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Figure 1: Successive lowering of abstraction: the rendering intent of the programmer is successively mapped into representations of lower
abstraction, starting from a high-level representation (e.g. a scene graph) on the left to the compiled calls to the graphics API on the right. By
tracking the incremental changes (modified values) and structural changes (additions and removals) between these different representations,
we exploit temporal coherence and avoid repeatedly performing the same optimizations, resulting in a significant speed-up.

Abstract

We introduce an incremental rendering layer on top of standard
graphics APIs such as OpenGL or DirectX in the form a virtual
machine (VM), which efficiently maintains an optimized, compiled
representation of arbitrary high-level scene representations at all
times. This includes incremental processing of structural changes
such as additions and removals of scene parts, as well as in-place
updates of scene data. Our approach achieves a significant framer-
ate increase for typical workloads and reasonable performance for
high-frequency changes. Processing is performed in running time
O(∆), where ∆ is proportional to the size of the change and the op-
timized representation has no runtime overhead with respect to the
underlying graphics API. This is achieved by tracking and applying
all changes as incremental updates to appropriate data structures
and by adaptively synthesizing a program of abstract machine code.
In a final step this abstract program is incrementally mapped to exe-
cutable machine code — comparable to what just-in-time compilers
do. Our main contributions are (i) an abstract interface for render-
ing and visualization systems enabling incremental evaluation, (ii)
adaptively optimized abstract machine code in the context of state-
less graphics commands, and (iii) subsequent adaptive compilation
to executable machine code including on-the-fly defragmentation.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems
D.3.4 [Programming Languages]: Processors—Incremental com-
pilers, Optimization

Keywords: rendering, optimization, dynamic compilation, virtual
machines

1 Introduction

With ever increasing rendering performance of graphics hardware,
optimization of rendering and visualization systems becomes more

∗{haaser|steinlechner|maierhofer|tobler}@vrvis.at

and more important. While GPUs steadily increase their through-
put, real-world performance of rendering or visualization systems
often cannot keep up due to various implementation overheads. In
order to resolve this problem many state of the art engine and driver
implementations perform a wide range of optimizations on the fly,
such as automatically filtering out ineffective or redundant graphics
instructions.

However, applications implemented on top of high-level program-
ming interfaces which provide a productive development environ-
ment (e.g. scene graphs) still fall short of theoretical peak hardware
performance. This leads to the common practice of hand-tuning
graphics code or of circumventing high-level APIs altogether in or-
der to achieve the desired performance. As a result, programmabil-
ity and productivity suffers due to the lack of high-level abstraction
mechanisms and developers need to manually tune low-level graph-
ics commands for different use cases.

We propose that a significant fraction of the remaining mismatch
between soft- and hardware throughput can be eliminated by intro-
ducing a proper notion of incremental change allowing to maintain
temporal coherence of low-level instruction streams.

Graphics APIs such as OpenGL or DirectX operate on mutable
shared state, i.e. graphics commands alter parts of the rendering
state implicitly. In order to know the full rendering state relevant for
an optimization, basically all previous commands need to be con-
sidered, since any command could have altered parts of the relevant
state. This significantly complicates optimizations. Presumably the
Khronos Group’s Vulkan API [Khronos 2015] takes a significant
step towards stateless graphics which will simplify such optimiza-
tions, but at the time of writing there neither exists published re-
search nor a publicly available API to support such claims.

Irrespective of the actual graphics API, the current notion of a se-
quence of graphics commands that need to be executed is too simple
an abstraction to support optimizations that deal with temporal co-
herence. To that end we have identified the following fundamental
issues with current low-level graphics programming interfaces:
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• Backend implementations need to execute redundant calls and
simulate their semantics in order to filter out redundant ones.
Even if redundant calls can be detected fast in the driver, the
rendering engine wastes cycles by actually executing the use-
less command. As shown by [Wörister et al. 2013], issuing
ineffective commands has a significant overhead, especially
in managed execution environments such as the JVM, .NET
or in browsers executing JavaScript.

• Although graphics APIs provide so-called state objects, not all
changeable input is represented in these state objects. Due to
dependencies between these different forms of input, optimal
code for submission to the API needs to contain dependent
control flow, making optimization difficult.

• Finally, graphics backends traditionally execute all draw calls
each frame, over and over again. As a result, all optimiza-
tions need to be carried out repeatedly, instead of exploiting
temporal coherence between successive frames.

In order to automatically perform all relevant optimizations neces-
sary to issue a near-optimal stream of graphics commands to the
low-level graphics API, we propose a novel programming interface
with a design based on the following premises:

• Graphics commands have no implicit state. Each effective
draw call captures the complete rendering state. As a con-
sequence, draw calls can be analyzed independently of their
occurrence.

• Command arguments explicitly understand the notion of
changes, which is crucial for adaptive optimization.

By introducing a new layer on top of existing graphics APIs we can
overcome the fundamental problems of the current architecture, and
achieve fully automatic optimization.

Our contributions are:

• An abstract interface for rendering systems, which acts as
the smallest common module for other high-level front-ends
such as scene graphs and captures all necessary functionality
while naturally enabling incremental evaluation (Section 2).

• The concept of adaptively optimized abstract machine code
in the context of stateless graphics commands. While ab-
stract machine code for rendering is a well known technique
[Wörister et al. 2013], we utilize incremental evaluation for
code generation (Section 3.2).

• Based on an analysis of virtual machine interpreters (Sec-
tion 4.2) for executing the graphics commands implied by our
new interface, we decided to employ adaptive compilation
to minimize the overhead of submitting graphics commands
(Section 3.3)

• Although initially optimal, the generated code will degrade
over time due to additions and removals of graphics com-
mands based on incremental changes. We use on-the-fly de-
fragmentation of optimized machine code (Section 3.5), so
that the resulting code is dense and can be executed linearly
without cache misses (Section 4.2).

All of these innovations result in a system that handles additions,
removals and updates at a cost that is proportional to the size of the
changes. While we eliminate execution overhead by utilizing adap-
tive compilation, the runtime performance gain comes at the cost
of additional startup time. In Section 4.3 we provide benchmarks
for highly dynamic contexts, which demonstrate that our system
is significantly faster than existing systems in common cases and
performs reasonably well in the worst case.

2 An Incremental Rendering API

The main idea of our extension for rendering systems is the notion
of tracking all incremental and structural changes to the objects that
need to be rendered. Since existing graphics APIs have no concept
of these changes, we need to introduce a new level of abstraction
on top of these APIs.

A number of rendering systems (e.g. Inventor [Strauss 1999],
OpenSceneGraph [Burns and Osfield 2004], OpenSG [Reiners
2010]) use scene graphs as a useful higher-level abstraction for the
rendering intent of the programmer. Naive scene graph rendering
simply traverses the scene graph in depth first manner while di-
rectly issuing graphics commands to the graphics hardware. Since
this simple approach yields unsatisfactory performance, various op-
timization strategies for scene graphs have been introduced, such as
restructuring or compressing the scene graph (e.g. Inventor [Strauss
1999]), or the creation of render caches [Wörister et al. 2013].

We do not mandate a specific high level representation (such as
scene graphs), but introduce a new simple representation that is just
at the right level of abstraction to be able to programmatically en-
code incremental changes to the rendering intent (see Figure 1). If
scene graphs are used as a high level abstraction, the computation
of the dependency graph introduced by Wörister et al. can be used
to map the changes from the scene graph to our simpler level of
abstraction. Note however, that our representation can deal with
structural changes (i.e. additions and removals of content to be ren-
dered), that cannot be handled by Wörister et al.[2013].

The scope of this paper is to optimize interaction with the graph-
ics hardware where we assume high-level semantics already being
mapped to a set of drawable objects which we will refer to as render
objects. Each render object is associated with the transitive closure
of all its properties required for issuing the appropriate draw call.
In the following we shall refer to those properties as arguments of
the render object.

In order to handle value changes, i.e. changes of arguments of ren-
der objects, each parameter needs to be stored in a reference cell, an
identifiable cell containing exactly one value at a time. By provid-
ing an explicit method for setting a new value, all necessary modifi-
cations to internal data structures can be triggered by value changes.
Such changes include for example changes of transformations trig-
gered by moving the viewpoint or changes of vertex coordinates
triggered by edits, but may also include changes of the visibility
state of a render object for temporary culling: this can be imple-
mented by making the execution of the actual draw call dependent
on a changeable boolean value.

For structural changes we provide functions for submitting addi-
tions and removals of scene geometries. To this end we offer the
abstraction of the render task which serves as a handle to a set of
render objects. Typically a render task is maintained for each ren-
der window. Adding and removing render objects to a render task
makes it possible to dynamically change the rendered content, and
running the render task executes the graphics API calls representing
the current set of render objects.

Based on these assumptions we define an abstract incremental ren-
dering API in the following way:

class Ref<T> { setValue(T newValue); } // reference cell

class RenderObject {
Ref<DrawMode> DrawMode;
Ref<IBuffer> IndexArray;
Ref<Dictionary<Slot,IBuffer>> VaryingAttributes;
Ref<Dictionary<Slot,ConstantBuffer>> UniformBuffers;
/* ... */

}
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interface ITask { void Run(); }

class RenderTask : ITask {
void Add(RenderObject ro);
void Remove(RenderObject ro);

}

interface IIncrementalRenderAPI {
RenderTask NewRenderTask();
ITask NewClearTask(Ref<Color> col, Ref<float> depth);
/* ... */

}

Note that the API defined so far operates on sets of render objects
instead of lists, i.e. it cannot express user-defined draw order. In
Section 3.4 we extend our system to also support specified draw
orders as required for rendering in the presence of transparency.

3 Adaptive Optimization

It has been observed that reordering drawing code in order to min-
imize state changes in the graphics API is the most important opti-
mization for achieving high rendering performance (e.g. . Wörister
et al. [2013]). In the following section we show how a state sorted
representation can be maintained while allowing for incremental
and structural changes.

3.1 Overview

Our approach maintains an optimized program of executable ma-
chine code for each render task at any point in time. Based on
the assumption of temporal coherence, i.e. that the scene does not
change significantly between successive frames, all optimizations
are performed incrementally in running time proportional to the size
of the change (O(∆)). An overview of our approach is shown in
Figure 1.

We allow for incremental changes that are triggered by value
changes to reference cells, as well as structural changes that add
or remove addtional geometry. Startup is performed by adding all
initial scene objects as render objects to an intitally empty render
task.

On the level of abstract instructions, we perform state sorting (see
Section 3.2) and redundant call elimination. Both optimizations
are based on the notion of referential equality of reference cells,
i.e. the actual value of a reference cell may change over time, but
the identity of the cell (its reference) does not. Therefore we can
efficiently identify successive state setters using the same reference
cell and optimize to a single one, i.e. the second setter is redundant
(see Figure 2).

However, the overhead of interpreting abstract instructions for thou-
sands of objects each frame over and over again is considerable.
Therefore, instead of using an interpreter to map abstract instruc-
tions to concrete graphics commands [Wörister et al. 2013], we
completely eliminate interpretation overhead by further compiling
abstract instructions down to executable native machine code rep-
resenting concrete driver level calls (see Figure 1). Crucially, this
compilation is again incremental and triggered by changes in refer-
ence cells.

3.2 Generating Efficient Abstract Machine Code

For the moment we focus on unordered sets of render objects. In
Section 3.4 we will extend our system to support user-specified or-
der (e.g. back-to-front or front-to-back).

The unordered set of render objects shall be sorted in such a way
that the overall number of state transitions becomes minimal. The
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Draw
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RO1.Buffer&==&RO2.Buffer

Render&Object2

Figure 2: Under shallow reference equality the second Set com-
mand with the reference to the same buffer is redundant.

optimal solution for this problem can be formalized as the Open
Traveling Salesman Problem, whereby each render object corre-
sponds to a node in a graph and the cost of switching state corre-
sponds to the edge labels. Since rendering state consists of multiple
sub-states, where each state is associated with a specific transition
cost (e.g. setting framebuffers is considered to be more expensive
than binding buffers), total cost can be computed using Manhattan
distance. Since the cost of switching a particular state can only be
estimated and varies between GPU architectures and driver imple-
mentations, state sorting does not need to be precise. Thus, solv-
ing the Open Traveling Salesman Problem which is known to be
NP-complete is not necessary, especially when considering that ad-
ditions and removals of render objects should be possible which in
general would require a global re-optimization.

In order to support fast updates with low constant overhead, we
decided to use a trie data structure (see Figure 3) supporting the
following operations:

1. Reasonably fast additions and removals of render objects,
while maintaining approximate order.

2. O(n) execution, i.e. traversing the data structure shall not in-
troduce additional cost.

Each level of the trie uses a specific rendering state as its key, or-
dered by the cost of switching the respective state. Currently we
use shaders, textures and buffers as keys since they seem to have
the highest impact on performance.

At some point, any further refinement of state grouping does not
yield additional performance improvements (see Section 4) so in-
stead of storing single render objects in leaf nodes we create buck-
ets containing a set of unordered render objects. The depth d of the
trie is the dimension of the state vector suspect to state grouping.
Thus, the cost of adding or removing a render object is equivalent
to searching the respective bucket in a trie of depth d. Furthermore,
when using hash sets for modeling buckets this can be done in con-
stant time (1).

In order to support efficient execution (2), we maintain a linked list
of buckets induced by the trie (see blue nodes in Figure 3).

Instead of repeatedly checking redundant calls each frame, we sepa-
rate optimization and execution by introducing an abstract descrip-
tion of graphics commands similar to Wörister et al. [2013]. In
contrast to their approach of optimizing a predefined unit of compi-
lation called render cache, we perform redundancy removal on the
fly while generating the abstract machine code. Since each render
object is associated with its full state vector, which is guaranteed
not to change due to referential equality, we can generate state tran-
sition code for each render object given some predecessor render
object. The ability to optimize code on the fly is crucial and allows
for incremental changes and optimizations without global optimiza-
tion.

In order to generate abstract machine code for a given render object
and its associated state vector we use a function which performs the
state transition given the state vector of the previous render object
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0xEAF1:"RO1 
MOV ECX, 0xb44
MOV RAX, 0x7f
CALL RAX
JMP 0xDEAD

0xDEAD:"RO2
MOV ECX, 0xb44
MOV RAX, 0x7f
CALL RAX
JMP 0xFEED

0xFEED: RO3 
MOV ECX, 0xb44
MOV RAX, 0x7f
CALL RAX
JMP 0x1337

0x1337:"RO4 
MOV ECX, 0xb44
MOV RAX, 0x7f
CALL RAX
RET

executable"memory

Figure 3: Bucket trie for state vectors (shader, texture, buffer).
Leaf nodes (blue) contain a bucket with incomparable render states.
Furthermore, each leaf node is associated with code fragments for
each render object (green). These code fragments directly contain
executable machine code which is linked using JMP instructions.

depending on the insertion point. In order to efficiently add and
remove code for render objects we use a doubly linked list which
holds code for specific render objects. Additionally, we maintain
an index of contained render objects, which maps render objects to
their associated linked list node to allow for additions and removals
at arbitrary positions in constant time (see Figure 4).

SetShader  S1
SetTrafo   T1
SetBuffer  B1
Draw RO1

s"="{"S1","T1","B1"}

first""""="
index"=!{!RO1!""""",!RO2!!!!!!}

last""""="

SetShader  S1 
SetTrafo   T1
SetBuffer  B1
Draw RO2

abstract!machine!code!!(linked!list)

COMPILEDIFF(
  RO1,
  {})

COMPILEDIFF(
  RO2,
  {S1,T1,B1})

Figure 4: Render object bucket (leaf in the bucket trie) with per-
bucket constant state (S1, T1, B1). For each render object we
maintain a piece of abstract machine code in a doubly linked list.
Code for a specific render object depends on its predecessors output
state and can be compiled using COMPILEDIFF (see Algorithm 1).

Furthermore, in order to respond to value changes of render state
components adaptively, we register callbacks for each changeable
parameter which directly patch the abstract machine code. Each
bucket can now be rendered by sequentially executing the opti-
mized abstract machine code while the complete scene can be ren-
dered by traversing the linked list of buckets.

3.3 Incremental Compilation of Abstract Machine
Code to Native Machine Code

Although separation of optimization and execution is crucial for
performance, interpreting abstract graphics instructions induces
significant constant overhead. In early prototypes, we used a hand-
tuned interpreter implemented in the C programming language as
well as various virtual machine implementation techniques (see
Section 4).

Algorithm 1 Emits abstract machine code for render object r start-
ing in render state s.

1: procedure COMPILEDIFF(r, s)
2: if texture(r) 6= texture(s) then . textures differ
3: . emit to code buffer and register for changes.
4: EMIT(SETTEXTURE,texture(r))
5: end if
6: if indices(r) 6= indices(s) then . index buffers differ
7: EMIT(SETINDEXBUFFER,indices(r))
8: end if
9: . . .

10: . emit draw instruction depending on the draw mode
11: EMIT(DRAW(drawMode(r)))
12: end procedure

Regardless of the technique, each instruction still needs to be de-
coded and dispatched each frame. Therefore, following the recur-
ring theme of this paper to apply optimization to a structure once,
in order to avoid repeated overhead, we introduce adaptive compi-
lation of graphics commands:

• Allocate a block of executable memory.

• Traverse the list of render objects once. For each object gen-
erate a code fragment of machine code calling the appropriate
API functions, and put this code fragment into the block of
executable memory.

In order to support dynamic changes, we also keep the original trie
and its render buckets. In the case of adding a render object, we
find its bucket, allocate memory for the corresponding code frag-
ment, and use the memory manager which is filled with the exe-
cutable code generated by COMPILEDIFF with respect to the the
previous render object of this bucket. Similarly to a linked list im-
plementation we need to patch two jump instructions causing the
execution to continue in our new code fragment and jumping back
when its execution is finished. Removals can be handled by simply
skipping the code fragment in question by patching the jump of the
predecessor and deleting the corresponding memory region using
the memory manager.

Note that these changes to the code fragment list cause the jump
instructions to be non-local in general. Therefore the code may
become increasingly inefficient when applying further changes (see
Figure 7).

For in-place updates, the callback mechanism introduced earlier
carries over to native code generation. As a result, value changes
of render object arguments directly patch the associated bit code
without additional overhead (see Figure 5). As an example con-
sider a 3D modeling application. Whenever the user changes the
blend mode for an object, the system automatically responds to this
change and specifically generates code for setting up blending ac-
cordingly.

3.4 Introducing Drawing Order

In order to render transparent objects using current hardware, it is
necessary to sort render objects back to front, and perform the asso-
ciated render commands in this order. Since this order can change
with every frame, our assumption of temporal coherence breaks,
and compilation and redundancy removal optimizations on this set
of render commands is a wasted effort.

For this reason we resort to a simpler scheme for render objects
which require some rendering order:
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SetBuffer 
Draw RO1
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S1 T2

B2

Rasterizer

Enabled
BlendFunc

MOV ECX, 0xb90
MOV RAX, 0x8fd
CALL RAX
MOV ECX, 0x6
MOV RAX, 0x69d20800
CALL RAX
MOV RAX, 0x7fe..
CALL RAX // disable
MOV ECX, 0x05
MOV RAX, 0x7fd..
CALL RAX
MOV ECX, 0x4
MOV EDX, 0x33d2
MOV R8D, 0x1405
MOV R9, 0x0
MOV RAX, 0x69c..
CALL RAX

Figure 5: Abstract machine code (left), assembly code for the draw
commands (right). Each virtual machine instruction registers call-
backs for all changeable parameters. If the parameter changes, the
system automatically patches affected binary code. This applies for
structural changes as well. In this example, the machine code dis-
ables blending. If blending is finally enabled, additional code for
specifying the blend function needs to be patched in.

• disable redundancy removal for these render objects: render
states must be set, since the exact render state is unknown due
to the changing order

• annotate these render objects with a key

• sort the corresponding code fragments as necessary

Based on this simple scheme, we can extend the incremental render-
ing API to handle rendering order. We allow adding render objects
with a key, that are subject to changing rendering order, and we
provide a function for sorting all render objects with a key, by sup-
pling a callback function that needs to specify the rendering order
for each key value:

class OrderedRenderTask : ITask {
void Add(Key key, RenderObject ro);
void Remove(Key key, RenderObject ro);
void SortObjects(Func<Key, Order> orderFunction);

}

3.5 Defragmentation

Insertions and deletions of code fragments, as well as changes in the
code size of code fragments lead to an increasing number of non-
local jumps in the sequence of code fragments in executable mem-
ory. This negatively impacts cache performance [McFarling 1989],
especially for programs with static control flow. In order to improve
runtime performance in presence of structural changes, we need to
perform defragmentation of the instruction stream. Note that, in
contrast to conventional approaches which store optimization struc-
tures as data, we do not benefit from compacting garbage collection,
as employed by virtual machines [Blackburn et al. 2004].

Therefore we use a similar approach to concurrent garbage collec-
tors to compact code fragments. In order to avoid blocking the ex-
ecution during defragmentation we introduce a procedure based on
microsteps. Execution must be synchronized with those microsteps
but not with the entire defragmentation. Thus defragmentation and
execution can be interleaved performing only a subset of all defrag-
mentation steps after each frame.

Similarly to the algorithm proposed by Dijkstra et al. [1978], which
uses memory fences in order to synchronize evacuation and execu-
tion, our algorithm performs synchronization on a per block level
where each block is handled by a so called microstep.

0x0000:"RO1 
<code>
JMP 0x0020

0x0010:"RO3 
<code>
JMP 0xFEED

0x0020:"RO2 
<code>
JMP 0x0010

0x0000:"RO1 
<code>
JMP 0x0020

0xDEAD:"RO3
<code>
JMP 0xFEED

0x0020:"RO2 
<code>
JMP 0xDEAD

0x0000:"RO1 
<code>
JMP 0x0010

0xDEAD:"RO3 
<code>
JMP 0xFEED

0x0010:"RO2 
<code>
JMP 0xDEAD

&m
e

address-space

Figure 6: A defragmentation microstep evacuates code fragment
RO3 in order to have enough space to move the code fragment
RO2 (which follows code fragment RO1 in execution order) into
the correct place to avoid the non-local jump from RO1 to RO2.

A microstep is divided into two phases: (see Figure 6)

evacuate Moves all code fragments consuming the space adjacent
to the current one to a new memory location (provided by the
memory manager) in such a way that the desired code frag-
ment (the next one in execution order) can be moved there.

compact Actually moves the next code fragment to the free space
obtained by the evacuation step and ensures that remaining
space is freed using the memory manager (if such a space
exists).

Note that this is a very simple example for illustrative purposes. In
general the code fragment sizes vary and it may be necessary to
evacuate more than one code fragment in order to free enough
space for the subsequent code fragment. For the evacuation step
it is also necessary to allocate new space for those evacuated code
fragments.
Note that performing one of these steps may even increase the over-
all fragmentation but after repeating this step for all existing code
fragments the final output will only contain local jumps.

4 Evaluation

4.1 Implementation

Our implementation is written mostly in F# and C# and runs in
.NET4.5 and Mono 3.12. The graphics API we use is OpenGL 4.
Note that for application-level code we use high-level programming
concepts. Performance critical parts however operate on raw mem-
ory. Meta data for code fragments and render tasks is stored in
managed data structures, while code fragments are placed in exe-
cutable memory. In our implementation we use a custom assembler
(AMD64) which generates machine code and associates meta data
with memory offsets required to perform in-place updates of ma-
chine code.

4.2 Different Virtual Machine (VM) Implementation
Techniques

There are several different ways of implementing a virtual machine
for our abstract machine code, which span the gamut from perfect
execution with poor update performance to perfect update perfor-
mance with poor execution. In the following we compare the per-
formance of our approach to a series of commonly used techniques.
These techniques are:

Direct Threaded Code This implementation serves as a baseline
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Figure 7: Comparison of different VM implementations with vary-
ing size of programs. Even with increasing program size (instruc-
tion bound), all implementations roughly maintain constant execu-
tion time per instruction. However, a naive implementation of our
code fragment technique becomes significantly slower with large
programs when ordered randomly. This is mainly due to cache
misses during execution (see defragmentation). In case of non-
random programs, i.e. Code Fragments (local jumps, nop optimiza-
tion), our implementation is as fast as the compiled version using
direct threaded code.

and consists of an unrolled instruction stream of all calls [Bell
1973]. Therefore this approach can be seen as an optimal run-
time implementation with very poor update performance.

LinkedList (switch) This represents the most straight-forward
way to implement an interpreter for our abstract machine code
using a C# switch-statement.

Virtual Methods Since switch based interpreters are usually com-
piled to jump tables, virtual methods yield similar results to
LinkedList(switch) and is therefore omitted in the graph.

C99 (switch) Since the managed interpreter spends most of its ex-
ecution time transitioning from managed to unmanaged code,
a simple C99 implementation for the interpreter gives a sig-
nificant performance gain. This is caused by the fact that there
is only a single managed/unmanaged transition when running
the interpreter.

Code Fragments (local jumps) Uses our fragments as described
in Section 3.3 with all jump distances 0.

Code Fragments (random order) Same as before, but with ran-
domly chosen code fragment execution order. Therefore the
jump distances are relatively large (especially for large pro-
grams). This motivates defragmentation as described in Sec-
tion 3.5.

Code Fragments (local jumps, nop optimization) Similar to
Code Fragments (local jumps), but all distance 0 jumps are
replaced with NOP instructions. This is motivated by the
observation that “useless” jumps cause measurable overhead.

In our test setup (see Figure 7) we use 25 different functions (na-
tive) taking 1 to 5 integer arguments. These functions do not ex-
ecute any code and return immediately since we want to measure
the overhead introduced by the VM. This setup simulates the driver
functions used by our real backend implementation and shows that
our implementation achieves near minimal execution overhead.

In a second test, we also measured the cost of random insertions into
an instruction stream of varying size organized as code fragments
while disregarding any associated cost of resource uploading. The
result of a nearly constant insertion time of about 6 microseconds

for a single insertion, allowing for a theoretical maximum of more
than 150,000 insertions per second, poses no practical limitation in
real-world scenarios.

4.3 Rendering Performance

Having shown that our system achieves near minimal execution
overhead for submitting commands to the graphics driver, we now
need to assess the possible speed up when geometry is actually ren-
dered. This possible speed up is clearly dependent on the structure
of the scene. There are two extreme cases for this structure:

• Scenes with a high degree of geometric repetition can be ren-
dered using hardware instancing, and the number of actual
draw calls is very small. In this case our system will not
achieve a lot of speed up, since there is not a lot to optimize.

• Scenes with very little or no geometric repetition require that
graphics states need to be set for each object, so again the
potential speed up by optimising the submission code is small.

Most realistic scenes will fall in between these two extremes of the
spectrum, i.e. there will be some geometric repetition but not for all
objects and not with a large number of instances. For our tests we
therefore used a static scene of varying number of distinct geome-
tries each replicated twice on average. Each geometry is assigned
a texture out of 128 distinct textures randomly. By using generated
geometry we ensure that polygon count (and GPU load) remains
roughly constant for each test case. Note that, such scenes with
huge geometry counts, but different properties are a necessity in
applications such as CAD or modelling software where each object
needs to be editable individually.
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Figure 8: Scenes of varying object count with roughly constant
GPU load. Our compiled approach performs best in all cases
and outperforms our Render object interpreter as well as C++
OpenGL/Direct3D11 render object interpreters and Unity 4.6. Note
that, due to driver overheads, all configurations are CPU bound.

We evaluated our approach by comparing it to the following four
implementations:

Render object interpreter An implementation in .NET, which
uses the same data structures as our compiled variant (pro-
posed method). Essentially this implementation reflects a
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runtime variant of COMPILEDIFF which issues commands di-
rectly instead of emitting instructions.

GL++ A std::vector stores the set of render objects, where
each render object contains all prepared GL resources for the
object. Each render object contains an additional uniform
buffer for storing the per-object model matrix. Note that this
implementation issues exactly the same OpenGL commands
as our approach except for state sorting.

DX++ Just like GL++, a std::vector is used to maintain the
list of render objects. Each object contains a separate constant
buffer which stores the model matrix.

Unity 4.6 A straight-forward rendering of the same test scenes us-
ing the Unity 4.6 rendering engine.

Note that our reference implementations perform runtime redun-
dancy removal, i.e. each graphics command is checked to be ef-
fective by comparing the active state for each state attribute (e.g.
textures).

We performed out tests under Windows 8 using two different sys-
tem configurations:

• Nvidida GeForce GTX 680 with 2048MB graphics memory
and an Intel i7 920 @ 2.67Ghz and 12GB RAM

• AMD Radeon HD 7900 Series, 3072 MB graphics memory
and an AMD FX Eight-Core Processor, 4.7GHz, 16GB RAM

The results are shown in Figure 8. Obviously interpretation of the
render objects in the managed .NET implementation (Render ob-
ject interpreter) incurs a significant overhead due to the transition
from managed to native environment for each draw call. Compar-
ing to the GL++ implementation we see that our system achieves a
significant speed up of about factor 2.5 on the Nvidia system and
about factor 4 on the AMD Radeon system. The speed-up when
compared to DX++ on the AMD Radeon is lower, indicating that
the DirectX driver may be able to perform additional optimizations
that are not available via the OpenGL API, still our system outper-
forms the DX++ implementation on both systems. Notably our sys-
tem also outperforms or at least matches the performance of Unity
4.6 (which uses DirectX) for all object counts.

It can be seen that our system can achieve significant speed ups in
the static case even though it allows dynamic changes (additions
and removals of render objects) which cannot be easily handled in
other comparable systems (e.g. Wörister et al. [2013]).

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 Nvidida GTX 680, i7-920  

  C++/no optimization   C++/runtime optimziation 
  C++/fully optimized   ours 

Radeon HD 7900, AMD FX-9590 

Figure 9: A comparison of execution performance in frames per
second, normalized to 1.0 for our implementation. We show this
relative performance, since it was nearly the same across multiple
test instances with varying render loads.

In order to break down the performance improvement of our sys-
tem, we implemented various variations of our backend:

C++/no optimization A straight-forward implementation using a
simple C++ switch statement executing all instructions for
each fragment without any pre-filtering. Code is stored

in a linked list of fragments where each fragment uses a
std::vector of instructions. Each instruction is repre-
sented by a struct containing an opcode and appropriate
arguments. Note that these fragments are necessary to provide
the needed flexibility for our top-level API.

C++/runtime optimization The same implementation as C++/no
optimization, while additionally maintaining OpenGl state
throughout its execution and filtering out redundant calls by
checking them against that state.

C++/fully optimized This is the equivalent to our approach but
without the JIT compilation, i.e. a tight C++ loop for inter-
preting state sorted, pre-filtered graphics instructions.

ours Our full implementation with native JIT optimization.

In order to eliminate bias towards a specific implementation we use
exactly the same application setup and the same sorting mechanism
(i.e. a trie to support fast updates) for all implementations. In fact
all approaches except for C++/no optimization issue exactly the
same OpenGL commands. A relative comparison is shown in Fig-
ure 9. The values for the relative benefit were measured using the
same synthetic tests as in Figure 8. Since the deviation was very
small across multiple instance sizes we just show an average over
all different render loads. The results show, that even compared to a
fully optimized C++ implementation our approach achieves signifi-
cant speed up. This validates our approach of compiling the abstract
render code to machine code for submitting rendering commands.

By exploiting temporal coherence our system uses the same opti-
mizations for the dynamic case as in the static case. However, due
to the necessity of updating all the different representations (see
Figure 1), the speed of dynamic changes (additions/removals) nec-
essarily has an upper limit which we need to find out.

To evaluate this, we measured the time per change (addition or re-
moval) for modifying a rendering workload of various size (see
Figure 10), in both the compiled code fragments implementation
and the interpreted linked list implementation. Although the cost
of changes in the compiled version is significantly higher than in
the interpreted version, nevertheless we can perform about 1400
changes per second in the compiled version, which corresponds to
adding about 23 render objects per frame at 60 frames per second.
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Figure 10: Structural updates (additions and removals) performed
on a scene of varying size (number of render objects). Both im-
plementations provide constant running time per change. In this
test we perform batch changes of size 40 which consist of 20 addi-
tions as well as 20 removals. In total we can perform about 3500
objects additions/removals per second in the linked list implemen-
tation and approximately 1400 in the code fragments implementa-
tion. At 60 fps that corresponds to about 23 modifications per frame
which seems reasonable for editors as well as games.

We think that the increased modification cost is well worth the
demonstrated significant rendering performance improvement and
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is still low enough for typical real world applications such as 3D
editors or games.

Note, that for incremental changes of values, the update perfor-
mance is different, depending on the graphics API we use for sub-
mitting the value to the hardware: if the value change is represented
in an explicit state object, it can be performed by just changing the
value, and uploading the changed value to the hardware. In this case
the speed is only limited by the bandwidth to the graphics hardware
and our new system has the same performance for changes as the
one by Wörister et al. In the other case, when the value change
is not represented in an explicit state object, and the value change
requires a modification of the associated code fragment, the size of
the code fragment can possibly change and the resulting worst case
performance is the same as shown for structural changes in Figure
10. Given our premise that there is only little change between suc-
cessive frames, this represents the maximum possible performance
given the limititations of existing graphics APIs.

Sponza24: Crytek’s Atrium
Sponza scene with 392 ob-
jects and 20 textures, repli-
cated 24 times without in-
stancing summing up to
3,452,208 triangles.

HugeCity: A generated
city with 6,580 objects and
598 textures and a total of
17,219,220 triangles.

Architecture: A big archi-
tectural scene consisting of
7,022 objects summing up
to 1,501,606 triangles.

Figure 11: Scenes used for performance tests.

4.4 View Frustum Culling

Although we achieve an acceptable performance for structural
changes, adding or removing about 1400 objects per second is not
fast enough for view frustum culling. As already mentioned in sec-
tion 2, temporary culling operations can be implemented with value
changes. This technique avoids the use of structural updates for
temporary culling and thus reserves their use for real changes in the
scene such as editing operations in CAD software (i.e. creating or
deleting entities) or the creation of characters or objects in games.
This separation reflects the necessity to distinguish between high
frequency changes that leave their resources allocated, and low fre-
quency changes with proper handling of deallocation. By using
this improved technique the dynamic performance of our system is
clearly sufficient.

4.5 Real world

As we have shown in previous sections our system efficiently is-
sues commands to the underlying graphics hardware — in fact we
practically eliminate all overheads in the graphics backend. How-
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Figure 12: Our system outperforms Unity 4.6 and OpenScene-
Graph 3.0.1 in most cases (see Figure 11 for screen shots of the
used scenes). On Windows with the HugeCity scene , we observe
slightly inferior performance compared to Unity (which is running
DX11). Note that this difference does not appear in our Linux setup
(identical hardware), in which both systems use OpenGL. In a sig-
nificant portion of the tests we successfully made rendering GPU
bound (with the exception of the architectural scene) whereas espe-
cially Unity suffers from being CPU bound due to overheads when
submitting draw commands.

ever, our performance improvements depend on what is actually
rendered. Of course, in scenes with high GPU load, i.e. when the
actual rendering is the bottleneck, our system does not provide ad-
ditional performance. Still, low overhead has other benefits. Oth-
erwise wasted CPU cycles can be used for other computations or
just idle waiting for the graphics system, possibly with lower en-
ergy consumption. As already indicated in the artificial test scene,
our system is not only dependent on scene complexity, but also on
the underlying graphics driver system.

In order to find out how our system performed on real world ren-
dering loads we compared its performance to Unity 4.6 and Open-
SceneGraph 3.0.1 using the three scenes shown in Figure 11. We
tested these scenes on both Windows 8 and Linux in the form of
Ubuntu 14.04 LTS and with the same system configurations as
in our artifical rendering test. The results of this comparison are
shown in Figure 12. Our implementation outperforms both systems
in nearly all cases, and also increases GPU utilization to the point
that rendering is almost entirely GPU bound for a large part of the
tested cases.

This result is supported by comparing our compiled code fragments
implementation with our interpreted linked list implementation (see
Figure 13): the compiled submission of graphics commands again
significantly improves GPU utilization.
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Figure 13: In this benchmark we use Sponza24 to compare the
linked list and code fragments implementation. This shows that our
compiled rendering code significantly improves GPU utilization.

Please note that although we tried the best to make the tests fair,
there is still some bias towards specific hardware and driver combi-
nations, simply due to the fact that there often is no single imple-
mentation which is equally performant on all platforms. Also note,
that on Windows Unity uses DirectX while both other systems use
OpenGL.

5 Related Work

There is a trend towards more stateless graphics APIs in order to
reduce implicit state. DirectX 10/11 introduced separate state ob-
jects for semantically related subsets of the global state (e.g. Ras-
terizerState, InputLayout). These state objects can be shared be-
tween related draw calls, and for dynamic scenes they can be mod-
ified without changing the actual graphics commands. Similarly,
OpenGL 3.0 [Segal and Akeley 2008] introduced Vertex Array Ob-
jects (VAO), which capture all relevant state needed to supply ver-
tex data. Apple’s Metal [Apple Inc. 2014] provides direct access to
graphics state and exposes command buffers similar to OpenCL’s
command queues [Khronos and Munshi 2009], or the Khronos
Group’s proposed Vulkan API [Khronos 2015].

Although stateless APIs provide a mechanism for expressing value
changes in render states and draw call parameters, there is no notion
of structural changes such as addition or removal of objects to be
rendered. Although stateless graphics APIs (e.g. direct state access
in OpenGL [Segal and Akeley 2014]), remove the need of setting
up appropriate rendering state sequentially, draw commands need
to be issued to appropriate command queues. Note that display lists
support this kind of batch submission and can be reused in succes-
sive frames. However, display lists are static and cannot be changed
structurally after creation. Most recently, Nvidia’s command list
extension [NVidia 2015] introduced mechanisms for compilation
of graphics commands and updating graphics states. Although in-
ternal implementation details are not publicly available we believe
our approaches and findings could benefit from each other.

Today’s graphics APIs allow drivers to perform a rich set of low-
level optimizations. For example, redundant draw calls can be fil-
tered out early. Unfortunately, due to lack of high-level informa-
tion, low-level graphics APIs simply cannot perform all possible
optimizations. As an example consider the Z-cull optimization in
the presence of complex shaders modifying Z-values dynamically.
Mantler and Hadwiger [2007] propose to extend graphics drivers to
support programmable z bias in order to safe early z optimization,
even in the presence of depth modification in pixel shaders. An-
other example of missing information at driver level is Level of De-
tail (LoD). Cohen et al. [2003] propose to solve LoD at the driver
level. The same applies to geometric mesh optimizations such as
generation of triangle strips or other complex optimizations aiming
for vertex locality and reduced overdraw on a per mesh granular-
ity [Nehab et al. 2006].

Thus, for maximum performance, graphics programmers need to
manually tune graphics commands for specific scenes or imple-
ment optimizations at application or graphics engine level. Graph-
ics engine optimizations go back to early work in the field of scene

graphs. Strauss [1999] optimizes scene graphs by applying per-
sistent transformations to the input scene graph (e.g. pulling up
costly changes). Other optimizations based on preprocessing in-
clude automatic pre-transformation of geometry, packing of ge-
ometry or textures or merging of slightly different materials. No-
tably, those optimizations can be found in graphics programming
and scene graph toolkits such as OpenSceneGraph [Burns and Os-
field 2004], OpenSG [Reiners 2010], or IRIS Performer [Rohlf and
Helman 1994]. However, the key problem with preprocessing is
the loss of dynamism. For example, packed or pre-transformed
geometries cannot be changed individually or at least need to be
de-optimized prior to modification.

Another optimization introduced in the context of scene graphs is
caching. In their scene graph system Durbin et al. [1995] associate
each scene graph node with a cache containing all render com-
mands which are required for rendering the sub-graph contained
by the node. The advantage of generating such caches is twofold:
Firstly, the rendering system executes the prepared cache instead
of costly traversing the sub-graph. Secondly, the cache can be op-
timized in various ways. Optimally, the cache contains a stream-
lined array of graphics commands, which additionally can be op-
timized for faster execution, e.g. by removing redundant graphics
commands. Optimizing instruction streams for fast execution is by
no means limited to computer graphics. Hirzel et al. [2014] provide
a comprehensive overview on stream optimizations in other fields
of computer science.

One key problem with rendering caches is consistency with the rep-
resented scene. Changes in the original scene graph need to be
mapped to changes in the optimized structure efficiently. Based
on recent work on incremental evaluation in the computer language
community Wörister et al. [2013] introduce rendering caches which
can be updated incrementally. They use a dependency graph in or-
der to keep the rendering cache consistent with the original input
scene data structure.

They show that render caches serve as a solid basis for various op-
timizations and identified Redundancy removal and State sorting to
be the most effective in spite of the fact that these optimizations
are also usually performed on the fly in the driver [Frascati and
Seetharamaiah 2014]. Unfortunately these optimizations—when
performed on rendering caches—have runtime complexity O(n) ,
where n is proportional to the number of objects to be rendered.
And even more detrimental, each addition or removal of a render
object requires the render cache to be recomputed, i.e. almost iden-
tical optimizations are performed over and over again.

6 Discussion

Our system is based on the same assumptions as the one by
Wörister et al. [2013], namely that a lot of recurring optimizations
can be avoided by incremental computation. Although they show
how to build a dependency graph in order to track changes originat-
ing in a scene graph, their implementation cannot handle structural
changes of the rendering workload, i.e. they cannot incrementally
handle what we call additions and removals of render objects and
their system is limited to value changes in their rendering caches.

In contrast we concentrated our effort on the rendering API without
dealing with scene graphs. We show how to deal with structural
changes and provide the same type of optimizations for dynami-
cally changing scenes that are normally only performed on static
parts of the scene. Additionally we completely eliminate overheads
by compiling abstract render code to native machine code.

In their optimizing compiler for rendering assets, Lalonde and
Schenk take a similar approach [Lalonde and Schenk 2002] as we
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do. They use render methods which describe shaders and their in-
put in order to compile and run optimized bytecode in an interpreter.
Our paper however, focuses on maintaining a fast render program
incrementally. Notably, in contrast to our approach, they use an
interpreter instead of native machine code. In combination with
our defragmentation scheme, native compilation achieves signifi-
cant speedups, at least on our target platforms.

Currently our incremental rendering API is implemented on top of
traditional stateful graphics APIs, and due to the limited availabil-
ity could not be implemented and tested against modern APIs (e.g.
Vulkan API [Khronos 2015], Metal [Apple Inc. 2014]) which aim
to be more stateless. A part of our effort consists of simulating a
stateless API, and will not be necessary with these new APIs, but
optimization still needs to be performed on the command stream
of a stateless API, just that the actual optimization should be per-
formed in the driver not in the rendering engine. Our paper covers
a large part of the design space for these optimization tasks, and
thus is highly relevant for the implementation of drivers for state-
less APIs.

7 Conclusion

In this paper we introduced an incremental rendering VM with a
a novel incremental rendering API that we implemented on top of
existing graphics APIs. We show that our VM maintains a fully
compiled near-optimal representation of the rendering content at
all times, leading to significant performance gains in typical ren-
dering scenarios. Additionally we demonstrate, that the associated
increased modification cost for incremental changes is low enough
for using this new rendering architecture in real-world applications.
Our paper shows that it is possible to exploit temporal coherence
in the underpinnings of rendering applications by amortising opti-
mization of rendering instructions over multiple frames.

We hope that our work will influence the design of future rendering
APIs and drivers in order to further improve rendering performance.
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