure 7 

(a) Ornaments, (b) columns, 

(c) ornamented arcs.

Figure 8 

(a) Pathological door made of 

(b) arbitrary sub-meshes.
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In that context, we also wish to note also that 
the overall efficiency is highly coupled to the search 
pattern (and thus: the compiler) used; a regex that 
discriminates early (i.e. sharp angles first, before 
coming to rounded forms) has a far better perfor-
mance than one that considers discriminating fac-
tors as last step. Devising a better regex compiler 
and searching in an optimized mesh (overlapping 
edges and points merged) are clearly on our agen-
da. Also, future versions of the approach might lead 
away from the idea matching linearly in an automa-
ton but recursively in the supplied search pattern 
(i.e. without compilation, but still utilizing the pre-
sented concepts).

CONCLUSION AND OUTLOOK 
We have presented an algorithm that can search in 
meshes that have lost all information but their ver-
tices and faces, based on regular expressions and 
angular search. The benefits of this are threefold: (1.) 
We can restore object identity, (2.) we can replace 
multiple instances of the found geometry by a refer-
ence to a single geometry container and (3.) we can 
replace found geometry by an alternative one.

Two case studies frame the presented approach: 
The “basic test cases”, which we applied during de-
velopment, and the ongoing “synagogue” test cases, 
which use a collection of models exported from 
CAD. As discussed, the first results with the latter 
domain have shown that the complexities associ-
ated with “real” data are not to be underestimated: 
The data is both huge (typically 350K vertices, 450K 
polygons) and of bad quality (overlapping geom-
etry, unintelligible polygon groups forming con-
nected components, bad tesselation). On top of this, 
the expectation regarding the growth of the model 
collection in the next coming years is expected to be 
substantial. 

A meta-search will therefore become of even 
more importance, connected with a pre-step for 
automated simplification and cleaning of the mesh 
which lies on our future agenda. Also, building a 

library of patterns used for matching as well as a 
taxonomy that connects these would seem a useful 
extension that is yet too early to undertake, as we 
have to fix the foundations first. Other tasks that we 
would like to look into in the future are: data extrac-
tion from laser scan data and 3D fractal analysis of 
architecture based on “finding sub-meshes within 
sub-meshes”. 

ACKNOWLEDGEMENTS
This work is based on a diploma thesis (Wurzer, 
2004) supervised by Katja Bühler (Vienna UT and 
VRVis Forschungs GmbH), Peter Ferschin and M. 
Eduard Gröller (Vienna UT). The synagogue model 
base is a results of a continuing effort in virtual re-
construction by Bob Martens (Vienna UT), Herbert 
Peter (Academy of Fine Arts Vienna), among many 
others participating in that effort.

REFERENCES
Forta, B 2004, Sams Teach Yourself Regular Expressions in 10 

Minutes, Sams, Indianapolis.
Berchtold, S and Kriegel, H-P 1997, ‘S3: Similarity Search 

in CAD Database Systems’, Proceedings of the SIGMOD 
Conference, May 13-15, Tucson, USA, pp. 564-567.

Sung, R, Rea, H,  Corney, JR, Clark, DER and Pritchard, J 2002, 
‘Shapesifter: A retrieval system for databases of 3D en-
gineering data’, New Review of Information Networking, 
8 (1), pp. 33-53.

Funkhouser, T, Min, P and Kazhdan, M 2003, ‘A Search En-
gine for 3D Models’, ACM Transactions on Graphics, 
22(1), pp. 83-105.

Peter, H 2001, Die Entwicklung einer Systematik zur virtuellen 
Rekonstruktion von Wiener Synagogen, Diploma Thesis 
(Vienna University of Techology).

Sung, R, Rea, H,  Corney, JR, Clark, DER and Pritchard, J 2002, 
‘Shapesifter: A retrieval system for databases of 3D en-
gineering data’, New Review of Information Network-
ing, 8 (1), pp. 33-53.

Wurzer, G 2004, 3D Regular Expressions: Searching IN Meshes, 
Diploma Thesis (Vienna University of Techology).


