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Abstract
Recent advances in magnetic resonance imaging (MRI) technology enabled the acquisition of time-resolved 3D
blood flow data. Several flow visualization methods have been applied to these data in order to investigate links
between cardiovascular diseases and hemodynamic phenomena, such as vortices in the blood flow. In this work,
we investigate the use of the proper orthogonal decomposition (POD) for the preprocessing of MRI datasets and
study its effects with the λ2 vortex detection method. By comparing the POD method with the commonly used
Gaussian filtering, we show that for comparable filtering strengths, the POD produces qualitatively better results.

1. Introduction

In a healthy cardiovascular system, morphology and hemo-
dynamics are attuned to one another. The specific geome-
try of the heart and vessels allows an efficient blood circu-
lation through the body. The blood flow exerts mechanical
forces on the vessel walls and triggers a continuous renewal
of the tissue. However, if either morphology or hemodynam-
ics develop anomalies, their synchronized interplay gets out
of balance and cardiovascular diseases may develop [RE06].

In this process of disease development, vortices play an
important role. Vortices are not per se an indicator for a car-
diovascular dysfunction since healthy blood flow also com-
prises recirculation and vortices — especially in curved re-
gions or at bifurcations [KYM∗93,Dav95]. Still, vortices of-
ten occur abnormally because of morphological alterations,
e.g., in vessel widenings or after narrowings (stenosis, calci-
fied heart valves). In these cases, the vortical flow alters the
pressure and shear forces on the vessel walls (in direction,
frequency, or magnitude) and triggers cellular processes
leading to aneurysms or atherosclerosis [Dav95]. Also, in
slowly rotating vortices the thrombogenesis risk is increased,
since the blood may come to a halt and start to clot. These
thrombi can cause stroke or heart attacks [FAH∗08].

Altogether, pathologies are indicated when vortices ap-
pear in unusual regions, persist exceptionally long, or show
very low blood velocities. Therefore, a strong research inter-
est exists in the more detailed relationship between vortical

flow and specific diseases and their progression [FAH∗08].
For this, vortices are examined in 4D MRI blood flow data.
4D MRI is a flow-sensitive imaging technique, which allows
to measure time-resolved blood flow velocities in three di-
mensions. In these data, automatic vortex detection has so
far been done with algorithms commonly used with simula-
tion data [SFH∗10,BPM∗13,KGP∗13]. However, the results
are not satisfactory yet because 4D MRI has lower resolution
and signal-to-noise ratio as well as different noise character-
istics than simulation data. Since the vortex detection algo-
rithms rely on first- and second-order derivatives, they are
especially sensitive to lower-quality flow data like 4D MRI.

Our approach is therefore to preprocess the 4D MRI data
to improve vortex detection. In particular, we propose the
use of the proper orthogonal decomposition (POD), which
decomposes the velocity field into different scales of motion.
Its use is motivated by the fact that vortices in blood flow are
medium- to large-scale phenomena, while noise is a small-
scale phenomenon. By discarding the high-frequency scales,
we seek to improve the quality of the detected vortices.

2. Related Work

Although a vortex is an intuitive flow phenomenon, it has
no unique mathematical definition. In a recent work, Köh-
ler et al. compare existing vortex extraction methods for 4D
MRI data, identifying the λ2 method as the most appropri-
ate [KGP∗13].
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Based on the principal component analysis, proper or-
thogonal decomposition (POD) [Lum67] is a decomposition
of a velocity field into its different scales of motion, which
is an established method especially in turbulence research.
Pobitzer et al. [PTA∗11] examine POD in combination with
feature extraction from time-dependent velocity fields. Mc-
Gregor et al. [MSS∗08] apply POD to simulated blood flow
in order to obtain a basis model of the flow, which is used to
enhance measured data.

A wide range of flow visualization methods have been ap-
plied to blood flow data. Integration-based visualization is
used, e.g., in the Quantitative Flow Explorer framework by
van Pelt et al. [vPOBB∗10] for interactive exploration of 4D
MRI data. Standard flow visualization techniques, when ap-
plied to MRI data, often suffer from noisy data. Friman et al.
[FHH∗10] estimate the noise parameters from 4D MRI data
and visualize uncertain streamlines. A different approach to
cope with noise is the use of pathline predicates [SGSM08].
This technique has been used by Born et al. for a framework
where the user can filter relevant integral lines [BPMS12],
and by Köhler et al. [KGP∗13] for visualization of vortices
extracted from 4D MRI data. Recently, illustrative flow vi-
sualization techniques [BCP∗12] have found their way into
blood flow visualization. Born et al. improve the expressive-
ness of their visualizations by applying illustrative rendering
to representative line bundles [BMGS13].

3. 4D MRI

“4D PC-MRI” is a technical name for time-resolved three
dimensional phase-contrast magnetic resonance imaging,
which is a method capable of acquiring a time-dependent
vector field of a patient’s blood flow [MFK∗12]. In general,
a 4D PC-MRI dataset consists of several time steps span-
ning a single heart beat, where each time step contains one
magnitude and three phase difference images (see Fig. 1).

Due to the nature of MRI measurements, the resulting
blood flow data contains a high amount of noise and in-
accuracies [WKM08]. Partly, these are systematic errors,
which can be corrected by specialized preprocessing meth-
ods [MKS∗97, LHM∗05, LTMG13]. Additionally, datasets
contain noise. Noise in the raw measurements is often mod-
eled as independent Gaussian noise. Since MRI acquires

Figure 1: A slice of a 4D MRI dataset with (from left to right)
magnitude channel and u,v and w velocities.

complex-valued frequency space raw data, noise in the re-
sulting magnitude and phase offset images follow compli-
cated distributions, which, however, can be approximated by
Gaussian distributions if the signal-to-noise ratio (SNR) is
high enough [GP95].

Apart from generic image processing algorithms, special-
ized methods have been proposed for the denoising of mag-
nitude images, focusing on the reconstruction of anatomi-
cal features and often considering the Rician distribution of
the noise [MCC∗13]. In flow fields, noise can be reduced by
imposing a divergence-free condition inside the blood ves-
sel [BGWK13] or comparing measured data with a database
of numerically simulated datasets [MSS∗08]. Unlike these
methods, our approach does not require a precise segmenta-
tion of the vessel or any a-priori knowledge about the data.

4. Proper Orthogonal Decomposition

The proper orthogonal decomposition (POD) [Loe63] ap-
proximates each of N outcomes S(n)(x) of a random scalar
field variable by a “best fit” linear combination of M ≤ N
uncorrelated modes Ŝi. The nth field is approximated

Ŝ(n)(x) = Ŝ0(x)+
M

∑
i=1

a(n)i Ŝi(x), (1)

where Ŝ0(x) is the mean of all outcomes and Ŝi are eigen-
functions to the M largest eigenvalues of the two-point spa-
tial correlation operator [Loe63]. Because random noise has
a low spatial correlation, it tends to reside in modes of low
eigenvalues. Hence, if M < N, POD removes noise.

Lumley [Lum67] extended POD from scalar fields to
vector fields and showed that the modes decompose a
vector field into large-scale and small-scale phenomena.
Sirovich [Sir87] proposed what is now known as snapshot
POD. The N outcomes are simply taken to be snapshots of a
time-dependent vector field at different times, therefore the
approximations give a new time-dependent field.

Since there is no noise-free ground truth for 4D MRI, we
tested the noise suppression capability of POD on synthetic
data of a circular flow in a torus. The flow varies over time
only by a factor and thus contains a single POD mode. A
constant amount of white noise has been added to all (17)
time steps, see Fig. 2. While in the full data, the noise ac-
counts for 65.9% of the total energy, this is reduced to 10.2%
if data are reconstructed from a single POD mode.

5. Results

In this section, we compare the POD method with simple
Gaussian smoothing for the visualization of vortices in aor-
tic blood flow. In accordance with the findings of Köhler et
al. [KGP∗13], we have chosen the λ2 method [JH94] for ex-
tracting vortices from 4D MRI data. Note that Pobitzer et
al. argue that the POD is incompatible with the λ2 method
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Figure 2: Singular values (proportional to the square root
of the energy) in POD of synthetic data, plotted per mode.

since POD extracts large-scale features, whereas λ2 is re-
lated to small-scale features [PTA∗11]. In our application
however, we are interested in large-scale vortices. Disjoint
vortex core regions are obtained by using negative isosurface
levels [JHSK97,DD00]. Both methods were implemented in
the Visdom visualization framework [WFR∗10].

All tests are performed on one of the following three
datasets: a healthy aorta from a volunteer (Fig. 3(a)), a
dataset with an aneurysm in the descending aorta (Fig. 3(b)),
and an aorta with a pathologically distorted shape (Fig. 3(c)).
The datasets have a spatial resolution of 192×144×26 vox-
els, a temporal resolution of 17 to 22 time steps, and are pre-
processed as described in [BFS∗10, MHB∗07].

(a) Healthy (b) Aneurysm (c) Distorted

Figure 3: Approximate segmentations of datasets, computed
as isosurfaces of the PCMRA field [BFS∗10]. Models were
manually cleaned to improve visual quality.
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Figure 4: Spectrum of singular values in the POD. The hor-
izontal axis shows the index of the mode.

Fig. 4 shows the spectrum of singular values when apply-
ing POD to our datasets. The energy of the modes decays

fast, but does not reach zero. Note that a white noise random
vector field has a perfectly flat spectrum. It is therefore likely
that the first few modes have high SNR, while the last few
modes contain mostly noise. Because the noise is distributed
among all modes, the POD-filtered data will still be slightly
noisy, even if using a very low number of modes. A way
to further reduce noise is to do gradient estimation using a
Gaussian derivative kernel instead of finite differences.

Gaussian smoothing and the POD are fundamentally dif-
ferent methods. However, they both have one parameter (σ
and the number of modes, respectively) which controls the
strength of the filtering effect. In order to select compara-
ble values of these parameters, we compute the amount of
change introduced to the original data by

change(t) =
√

∑
i
‖v̂(xi, t)−v(xi, t)‖2

2, (2)

where v̂(x, t) is the filtered and v(x, t) the original vector
field. Given two filtered datasets with comparable change(t),
we can now do a qualitative comparison of detected vortices.
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Figure 5: Change in the healthy aorta dataset introduced by
filtering methods. change(t) is plotted against the time step.

Fig. 6 shows the detected vortices in the healthy aorta
dataset. Filtering methods were performed on the original
dataset, but the resulting λ2 isosurfaces were clipped to only
include the relevant part of the aorta. Depicted in yellow is
the isosurface of the PCMRA field [BFS∗10], showing an
approximate static segmentation of the aorta for context pur-
poses. The number of modes was chosen subjectively after
inspecting the spectrum of singular values (Fig. 4). The cor-
responding value of σ for the Gaussian filtering was chosen
such that both methods modify the original data approxi-
mately by the same amount (Fig. 5). Fig. 6 shows several
combinations of preprocessing methods (POD and Gaussian
filtering) and methods for computing derivatives (finite dif-
ferences and convolution with Gaussian derivatives). Further
results are shown in the accompanying video.

The time step chosen for Fig. 6 is at the end of the diastole,
where the blood flows slowly and the SNR is small. Medical
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Filter None Gauss (σ = 1) POD (3 modes) Gauss (σ = 1) POD (3 modes)
Derivatives Finite differences Finite differences Finite differences Gauss (σ = 1) Gauss (σ = 1)

Figure 6: Comparison of filtering methods for the healthy aorta dataset at the end of the diastole.

literature tells us that the blood forms rotational flow pat-
terns at this time (see Fig. 7), which is consistent with the
tube-like structures of the λ2 isosurfaces. Note that naïvely
using finite differences without any preprocessing does not
produce useful results. A POD reconstruction with 3 modes
shows considerably less noise and vortical structures start
to become visible. In comparison, Gaussian filtering yields
smoother results at the cost of finding fewer features. Af-
ter using Gaussian derivatives, results are comparable in vi-
sual quality, while the POD method shows more features.
In order to verify that features visible in the POD-processed
dataset correspond to a vortical flow, we seed streamlines of
the original dataset around the features (Fig. 8).

(a) (b) (c)

Figure 7: Illustrative visualization of the blood flow in the
aorta. (a) Early systole, accelerating axial flow. (b) Mid sys-
tole, secondary helical flows develop. (c) Late systole, ro-
tational and recirculating secondary flows. Image reprinted
with permission from [KYM∗93].

6. Conclusion

We have analyzed the use of the POD method for the prepro-
cessing of PC-MRI blood flow dataset and its effect on the
detection of vortices using the λ2 method. Our results show
that data processed with the POD method yields better re-
sults than the unprocessed data. A simple Gaussian filtering

(a) (b) (c)

Figure 8: Streamlines around features found in the POD-
filtered distorted aorta dataset, showing that those are not
false positives. (a) Streamlines in the original dataset. (b)
Streamlines after Gaussian smoothing with σ = 1. (c) Cor-
responding region with expected helical flow.

with the same filtering strength as POD produced smoother
results, but resulted in fewer vortices being detected. As
some amount of noise is contained in all POD modes, the
standard gradient estimation based on finite differences does
not produce sufficiently smooth results. By using instead a
Gaussian derivative kernel, we achieved good results.

As there is no ground truth for measured MRI data, we
did not perform a rigorous quantitative analysis of the POD
method. Such an analysis could be performed on numeri-
cally simulated data with a physically correct model for PC-
MRI noise, which is an interesting topic for future work.
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BLÖSCHL G., GRÖLLER E.: World Lines. IEEE Trans. Vis.
Comput. Graph. 16, 6 (2010), 1458–1467. 3

[WKM08] WEISHAUPT D., KÖCHLI V. D., MARINCEK B.:
How Does MRI Work? Springer, 2008. 2

submitted to Eurographics Conference on Visualization (EuroVis) (2014)


