
279Models of Computation: Form Studies - Volume 2 - Computation and Performance - eCAADe 31 |

3D Regular Expressions - Searching Shapes IN Meshes

The development of an algorithm to identify recurring geometries

Gabriel Wurzer1, Bob Martens2, Katja Bühler3

1,2Vienna University of Technology, Austria, 3VRVis Forschungs GmbH, Austria
1,2www.tuwien.ac.at, 3www.vrvis.at
1gabriel.wurzer@tuwien.ac.at, 2bob.martens@tuwien.ac.at, 3buehler@vrvis.at

Abstract. We have grown accustomed to performing elaborate queries on textual data,
e.g. via online search engines, file system managers and word processors. In the past
decade, retrieval methods that also work on non-textual data have become mainstream
(e.g. face recognition software). Sadly, these developments have so far not caught on
for data mining within geometrical data, e.g. 3D meshes generated in the course of
architectural work. Specifically during data exchange, such a search functionality would
be handy, as it often happens that geometry is exported but object identity is lost - think,
for example, of generative geometry or exported BIM data. In this paper, we present an
example of such a search functionality, based on angular search. Our method is inspired
by regular expressions, a string matching technique commonly employed for matching
substrings.
Keywords. Shape retrieval; angular search; sub-mesh; regular expressions.

NAÏVE IDEA
Instead of an introduction, let us jump directly to
the idea behind the search algorithm and see how
it can be applied within the architectural workflow:
Assume that we have imported a large mesh into a
modeling environment, in which all information but
the list of vertices and faces is lost. Such a situation
can occur during data exchange, entailing two ma-
jor problems:
1.	 there is no object identity, i.e. we have to manu-

ally select vertices and faces belonging to an
object in order to work with it. This can be a
challenging task, though, as geometry might
overlap (see Figure 1a).

2.	 In cases where there is more than one instance
of the same geometry, a manual approach is
highly tedious. Furthermore, the modeling

environment has to load identical geometry
multiple times into memory, which may pro-
hibit working smoothly with the mesh for lack
of performance. What is needed is an approach
that can replace instances of the same geom-
etry by a reference to a single one.

Our contribution concentrates on solving the
mentioned problems and additionally brings for-
ward a “search and replace” functionality for 3D
meshes. In more detail, we present an algorithm that
•	 can find shapes IN meshes (i.e. sub-meshes), giv-

en a search pattern in the way of a set of paths
(which we interpret as succession of angles);

•	 can restore object identity, thus making it possi-
ble to work with a possibly inaccessible collec-
tion of vertices and faces;

280 | eCAADe 31 - Computation and Performance - Volume 2 - Models of Computation: Form Studies

•	 can replace found geometry by a reference to a
single geometry container;

•	 can replace found geometry by a different ge-
ometry.

Figure 1 gives two results obtained with the ap-
proach: In Figure 1a, object identity was restored
from a previously inaccessible polygon soup. In Fig-
ure 2b, we have searched for the given outline and
replaced each occurrence by a different geometry.
The latter takes 19s on a 2.4GHz single-core proces-
sor (C++ implementation, mesh containing 12064
vertices), which is moderately fast. The pattern is
given as own mesh, which is automatically compiled
into a search description which our algorithm needs.

In the coming sections, we will describe exactly
how the search is done and how the mentioned
compilation proceeds (see “Background” and “Elabo-
ration”). We further provide details on the studies
conducted (see “Studies”), which have served as
test-bed and ground for discussion concerning the
future development of the tool. Before concluding,
we also deliver details on the two implementations
existing so far (see “Implementation”).

BACKGROUND
The approach is based on two underlying methods,
regular expressions and angular search. Therefore, we
first take a quick look at both, before elaborating the
details of the presented method.

Regular expressions
A regular expression (regex) is a textual search tech-
nique that specifies a searched string by supply-
ing a grammar of characters to match. We do not
intend to give an elaborate introduction into this
topic here, as this information is widely available
and considered a standard technique in computer
science. We instead forward the interested reader to
(Forta 2004) and focus further explanations on the
constructs that the search algorithm uses (also see
Table 1):
•	 A string is a sequence of characters, a mesh a

set of vertices connected by edges. We search
for paths within that mesh, taking the se-

quence of angles between each pair of edges
on that path as criterium.

•	 Meshes can be tesselated, meaning that each
edge can be subdivided. The intermediate
points do not contain significant information
when we consider only angles as matching cri-
terion. We thus adopt the regex repetition, in
order to “jump over” points that lie in the same
direction as previously encountered ones.

•	 The specified angular paths can self-inter-
sect. In order to check that the same point is
reached, we adopt the notion of back-referenc-
es, i.e. the storage of a point that was reached
so far for later equality comparison.

Throughout the paper, we will use a couple
of termini found in regular expressions. To begin
with, we use the word automaton to signify a list
of matching criteria (transitions) that are evaluated
sequentially. As example, take the following regular
expression “ab”. This specifies two transitions “a” and

Figure 1

Searching and replacing in

meshes. (a) Restoring object

identity from a polygon soup.

(b) Searching and replacing

geometry within a mesh.

281Models of Computation: Form Studies - Volume 2 - Computation and Performance - eCAADe 31 |

“b” which are put into a list (“a” “b”). Implicitly, two
more transitions are added to the head and the tail
of the list, namely MATCH and FAIL. Both signify a
stop condition - in the first case, the algorithm has
found the supplied string, in the second case, the
algorithm has failed. The list of transitions thus be-
comes (FAIL, “a”, “b”, MATCH). An automaton has a
transition pointer, placed initially on the second item
of the list (“a”). Each transition type has its own way
of matching. In the simple case mentioned, we have
a character transition, which compares the current
character in the string to the one specified. If both
are equal, the transition pointer is advanced (“b”).
This process is repeated until we finally encounter
MATCH. In the case that the criteria specified in the
current transition are not satisfied, an error flag is
raised and the transition pointer is set to the preced-
ing transition.

Angular search
Angular search is concerned with finding a se-
quence of angles in a given geometry. Examples of
such algorithms are to be found in the automotive
industry, in the form of a search tool for mechanical
parts in a large CAD database (Berchtold and Kriegel
2004). However, in the concrete case mentioned,
only section plans were taken into account, and the
whole algorithm was limited to 2D retrieval. In con-

trast, our algorithm searches in 2D or 3D and addi-
tionally takes proportions into account (i.e. surplus
to the angular search). Examples of other shape re-
trieval techniques, which use statistical data instead
of angles, are the ShapeSifter tool that is based upon
features such as surface area, volume etc. (Sung, Rea,
Corney, Clark and Pritchard 2002) and the Princeton
Shape Search Engine which can compare sketches
to sections (Funkhouser, Min and Kazhdan 2003).

ELABORATION
Our search technique describes an angular path the
transition types given in Table 2. The most important
one is the angle transition (ANG), which tries to find
an edge pairs having a given angle, extending from
the current point. This is usually followed by a clo-
sure transition (CLO), which jumps over any interme-
diate points lying at the same angle (as mentioned,
these do not contain significant information). As
further transition types, we have begin and end of a
regular expression group (BOR, EOR), backreference
(REF) and begin-at (BAT). These are described in due
course, using examples to help understanding. As in
regular expressions, we also have FAIL and MATCH;
the latter reports the points encountered during the
whole matching process, i.e. the sub-mesh found.

We will now walk through the different pos-
sibilities for implementing a regular expression au-

Regex construct matches e.g. becomes in 3D regex algorithm
character sequence, e.g. abc abc angle sequence, e.g. 90° 10°
repetition (one or more times), e.g. a+ a, aa, aaa match vertices in same direction
backreferences, e.g. (a|b)\1 aa,bb match previously encountered point

Table 1

Regular expressions versus 3D

regular expression.

Transition long name meaning
FAIL Failure Transition ends execution, reporting failure
MATCH Match Transition ends execution, reporting a submesh
ANG Angle Transition at current point, find edge pairs having angle
CLO Closure find points in the same direction
BOR Begin of Regex Group begins a new regex group (for backreferencing)
EOR End of Regex Group ends a regex group, storing the curring point
REF Backreference references a previously matched point or point at a certain

percentage of a visited edge
BAT Begin-At begins matching at a previously matched point

Table 2

Transition types used in the

automaton.

282 | eCAADe 31 - Computation and Performance - Volume 2 - Models of Computation: Form Studies

tomaton, starting with the 2D case and extending
this to 3D. We also give details on the used compiler,
which converts a search pattern (a mesh consisting
of paths) into an automaton.

The 2D regex automaton
Two different modes are considered in the 2D case:
If this is the first ANG to be matched, then an inner
angle (0...360°) between edge pairs situated at the
current point is found. In all other cases, the edge
last taken is already fixed: The automaton then
searches for a next edge at the correct angle with
reference to the previous one. Depending on re-
quired strictness, angles are compared using a toler-
ance interval. The same applies to the matching of
intermediate points. In the case no suitable angle is
found, the algorithm gets to the previous transition
and tries the next edge pair.

Figure 2 brings examples of such a 2D search:

In Figure 2a, we search for an angle of 125 degrees
formed by the current point (shown in the center),
the previous point (shown as a tiny rectangle) and
a possible next point (shown as circle). Two cases
are distinguished: (Case 1) If there is yet no previ-
ous point (because we have just started), we try the
combination of all neighbor points twice (neighbor
1 - current point - neighbor 2; neighbor 2 - current
point - neighbor 1), since that establishes the march-
ing order of the algorithm. (Case 2) In case that there
is a previous point, as shown, the algorithm tries to
continue along a non-visited neighbor which has
the correct inner angle. Regardless of which of both
cases the algorithm has dealt with, the marching
direction has been fixed (shown by an arrow). The
next transition, a closure, consumes all points of the
mesh lying in that direction, which allows us to skip
past points that contain no significant angular infor-
mation.

Figure 2	

Transitions. (a) Angle and clo-

sure (b) backreference to point

and (c) to edge, (d) branching

at a point using the Begin-At

transition, (e) branching 50%

of an edge, counting from its

start. (f) Relative edge lengths

used to introduce proportions.

283Models of Computation: Form Studies - Volume 2 - Computation and Performance - eCAADe 31 |

In Figure 2b, a backreference (REF) is shown
where the path self-intersects. Two steps are needed
to make such checks for self-intersection possible:
The preceding transitions are enclosed in a begin-
of-regex (BOR) and end-of-regex (EOR) group, in this
case: the first regex group (#1). Internally, the au-
tomaton stores all points encountered when match-
ing that group. The backreference REF 1 checks
whether the current point corresponds to the last
point encountered in regex group #1.

A variation of a backreference is given in Figure
2c: Here, REF 50% checks whether the current point
corresponds to one of the matched points of a regex
group situated within a certain percentage of the
edge length. Thus, this specific flavor of REF checks
for self-intersections with an edge.

Figure 2d shows a fork: The regex has so far
matched regex group #1, arriving at the point
shown in the center. It is now possible to begin at
that point when matching, using the begin-at transi-
tion at group 1 (BAT 1). In the example shown, one
might BAT 1 for matching the right path, before ex-
ecuting BAT 1 to find the left path.

One may also begin matching at a certain per-
centage of a previously encountered edge, as shown
in Figure 2e: From the matched points of the given
regex group, the algorithm selects the ones lying
within a tolerance interval around the given per-
centage (BAT 50%) and tries to match onward from
these.

Introducing proportions
So far, the regex algorithm is length-invariant, as it
considers only angles. However, relative length does
make a difference when looking at proportions: A
square is not the same as a rectangle, for example.
Thus, we introduce length as shown in Figure 2f:
Initially, we memorize edge lengths relative to the
length first edge within the search pattern (reference
length). During matching, we can reject points if
they do not lie at a certain distance of an edge start,
in the following manner: The edge start is given as
an ANG transition, the edge itself is matched via a
following CLO. The next ANG represents the edge
end (and, at the same time, the start of a new edge).
When trying to match the latter angle, one would
usually start at the last point matched by CLO and
then go back point by point until we have either
found the angle or there are none left. However,
because the relative edge length is known, we can
consider only points established by CLO that are
situated at a certain distance of the edge length
(expressed in percent of the reference length). This
minor modification is all that is needed to include
proportions.

Tolerance intervals
A point yet unaccounted for are the tolerance values
which govern the strictness of the search algorithm.
We have three such intervals, as given in Figure 3:
•	 Angular tolerance (Figure 3a) defines what de-

viations from a prescribed angle is acceptable.

Figure 3	

Tolerance values. (a) Angular

tolerance at points, (b) closure

tolerance for marching for-

ward, (c) percentual tolerance

for matching edges.

284 | eCAADe 31 - Computation and Performance - Volume 2 - Models of Computation: Form Studies

•	 Closure tolerance (Figure 3b) specifies what de-
viations from the marching direction are to be
accepted.

•	 Percentual tolerance (Figure 3c) states the in-
terval around a percentage of an edge’s length.

These three values are specified globally, for the
time being. However, results obtained with the help
of some basic test cases (see “Studies”) show that
this is a possible weakness of our algorithm, as we
cannot easily adapt to sub-meshes that contain
parts which require a more fine-grained, localized
notion of tolerance. Thus, this part is likely to be ex-
tended in future implementations.

The 3D regex automaton
For the 3D case, the 2D regex algorithm is extended.
In order to fix a next edge ei+1, we need to take the
last two edges ei and ei-1 into account (refer to Figure
4a): The cross product ei x ei-1 gives the normal vec-
tor n of the plane in which the last two edges lie. A
suitable next edge is one that (1.) has the correct an-
gle between ei and ei+1 (same as in the 2D case) and
additionally (2.) has the correct angle between n
and ei+1. Because of this, we need at least four points
in the mesh to be searched.

An ambiguity arises for cases in which there is
an ANG 90° following an ANG 90° (see Figure 4b),
since it is not clear whether to march left (“outside”)
or right (“inside”). This case can be resolved through
projection: Let (prev. ANG’s b, prevpoint, testpoint,
neighbor) be successive points, neighbor being the
candidate for marching onward. Then, we have to fix
three lengths p, q and r, as follows (refer to Figures
4c and d): p is the length (prev. ANG’s b, prevpoint).

An intermediate point neighbor’ is a point situated
at length p on the edge (testpoint, neighbor). The
distance (prev. ANG’s b, neighbor’) is defined to be q.
r is the length (prev. ANG’s b, testpoint). If q is small-
er than or equal to r, we can conclude that we have
an “inside” winding (Figure 4c). In all other cases, we
have an “outside” winding (Figure 4d). The winding
criterion is added to the transition specification and
compared at runtime with the mesh, for cases in
which successions of 90° angles are present.

The regex compiler
The regular expression description is translated
automatically from a search pattern made of paths
(ordered edges) into a regex automaton. Briefly
outlining the algorithm, we sequentially translate
each edge pair into an ANG CLO (first pass). In that
process, we ignore co-linear edges. However, these
are needed later for checking intersections (second
pass): (a) In case the end vertex of the forward edge
was already visited, we generate a REF after ANG
CLO. There are two distinct cases: If the visited ver-
tex was co-linear (i.e. it was ignored during the first
pass), we generate an edge reference (REF %). In
all other cases, we surround the edge that leads to
the point with BOR..EOR and generate a backrefer-
ence to that regex group (REF #). (b) In case the start
vertex of the forward edge was visited, we generate
a BAT before ANG CLO in the previous fashion (co-
linear: BAT %, else BOR…EOR BAT #).

STUDIES
Under this section, we examine the studies con-
ducted with the regex algorithm in some detail. In

Figure 4	

3D regex. We need an ad-

ditional angle at each next

point, (a) the angle between

the previous normal and

the next leg. (b) There is an

ambiguity for successive 90°

angles. Through comparison

of lengths, we can find out

whether we have an (c) inside

or (d) outside winding.

285Models of Computation: Form Studies - Volume 2 - Computation and Performance - eCAADe 31 |

all cases, we have applied a single regex pattern
(acting as input) to a scene (also an input), produc-
ing an output in the form of a set of selected ver-
tices and edges of the found sub-meshes. During
evaluation, the number and type of matched sub-
meshes (not all were “correct” in a visual sense, even
though the angles and proportions matched) were
compared to the type of regex used (ranging from
“closely resembling” the searched sub-mesh to more
perturbed versions). In a post-step, the replacement
algorithm has been used on the selected point- and
edge-sets or their connected components, typically
placing and orienting an object such that it fit into
the resulting bounding box. The latter is quite trivial
to extend to arbitrary geometry that would be ill-
suited for bounding-box placement, using specific
rules stated in a scripted program of the modeling
platform.

Basic test cases
During the development of the approach, we have
used a set of basic test cases for assessing the algo-
rithm:
•	 In the simplest case, we have looked at a set of

spheres (Figure 5a) with increasing tesselation
(4, 8, 16, 24 vertices as base). As result, we could
show that a regex of k ANG transitions can only
find objects with tesselation greater or equal
to k (a 8-ANG regex will find the 8-, 16- and
24-sphere but not the 4-sphere).

•	 Proportions were tested on a scene resem-

bling a room, simplified as cubes of different
sizes (Figure 5b). We were able to find different
geometries based on their proportions, how-
ever, it must be mentioned that we also had
counterintuitive cases where geometry is so
proportionally close that one regex intended
for a specific type of furniture also returned a
different geometry (not a false positive in the
classical sense, though). We have furthermore
perturbed the regex pattern, and checked that
angular precision can comfortably cope with
such errors.

•	 We tested the 3D “search and replace” algo-
rithm using the colosseum mesh shown in
Figure 5c. For every instance of the matched
search pattern (shown red in the lower part of
Figure 5c), we used the bounding box to locate
the replacement. The orientation (heading,
pitch, roll) of the replacement was concluded
from the found points in comparison with the
search pattern. Further tests for “search and
replace” were also conducted with a pyramid
(Figure 5d) and a gerbera, which was turned
into a lily by replacing each leaf (Figure 5e).

Reconstruction of destroyed synagogues
We are currently testing the 3D regex algorithm
on large-scale models in the context of virtual re-
construction of destroyed synagogues, mainly
stemming of the period 1890-1910 (see Figure 6).
Though hundreds of synagogues were in this era

Figure 5	

Basic Test Cases. (a) Sphere

Matching (b) Proportion

Check. Replacement of (c)

Openings (d) Pyramid steps

(e) Leafs.

286 | eCAADe 31 - Computation and Performance - Volume 2 - Models of Computation: Form Studies

built all over Europe, a significant portion has been
destroyed in 1938. The option of re-erecting these
sacral buildings is not on the agenda, particularly
due to a missing usership locally. By way of a virtual
reconstruction a certain degree of commemoration
is facilitated. However, issues of incompleteness and
missing bits and pieces of information play a central
role in the process of reconstruction.

The collection of already realized 3D models
serves as a knowledge base for ongoing reconstruc-
tion activities. However, the secure detection of
already existing modeled elements - aiming at “re-
use” - is cumbersome. First of all a subset of suitable
entities has to be identified and eventual adapta-
tion of the existing modeling properties might be
considered. Instead of a laborious manual search
through individual models, the goal is to be pointed
in a straight-forward and structured way to (similar)
building elements in the whole model collection.
The 3D-model itself can be regarded as a structured
database. Extracting information from a large set
of models would enhance the orderly subsequent
re-use of already modeled geometries. Any further
building models added to the collection would pre-
sumably donate to the range of so far not recorded

geometries.
To which kind of geometrical representations

would this predominantly apply? In the past years
the following sets of entities are for the building
type “synagogue” of repetitive nature: furniture,
bima and torah ark, ornaments, doors and windows,
banisters, columns and ceiling beams, tower and
dome elements. For our study, we have taken a first
step in matching repetitive geometry, in the form
of doors and windows (which we model as arcs, see
Figure 6 for an overview), ornaments (Figure 7a), col-
umns (Figure 7b) and ornamented windows (Figure
7c). We are far from finished with that undertaking,
but the first results are already quite promising with
respect to insights that would occur in a “real” pro-
ject situation where geometry is to be searched.

To begin with, the mesh we are trying to search
in can be considered a pathological case: Albeit be-
ing seemingly well-structured (see Figure 8a), a clos-
er look reveals that it is composed of a multitude of
overlapping components with little or no semantic
interconnectedness. In the example in Figure 8b, we
can see a door that is formed by a wall in the back-
ground (which is shared with another door to the
left), a single arc in the foreground, and several ar-

Figure 6

Matching “windows” in the

synagogue case study. (a)

Overview of matches, (b)

arc - real size, (c) proportional

size, (d) non-proportional size,

(e) connected arc - real size,

(f) proportional size, (g) non-

proportional size.

287Models of Computation: Form Studies - Volume 2 - Computation and Performance - eCAADe 31 |

bitrarily connected arcs in the middle. Matching has
proceeded only in the foreground arc, since that is
at least connected. The truth is that, however, a de-
signer would not know why the regex cannot match
the whole door shown. What would be needed is
an algorithm that can combine overlapping geom-
etry in order to facilitate a “what you see is what you
match”-sort of approach, which we have still not
produced (future work).

Furthermore, there is a subtle influence by the
regex chosen for arcs. Figures 6b and 6e show the
real sizes of arcs that are matchable in the mesh.
However, as the regex is size invariant, it actually
“sees” only relative proportions as depicted in Fig-
ures 6c and 6f. Even if we increase percentual toler-
ance, we still get false positives, such as those above
the main entrance (see Figure 6a). Optionally com-
paring the actual size of the pattern to the found in-
stance may solve the problem, but this is again to be
done as future work.

Choosing a regex without proportions reveals
that the arcs all have the same radius (see Figures
6d and 6g). However, this is a bad choice, since that
would also match every half-circle (height of the
lower part close to zero). Without proportions, the
situation is even worse in connected search patterns
(Figure 6g), since we could get a deformed match
which is hardly what we wanted in the first place.
There is no way to circumvent this problem - match-
ing without proportions just produces bad results
(or, more precisely, results which are correct from an
angular view but counterintuitive to us).

IMPLEMENTATION
At the moment, we have two different implemen-
tations: A plugin for the Maxon™ Cinema4D® mod-

eling environment (written in C++), and a more
academical implementation utilizing the NetLogo
programming language. The first one was written in
2002 as part of the diploma thesis of the first author;
the second one is a vanilla implementation that
seeks to faithfully implement what was written in
the thesis, in order to have some degree of quality
control for this paper. NetLogo is rather slow with re-
gards to performance, but its visualization capabili-
ties and functional programming language make it
an ideal test-bed for exploring further extensions of
the approach.

Coming to performance, we disregard the Net-
Logo implementation (which is rather slow because
of running on a Java Virtual Machine with added
NetLogo stack on top). The C++ implementation is
better - at average, 650 vertices per second per core
(2.4 GHz 32-bit processor), although this largely
depends on the mesh structure (good tesselation,
connectivity/density), precision settings (more toler-
ance means more possibilities are tried, which slows
down the algorithm) and the use of proportions
(not using them generates more possibilities, again
slowing down the program). For example, in the
synagogue use case described earlier, the algorithm
would find occurrences of the simple arc show un-
der Figure 6c in either 6min 30s when the precision
values were very strict (regex exactly resembling the
sub-mesh, all precisions set to 1) or 1h 40min for a
very loose setting (regex approximating the sub-
mesh, angular and closure precision 30, percentual
tolerance 10). This boils down to a performance of
either 1500 (strict case) or 100 vertices (loose case)
per second per core, with raises a variety of ques-
tions and analysis tasks for future work.

Figure 7

(a) Ornaments, (b) columns,

(c) ornamented arcs.

Figure 8

(a) Pathological door made of

(b) arbitrary sub-meshes.

288 | eCAADe 31 - Computation and Performance - Volume 2 - Models of Computation: Form Studies

In that context, we also wish to note also that
the overall efficiency is highly coupled to the search
pattern (and thus: the compiler) used; a regex that
discriminates early (i.e. sharp angles first, before
coming to rounded forms) has a far better perfor-
mance than one that considers discriminating fac-
tors as last step. Devising a better regex compiler
and searching in an optimized mesh (overlapping
edges and points merged) are clearly on our agen-
da. Also, future versions of the approach might lead
away from the idea matching linearly in an automa-
ton but recursively in the supplied search pattern
(i.e. without compilation, but still utilizing the pre-
sented concepts).

CONCLUSION AND OUTLOOK
We have presented an algorithm that can search in
meshes that have lost all information but their ver-
tices and faces, based on regular expressions and
angular search. The benefits of this are threefold: (1.)
We can restore object identity, (2.) we can replace
multiple instances of the found geometry by a refer-
ence to a single geometry container and (3.) we can
replace found geometry by an alternative one.

Two case studies frame the presented approach:
The “basic test cases”, which we applied during de-
velopment, and the ongoing “synagogue” test cases,
which use a collection of models exported from
CAD. As discussed, the first results with the latter
domain have shown that the complexities associ-
ated with “real” data are not to be underestimated:
The data is both huge (typically 350K vertices, 450K
polygons) and of bad quality (overlapping geom-
etry, unintelligible polygon groups forming con-
nected components, bad tesselation). On top of this,
the expectation regarding the growth of the model
collection in the next coming years is expected to be
substantial.

A meta-search will therefore become of even
more importance, connected with a pre-step for
automated simplification and cleaning of the mesh
which lies on our future agenda. Also, building a

library of patterns used for matching as well as a
taxonomy that connects these would seem a useful
extension that is yet too early to undertake, as we
have to fix the foundations first. Other tasks that we
would like to look into in the future are: data extrac-
tion from laser scan data and 3D fractal analysis of
architecture based on “finding sub-meshes within
sub-meshes”.

ACKNOWLEDGEMENTS
This work is based on a diploma thesis (Wurzer,
2004) supervised by Katja Bühler (Vienna UT and
VRVis Forschungs GmbH), Peter Ferschin and M.
Eduard Gröller (Vienna UT). The synagogue model
base is a results of a continuing effort in virtual re-
construction by Bob Martens (Vienna UT), Herbert
Peter (Academy of Fine Arts Vienna), among many
others participating in that effort.

REFERENCES
Forta, B 2004, Sams Teach Yourself Regular Expressions in 10

Minutes, Sams, Indianapolis.
Berchtold, S and Kriegel, H-P 1997, ‘S3: Similarity Search

in CAD Database Systems’, Proceedings of the SIGMOD
Conference, May 13-15, Tucson, USA, pp. 564-567.

Sung, R, Rea, H, Corney, JR, Clark, DER and Pritchard, J 2002,
‘Shapesifter: A retrieval system for databases of 3D en-
gineering data’, New Review of Information Networking,
8 (1), pp. 33-53.

Funkhouser, T, Min, P and Kazhdan, M 2003, ‘A Search En-
gine for 3D Models’, ACM Transactions on Graphics,
22(1), pp. 83-105.

Peter, H 2001, Die Entwicklung einer Systematik zur virtuellen
Rekonstruktion von Wiener Synagogen, Diploma Thesis
(Vienna University of Techology).

Sung, R, Rea, H, Corney, JR, Clark, DER and Pritchard, J 2002,
‘Shapesifter: A retrieval system for databases of 3D en-
gineering data’, New Review of Information Network-
ing, 8 (1), pp. 33-53.

Wurzer, G 2004, 3D Regular Expressions: Searching IN Meshes,
Diploma Thesis (Vienna University of Techology).

