
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/321385747

Metamorphers: Storytelling Templates For Illustrative Animated Transitions

in Molecular Visualization

Conference Paper · May 2017

DOI: 10.1145/3154353.3154364

CITATIONS

4
READS

186

6 authors, including:

Some of the authors of this publication are also working on these related projects:

exvisation View project

Research Projects on Visualization View project

Johannes Sorger

Complexity Science Hub Vienna

18 PUBLICATIONS   89 CITATIONS   

SEE PROFILE

Peter Rautek

King Abdullah University of Science and Technology

25 PUBLICATIONS   274 CITATIONS   

SEE PROFILE

Eduard Gröller

TU Wien

373 PUBLICATIONS   6,586 CITATIONS   

SEE PROFILE

Ivan Viola

King Abdullah University of Science and Technology

135 PUBLICATIONS   1,927 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Johannes Sorger on 27 August 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/321385747_Metamorphers_Storytelling_Templates_For_Illustrative_Animated_Transitions_in_Molecular_Visualization?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/321385747_Metamorphers_Storytelling_Templates_For_Illustrative_Animated_Transitions_in_Molecular_Visualization?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/exvisation?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Research-Projects-on-Visualization?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johannes_Sorger?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johannes_Sorger?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johannes_Sorger?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Rautek?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Rautek?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/King_Abdullah_University_of_Science_and_Technology?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Rautek?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduard_Groeller?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduard_Groeller?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/TU_Wien?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduard_Groeller?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ivan_Viola?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ivan_Viola?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/King_Abdullah_University_of_Science_and_Technology?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ivan_Viola?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johannes_Sorger?enrichId=rgreq-91992faae18f78b0f98a819f288aec8e-XXX&enrichSource=Y292ZXJQYWdlOzMyMTM4NTc0NztBUzo2NjQyNDU3MDAxNDEwNThAMTUzNTM3OTkyNDgyOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Metamorphers: Storytelling Templates
For Illustrative Animated Transitions in Molecular Visualization

Johannes Sorgera, Peter Mindeka, Peter Rautekb, Eduard Gröllera,c, Graham Johnsond, Ivan Violaa

aTU Wien, Vienna, Austria
bKing Abdullah University of Science and Technology, Thuwal, Saudi Arabia

cVRVis Research Center, Vienna, Austria
dAllen Institute for Cell Science, Seattle, Washington, United States

Abstract

In molecular biology, illustrative animations are used to convey complex biological phenomena to broad audiences. However, such
animations have to be manually authored in 3D modeling software, a time consuming task that has to be repeated from scratch for
every new data set, and requires a high level of expertise in illustration, animation, and biology. We therefore propose metamorphers:
a set of operations for defining animation states as well as the transitions to them in the form of re-usable storytelling templates. The
re-usability is two-fold. Firstly, due to their modular nature, metamorphers can be re-used in different combinations to create a wide
range of animations. Secondly, due to their abstract nature, metamorphers can be re-used to re-create an intended animation for a
wide range of compatible data sets. Metamorphers thereby mask the low-level complexity of explicit animation specifications by
exploiting the inherent properties of the molecular data, such as the position, size, and hierarchy level of a semantic data subset. We
demonstrate the re-usability of our technique based on the authoring and application of two animation use-cases to three molecular
data sets.

Keywords: Molecular visualization, animation, animated transitions, illustrative visualization, storytelling

1. Introduction

In recent years, we have seen a rapid increase in the commu-
nication of topics from molecular biology, such as through the
work of Drew Berry [2], Graham Johnson [1], Gaël McGill [3],
or Janett Iwasa [4]. These topics involve complex processes,
such as the copying of DNA, the transport of oxygen in the blood
stream, or the comparison of molecular structures within a cell.
Illustrators use animations to communicate these processes in
an explicit and intuitive manner. An example sequence from
such an animation is shown in Figure 1 where an organic cell
structure is smoothly transformed into a more diagrammatic rep-
resentation. The scientific animator [1] used this transformation
to promote quantitative aspects of the data over its structural
appearance. To achieve their goals, animators make use of well
established visual abstraction techniques from scientific illustra-
tions. Exploded views, for instance, are suitable for revealing
how hierarchical structures, for example, the compartments of a
microorganism, are layered (Fig. 2, left). Such animations are

Figure 1: Transition of an organic representation of a cell to a more structured
one that conveys the quantities of the cell’s components [1].

typically handcrafted with 3D modeling and animation tools,
such as Maya. These tools offer great flexibility in the variety
of achievable results. However, the low-level approach that they
apply, requires a high level of expertise in illustration, animation,
and biology to create an animation that conveys a complex bio-
logical phenomenon. A manually key-framed animation cannot
be transferred to other data sets.

Another problem of illustrative animation authoring on a low
level arises in the context of molecular biology. In the visual-
ization of molecular biology, we are dealing with very complex
models, often containing tens of thousands of objects that repre-
sent individual cells, molecules, or atoms. Techniques routinely
applied in hand-crafted scientific illustrations and animations
are difficult to apply to such dense and large-scale data sets.

Besides manual low-level approaches, there are high-level
approaches [5, 6] that semi-automatically generate a certain vi-
sual transformation for a supplied data set. These approaches
relieve the user from manually creating key frames for the thou-
sands of objects in complex molecular scenes. Further, they can
be applied to arbitrary data sets that share a similar data structure.
This advantage comes at the price of the flexibility that low-level
techniques offer in terms of result variability.

Our goal is therefore to develop a technique for authoring
animations that unites the advantages of low-level and high-level
approaches. We support flexibility and re-usability, while provid-
ing the means to mask the complexity of low-level approaches
from inexperienced users. To achieve these goals, we propose
modular animation operators, i.e., metamorphers, that act as

Preprint submitted to SCCG 2017 May 8, 2017



Figure 2: Metamorphers provide a flexible and re-usable interface for the creation of animated transitions of mesoscale data. Here, two different combinations of
metamorphers are applied to create an exploded view (left) of an HIV model, and a bar chart (right) that represents protein quantities.

combinable storytelling templates. Metamorphers belong to six
different classes of operations (data restructuring, layout, mor-
phing, trajectory, timing, and camera control) that collectively
describe the intermediate or target states of an animation, as
well as the transitions between these animation states. A sin-
gle metamorpher modifies the properties of the molecular data
in regard to one of these classes. Re-usability ensures that the
metamorpher produces an intended result for any compatible
input data. Flexibility ensures that arbitrary metamorphers can
be combined in a modular way to create a wide range of results.
Both of these properties allow the user the combination of multi-
ple metamorphers into higher-level operations. Such high-level
metamorphers are again re-usable and flexibly combineable. A
high-level metamorpher serves as a hierarchic container that
masks the complexity of the contained lower-level metamor-
phers from the user.

In the remainder of this paper, we describe the technical
details that are required to understand and reproduce metamor-
phers for the application to the domain of molecular biology.
We illustrate our technique by presenting exemplary metamor-
phers in the scope of a proof of concept implementation. Our
proof of concept implementation features a visual scripting in-
terface in the form of a hierarchical node editor that enables
the parametrization and combination of metamorphers as well
as the creation of re-usable high-level metamorphers. Based
on our implementation, we demonstrate the flexibility and re-
usability of metamorphers by creating two different animations
and re-applying them to three different data sets from molecular
biology. Finally, we reflect on our technique as well as give
some informal feedback that we gathered from domain experts
in illustration, animation, and biology.

2. Related Work

Animation and transitions between data representations serve
as powerful tools for the dissemination of complex relations in
space, time, and abstract dimensions. They are frequently used
in visual storytelling as well as for the depiction of relations be-
tween different data representations. Kosara and Mackinlay [7]
emphasize the importance of storytelling in visualization not
only for presentation purposes but also in decision making and
process analysis. They suggest that opening up a visualization
for interaction at the storys end, provides a convenient starting
point for exploration and goes beyond a simple slideshow. Our

implementation creates animations of the molecular data that
can be paused and explored in real-time at any point during the
transition. Wohlfart and Hauser [8] present a guided interactive
volume-visualization approach in terms of camera path, transfer-
function parameters, and annotations. Grimm et al. [9] introduce
V-Objects as an abstraction of volume data. Their approach en-
ables interactive specification of key-frames for animation paths,
transfer-function fades, light movement, clipping planes, change
of data sources, and enabling and disabling of objects. These
approaches do not consider the re-usability of the animations for
different data sets as they are based on the explicit authoring the
key-frames. Hyun et al. [10] propose a more implicit approach
in the context of storytelling, by using grammars to synthesize
the animation of characters. They generate animation sequences
for virtual players by employing a language that captures the
behavioral structure of human movements in a basketball game.
The grammar is used to check the validity of a sequence of move-
ments and to suggest new plausible candidates for the next move.
Karp and Feiner [11] present a scripted system that generates
animations from communication goals. The system plans an
animation by breaking it down into sequences, scenes, and shots
down to the level of individual frames. Seligman and Feiner [12]
present a system that generates technical illustrations using illus-
tration rules. Annotations, highlights, and rendering styles are
chosen to convey the intended information. Mühler et al. [13]
present a scripting language for the generation of illustrations
and animations in the context of medical intervention planning.
Mühler and Preim [14] introduce keystates that describe a vi-
sualization on an abstract level, including information about
visibility, rendering style, etc. of each structure. Keystates are
used to automatically generate animations and are re-usable
for data sets that contain the same structures. Iserhardt-Bauer
et al. [15] developed a system that generates video sequences
for intra-cranial aneurysms. Visualization parameters and the
camera path are automatically generated from a standardized
predefined protocol.

While these approaches convey purely spatial phenomena,
other approaches reveal the abstract relationships within the
3D spatial data. Hurter et al. [16] use animation to interpolate
between different (abstract) projections of the original data di-
mensions in a 3D volume. Basch [17] uses animated transitions
of voxels to abstract volume representations, such as histograms
of voxel intensity values. With metamorphers we propose a
flexible technique that supports the depiction of spatial, as well

2



Figure 3: Classes of metamorphers according to the six stages of a pipeline for animated transitions. The data restructuring, layout, and morphing stages define
an animation state. Trajectory, timing, and camera control define how an animation state transitions to the next one, and thereby structure the presentation of the
transition.

as abstract relationships by transforming the spatial data into an
abstract frame of reference.

3. Metamorphers

We describe the complete transformation of an object be-
tween two animation states by six stages of a pipeline for an-
imated transitions (see Fig. 3). The first three stages of the
pipeline (data restructuring, layout, and morphing) define, what
the original model or data set should represent in an intermediate
or target state of the animated transition. In the simplest case,
an animation is created by linearly interpolating between the
animation states (key frames) of the individual molecules in a
scene at the same time. However, the simultaneous interpolation
of tens of thousands of molecules, is hard to read due to clutter
and occlusion. We refer to such an interpolation as an unstruc-
tured interpolation. By spatially and temporally structuring
the transition, i.e., with trajectories, timings of the individual
molecule transitions, and by controlling, which parts of the scene
the camera presents to the viewer, a more pleasant animation
can be created. The last three stages of the pipeline (trajectory,
timing, and camera control) are thus responsible for defining,
how a state should transform into the next one, and how the
transition should be presented to the viewer.

Initially, we give a definition of how metamorphers can
support re-usability and flexibility, we provide a description of
the molecular data that they operate on, and we specifiy the
interface between metamorphers. Then we describe the different
classes of metamorphers that are necessary to create all aspects
of an animated transition-

3.1. Re-usability & Flexibility

In order to support re-usability, a metamorpher has to adhere
to two rules to achieve intended results for arbitrary data sets:

1) a metamorpher has to define an animation state not in
an absolute way but relative to the previous animation state.
For instance, a new position Posnew for an object A should
not be defined as Posnew(A) = X, but instead as
Posnew(A) = Posold(A) + Y .

2) A metamorpher has to define an animation state not ex-
plicitly but implicitly, i.e., based on inherent properties of the
scene and the data set. In the above example, X should not be
an explicit value, e.g., X = 500, but should be given or derived

from inherent properties X = width o f ob ject A′s bounding
box. Exceptions to these rules occur if absolute and explicit
values have the same semantic implication for all data sets, such
as moving an object to the center of the scene.

In order to support flexibility, a metamorpher has to provide
a modular interface that enables arbitrary combinations with
other metamorphers. Such a modular interface is achieved by
using the same data structure for the input as well as the output
of each metamorpher. A metamorpher takes a data (sub)set as
an input, modifies specific properties, such as the positions over
time, and passes the modified data (sub)set as output to the next
metamorpher.

Both of these qualities support to abstract the complexity of
authoring an animation. Multiple metamorphers can combine
their lower-level operations into a single high-level operation
with complex functionality. A high-level metamorpher serves
as a hierarchic container that masks the combined lower-level
metamorphers from the user. For instance, the steps involved
in the creation of an exploded view can be summarized into a
high-level metamorpher. A non-expert user can now apply the
exploded view to an arbitrary data set without having to know
about the individual operations that are involved. Flexibility as-
sures that this high-level metamorpher can still be combined with
other metamorphers. These characteristics make metamorphers
re-usable storytelling templates that can be flexibly combined
to convey diverse messages. At the same time, the low-level
complexity of the operations involved in authoring illustrative
animation sequences is masked.

3.2. Molecular Data: Inherent Properties
Our pipeline operates on biological data that is composed

of individual proteins. These proteins collectively form the
compartments and inner structures of the microorganisms that
they depict. Proteins are therefore the building blocks of these
data sets. The data set of the HIV virion that is depicted in
Figure 2, for instance, contains approximately 20.000 molecules
distributed across 42 protein types, with an atom count of 60
millions.

The molecular data is organized in a hierarchical structure.
The smallest entity is an atom a of a certain type, i.e., chemical
element. It is represented by a sphere that has a position in its
local coordinate system, and a scale that describes its radius.
A molecule m represents a certain protein type and has a po-
sition, orientation, and scale in the global coordinate system.

3



A molecule is represented by a list of atoms m = a1, ..., an that
yields an atom count and a volume. It is contained within the
spatial extents of a bounding box BB. A scene S is comprised
of a list of molecules S = m1, ...,m j that can be partitioned into
hierarchical subsets M, describing semantic structures of the
microorganism. The leaf nodes are the individual molecules.
Each node in the hierarchy thus contains a list of subsets or a
list of molecules that yields a molecule count and volume, and is
contained in a bounding box.

To support animation, the hierarchic data structure is ex-
tended by control points and time curves for subsets and molecules.
A control point stores a node’s properties, such as the position,
and bounding box, for an animation state. Each control point
corresponds to a key frame of the animation. Time curves de-
termine the speed at which a molecule transitions between each
pair of control points. Metamorphers manipulate these proper-
ties and automatically create new control points and time curves
that are interpolated to create an animation.

3.3. Metamorpher Modular Interface

The modular nature of the metamorpher input/output inter-
face supports the flexible combination of metamorphers. This
enables the user to create diverse animation sequences. The
interface takes as input the data hierarchy and a pointer to the
parent node of the subsets that should be processed. The meta-
morpher then accesses and modifies the respective properties of
the node’s children according to its functionality. The interface
passes on the modified node as a single output node. Multiple
outputs have to be used if the individual subsets of a hierarchy
level should be forwarded to different metamorphers (as shown
in Fig. 5). In this case, the pointers to the individual subsets
are passed on to separate outputs. Since the separate outputs
are explicitly linked to different metamorphers, the number of
outputs has to be known, i.e., it cannot depend on the data set.
A spatial data-restructuring metamorpher, for instance, creates
always two subsets if it splits the space into two parts. If the
number of subsets that a data restructuring metamorpher creates
is unknown, the subsets have to be forwarded as the children of
a single node.

3.4. Metamorpher Classes

In the following we will elaborate on the six metamorpher
classes and give examples for concrete implementations for each
of them. We will use the exploded view and the transition to a
bar chart from Figure 2 as guiding examples.

3.4.1. Data-restructuring Metamorphers
Data-restructuring metamorphers partition the data structure

to define, on which parts of the data, and in which granularity
metamorphers from subsequent pipeline stages will operate, i.e.,
they create semantic subsets from the list of molecules. The
data hierarchy in a target representation can differ from the one
in the initial representation, and therefore has to be adapted for
subsequent operations. A data set can be partitioned semanti-
cally, according to inherent abstract data properties, or spatially,
according to inherent geometric properties. The partitioning

(a) (b) (c)

Figure 4: Schematic representations of the effects of different metamorphers
from the a) morphing, b) trajectory bundling, c) timing stage.

defines a scene hierarchy for each animation state. The original
topology is always preserved in the initial animation state.

For the exploded view in Figure 2 (left), for instance, the
data first has to be partitioned semantically into the three subsets
that represent the layered cell compartments. Split(comp, S)
where S = m1, ...m j, partitions the input data into k cellular
compartments so that S = M1, ...,Mk. The compartments are
in our case inherently given in the hierarchy of the data format.
If no such hierarchy is present, segmentation algorithms are
needed to determine semantic clusters.

In the exploded view in Fig. 2 (left), the compartment sub-
sets are spatially partitioned into a lower and an upper half.
Split(spatial(plane), S), where S = m1, ...,m j assigns all molecules
to subsets Mupper and Mlower depending on which side of a plane
they are located. To achieve a re-usable spatial partitioning,
inherent geometric information, such as the bounding box, can
be exploited, e.g, by placing a cutting plane at the center of the
input subset’s bounding box.

By providing operations that work on semantic data proper-
ties, the user is not required to have an extensive knowledge of
the data composition.

3.4.2. Layout Metamorphers
Layout metamorphers spatially rearrange subsets of molecules

that were defined in the first pipeline stage, in order to create
a desired target representation. Layout metamorphers define a
target state with a sequence of transformations of the positions,
rotations, and scales of the molecules in a given subset.

A rotate(hinge(axis, degree),M) metamorpher needs an im-
plicit axis, such as the axis of a scene’s coordinate system or the
edge of a bounding box, to support re-usable rotations. In the
exploded view (Fig. 2, left), for instance, we rotate the halves of
a compartment around a common hinge where their bounding
boxes align. The rotation angle can be explicit, since it yields
the same results for arbitrary data sets. An angle of, e.g., 90
degrees between two planar surfaces provides a view into the
interior, independent of the data.

Similarly, for translations that have the same impact on ar-
bitrary input data, the translation direction and distance of a
translate(direction, distance, M) metamorpher are chosen so that
they have the same semantics. Such implicit layout operations
can mask the complexity of low-level geometric transformations
from the user.

4



3.4.3. Morphing Metamorphers
Metamorphers from the morphing stage change the visual

appearance of individual molecules (Fig. 4a). In some scenar-
ios, the representation of individual objects in a scene needs
to be adapted in order to better convey an intended message.
Molecules in mesoscale biological models can be displayed as
space-filling models, stick models, or one of many other repre-
sentations commonly used in molecular graphics [18, 19]. In the
bar chart in Figure 2 (right), for instance, morph(slab, S) trans-
forms proteins into square-shaped slabs that are then stacked
upon each other by a layout metamorpher. A morphing metamor-
pher morph(slab—stick—cube—sphere—scale) re-assigns the
atoms of a given protein to random positions within the extents
of the intended shape. The random positions approximate the de-
fined shape. Due to the random positioning within the specified
geometric borders, the resulting shape is the same for arbitrary
input molecules. These positions represent new control points
for atom positions in the molecule’s local coordinate system.

Morphing metamorphers mask the low-level complexity of
molecular data structures that users would need to access and
modify in order to change their representation.

3.4.4. Trajectory Metamorphers
The trajectory stage is the first of the three pipeline stages

responsible for structuring the transition between two animation
states (Fig. 3). Due to the size of the data (tens of thousands of
molecules), the structure of the transition plays an especially im-
portant role, e.g., for visual clutter reduction, occlusion handling,
and the guidance of the viewer’s attention.

Trajectory metamorphers spatially structure the transition by
defining the trajectories along which the individual molecules
of a given subset will move. A common technique for spa-
tially structuring the transition of particles is trajectory bundling.
Bundle(p, M) reroutes the trajectories of the particles in M
through a common point p, i.e., a bundling point, instead of
directly interpolating between their initial and target position
(see Fig. 4b). The position of a re-usable bundling point is de-
rived from the given data semantics. In the transition to a bar
chart (Fig. 2, right), we define bundling points with respect to
the bounding boxes of the initial and final animation states.

Trajectory metamorphers hide from the user the complexity
of manually specifying explicit control points for specific subsets
with hundreds or thousands of objects.

3.4.5. Timing Metamorphers
Timing metamorphers are responsible for the temporal struc-

turing of the transition between two animation states. Temporal
structuring is achieved by manipulating the start time, duration,
and speed of individual transitions of molecule subsets. These
properties can be adjusted with time curves that are associated
with control-point pairs between molecules m and subsets M.

Temporally structuring the transition of thousands of densely
packed animated objects is essential to reduce the cognitive
load on the viewer. A staged animation can reduce occlusion
and clutter [20]. It determines the order and speed in which
objects move, as well as the number of objects that move at the

same time. Other temporal distortions that create more pleasant
animations, such as slow-in/slow-out pacing [21], are handled
in this stage as well. Timing metamorphers can also be used
to convey information about the chronology of the illustrated
events.

A stage(distance(p), S) metamorpher, for instance, delays the
animation of molecules in respect to their distance to a certain
point p. This distance-based delay temporally structures the
transition so that molecules appear to be peeled away from their
original position, layer by layer. A stage(type, S) metamorpher
orders the time curves of the molecules in an input subset by
their protein type so that all molecules of the same type are
animated in tandem. A delay d defines how long each molecule
waits before starting its transition (Fig. 4c). The delay can be
defined explicitly (d = X) or implicitly (for instance, d = 1/ j∗Y ,
where j represents the total number of molecules in a subset,
and Y a scaling factor).

By relying on a given semantic or geometric properties,
timing metamorphers mask the complexity of sophisticated ani-
mation timing from the user. The resulting temporal structuring
would be very difficult to achieve by manual authoring, e.g., on
the level of individual protein instances.

3.4.6. Camera-Control Metamorphers
Camera-control metamorphers govern the camera position

and viewing direction at each time step during an animation
sequence. Camera steering is an essential component of a non-
interactive explanatory visualization. It effectively determines,
which parts of a dynamic scene are presented to the viewers
when guiding them through a sequence of events, as well as
how these parts are presented, i.e., from which viewing angle
and distance. A wide range of sophisticated semi- and fully-
automatic camera-control techniques [22] have been developed
in the field of computer graphics. Re-usable camera-control
metamorphers that automatically react to dynamic changes in an
animation, can rely on inherent data properties, such as molecule
types and subsets, as well as their animation states (position,
rotation, scale) at each time step.

A simple camera(follow(BB), S) metamorpher checks the
extents of the input subset’s bounding box and adjusts the cam-
era zoom and look-at vector to keep the subset inside the view
frustum during the animation. In more complex cases, a cam-
era(follow(semantic), S) metamorpher could derive semantic
importances from salient features, such as objects that are cur-
rently in motion.

Camera-control metamorphers that react automatically to
the dynamic changes in an animation, relieve the author from
manually specifying camera paths in complex dynamic scenes.

4. Implementation

Our implementation is an extension of the cellVIEW frame-
work [23], an open-source tool for the real-time visualization
of large mesoscale molecular models that is realized within
Unity3D. The molecular models are loaded from files supplied
in the cellPACK format [24]. We extend the cellVIEW data

5



Figure 5: The node editor acts as a visual scripting interface to the metamorpher API function calls. 1: the canvas for arranging metamorpher nodes, 2: a link between
input & output of two metamorphers, 3: input handle of a metamorpher node, 4: a node’s property window, 5: a time anchor, 6: the time line, 7: a node’s time curve.

structure of atom and molecule types, positions, and orienta-
tions, with the means to create and store hierarchical subsets of
molecule instances, as well as control points and time curves (as
described in Sec. 3.2).

The animation pipeline is realized as an application program-
ming interface (API) in the C# programming language. All
metamorphers are executed as parametrized function calls that
operate on arbitrary subsets of the data hierarchy. On the C#
level, new metamorphers can be defined by creating new func-
tions that implement the interface that we defined in Section 3.3.

4.1. Interface
To allow users a more intuitive parametrization and combi-

nation of metamorphers, we implemented a node editor (Fig. 5)
that acts as a visual scripting interface to our API. Each node in
the editor represents a metamorpher. The inputs and outputs of
nodes can be connected (2) to link two metamorphers. Metamor-
phers can be dragged from the node shelf on the left onto the
canvas (1). Nodes are parametrized via the property window (4)
that is accessed by clicking on a node. While the order of linked
metamorphers and the applied timing metamorphers create an
implicit timing for the animation, the editor allows the user man-
ual fine tuning. The start time and duration of a metamorpher
is set via its anchor (5) to the time line (6) at the bottom of the
editor. The time curve (7) of a metamorpher can be accessed in a
node’s property window. The horizontal axis represents the time,
and the vertical axis represents the progress of the respective
operation. The time curve thus controls the start, end, speed, and
acceleration of an operation. Data-restructuring metamorphers
do not require timings.

Each node in the editor is associated with an evaluate()
function that is called when the chain of connected metamorpher
nodes is traversed upon execution. The evaluate() function
calls the respective metamorpher with the parameters defined
by its node’s properties. It passes the metamorpher output as
an input to the metamorpher of the following connected node.
For an additional level of control, experienced users can access
and edit the C# code of evaluate() functions and the associated

metamorphers by double clicking on a node. Upon saving,
Unity3D will automatically re-compile and accommodate the
changes.

4.2. High-Level Metamorphers

High-level metamorphers hide the functionality of multiple
metamorphers contained in a hierarchical group node. The node
editor enables the user to create and store such group nodes
on the fly. These high-level metamorphers are flexible and re-
usable, as well. The contents of a high-level node still can be
accessed and modified by users who have the required expertise
and domain knowledge.

4.3. Producing the Animation

An animation is defined by a chain of linked metamorphers.
The key frames of an animation are produced by interpolating
the animation states that are stored in the control points of indi-
vidual molecules in consideration of the specified time curves.
To create the key frames for each molecule, the data hierarchy
is traversed. The transformations of higher-level nodes in the
hierarchy are propagated to the transformations on lower lev-
els, down to the individual leaf nodes, i.e., the molecules. For
displaying the animation, the key frames are interpolated, and
the animation is played back in real-time within cellVIEW. The
last state of a metamorpher setup can be inspected at any time
during the authoring process by pressing the evaluate button.

Our current implementation calculates the key frames on
the CPU. Linear interpolations between control points can be
achieved in real-time, i.e., the key frames do not have to be
calculated before the animation is played back. If control points
require cubic interpolations, key frames have to be calculated
prior to playback. The key frame calculations of the videos in
the supplemental material took between 10 and 20 seconds on
current consumer hardware.

6



(a) (b) (c) (d) (e) (f)

Figure 6: Exploded views of three datasets: (a) - (d) a sequence of four animation states of the mature HIV dataset, (e) final animation state of the immature HIV
dataset, and of the (f) mycoplasma dataset.

5. Results

In this section, we showcase the authoring of the two anima-
tions illustrated in Figure 2, i.e., the transition to an exploded
view and the transition to a bar chart. We thereby refer to the
metamorphers that we introduced in Section 3.4. We demon-
strate the re-usability of our technique by applying each meta-
morpher setup to three molecular data sets, i.e., to computational
models of the immature HIV virion, the mature HIV virion, and
the mycoplasma bacterium. The resulting animations can be
viewed in the supplementary video.

The first two data sets describe different development stages
(immature and mature) of the structural model of the human
immunodeficiency virus (HIV), which is built-up from more
than 20.000 macromolecules. The HIV is surrounded by blood
serum, and therefore not visible in the initial state of the data set
(Fig. 6a). The mature virion features better defined hierarchical
compartments and also differs in protein types and their spatial
distribution, in comparison to the immature virion. Both data
sets have an onion-like hierarchical structure. The mycoplasma
bacterium, while spherical as well, has a less developed hier-
archy. Most of its proteins are distributed loosely within its
interior.

5.1. Exploded View

The three data sets that we present are all densely packed.
Their outer shells obstruct the view to inner structures. In this
example, we want to reveal the inner structures as well as the
hierarchy in which they are arranged. We therefore create an ex-
ploded view that opens the individual compartments and places
them side by side.

We start by creating the data structure that we need for the
final transition state. First, we create molecule subsets that repre-
sent the individual compartments. We therefore feed our initial
data S into a split(comp, S) metamorpher that yields i subsets
Mi for S , where i is the number of compartments. Second, we
want to split all compartments horizontally at their center. We
achieve this by applying a split(plane(BBcenter), S) metamorpher
that uses a plane at the bounding-box center BBcenter of each
subset Mi. This will add an additional hierarchy layer to the data
structure by splitting each Mi into an Miupper and Milower .

Next, we define the layout for the data structure that we
created. To explode (or open up) the individual compartments,
we rotate the lower and upper compartment halves by 45 and -45

degrees respectively. As rotation hinge we use the upper (back)
and lower (back) edge of their bounding boxes. We pass the
upper compartment halves to a rotate(hinge(BBlower, 45), Miupper )
metamorpher and the lower ones to a rotate(hinge(BBupper, -45),
Milower ) metamorpher.

To layout the exploded compartments side by side, we use a
translate(x-axis, BBwidth, S) metamorpher. The children of S, i.e.,
the compartments, will thereby be placed along the x-axis with
respect to their bounding box width. We do not change the ap-
pearance of individual molecules, so no morphing metamorpher
is needed.

After defining the target representation, we design the transi-
tion to it. We want the individual compartments to be revealed
one by one. We simply apply a stage(subset, S) metamorpher
that individually delays the transition of each compartment, i.e.,
the child nodes of S . Since we move individual compartments
as a whole, no trajectory metamorpher is required. We use a
camera(maintain, S) metamorpher to guarantee that the data
stays inside the view frustum during the transition.

We group the final chain of metamorphers into a high-level
explode(S) metamorpher that can now be applied to different
data sets in order to create an exploded view of their hierarchical
compartments. The resulting transitions can be seen in Fig-
ures 6a-d for the mature HIV. Figures 6e and 6f show the results
of the same metamorpher sequence on the immature HIV and the
mycoplasma data set. Even though the number of compartments
and the associated molecule types differ in each data set, our
chain of metamorphers creates an appropriate exploded view for
each of them. Since the mycoplasma data set does not have a
hierarchical structure, the application of an exploded view might
be of lower value. Still, even here the result is semantically
correct in regard to the desired target visualization.

5.2. Bar Chart

In the bar chart example, we convey knowledge about the
quantities of proteins in a microorganism. We choose to rep-
resent these quantities in a bar chart. Each bar in the chart
represents the volume that the respective molecule type occupies
in a given structure.

Since we want to show the quantities per molecule type,
we partition the data with a split(type, S) metamorpher into i
subsets Mi, where i represents the number of molecule types. To
create the individual bars, we apply a translate(y-axis, length,
S) metamorpher that will stack the molecules of a specific type

7



(a) (b) (c) (d) (e) (f)

Figure 7: The bar chart metamorpher setup applied to the immature HIV (a-c), and the mycoplasma data set (d-f).

along the y-axis in intervals of the defined length. The length
is defined by a user-specified maximum bar height, normalized
by the maximal number of molecules among all molecule types.
Next, to give the stacked molecules the appearance of a bar,
we use a morph(slabs, S) metamorpher in order to change the
original molecule shapes into square slabs of equal size. To align
the bars side by side along the x-axis, we apply a translate(x-axis,
BBwidth, S) metamorpher. The bounding-box width corresponds
to the width of the slabs in each stacked bar.

In order to increase the readability of the animation, we
structure the transition spatially and temporally. For the spatial
structure of the transition, we re-route the trajectories of the
molecules so that they do not move though the virus on the way
to their target positions. Instead, we want the molecules to move
to trajectory-bundling points to the right and left of the initial
structure. We therefore partition the data further by applying
a split(plane(BBcenter.yz, S) metamorpher that splits each typed
subset Mi at the yz-plane of the bounding-box center into Mile f t

and Miright halves. The newly created subsets are now used by
a bundle(BBl, Mile f t ) and bundle(BBr, Miright ) metamorpher to
create bundling points on the left and right side of the virus
structure’s initial bounding-box.

We also want to create the impression of molecules falling
into their respective bar from the top. We achieve this with a
bundle(BBtop, S) metamorpher that creates a bundling point for
each subset of S , at the top of each histogram bar. The trajectory-
bundling metamorphers are inserted before (BB of the initial
structure) and after the layouting (BBs of the bars), depending
on which structural information they need to relate to.

In order to temporally structure the transition, we firstly stage
the animation per molecule type (stage(type, S)).
Secondly, we apply a distance-based delay per molecule
(stage(distance(BBcenter), S)) to peel away the molecules layer
by layer depending on their distance to the initial bounding-box
center. Finally, we use a camera(maintain, S) metamorpher to
guarantee that the data stays inside the view frustum during the
transition.

The results of applying this sequence of metamorphers to
two different data sets can be seen in Figures 7 a-c for the
immature HIV, and Figures 7 d-f for the mycoplasma data set.
The result for the mature HIV data set is displayed in Figure 2
(right). The intended result, i.e., a transition to a bar chart of

protein quantities, has been created successfully for all three
data sets. The principal requirement for this is the existence of
typed entities (molecules) in the data.

6. Discussion

6.1. Expert Feedback

In order to judge the feasibility of our technique, we gathered
informal feedback on metamorphers from three experienced bi-
ological illustrators. They commented that their work flow to
create complex illustrations would greatly benefit from metamor-
phers. They consider the produced results as ”incredibly valu-
able” to communicate knowledge. The current visual-scripting
interface received some criticism for being not very intuitive.
One expert suggested that the interface could benefit from ”icons
(or animated icons) that show what each effect is roughly in-
tended to perform”.

According to one of the experts, setting up an illustration
using his accustomed work flow ”would still take me a mini-
mum of one hour to create a prototype, and then several hours
or a couple of days to refine it” – despite having 17 years of
experience with 3D modeling software. With metamorphers,
he claims, he can ”iterate on it in real-time in a matter of min-
utes”. In addition, most of the illustrations that result from the
accustomed work flow are not reusable or portable to other data
without significant customization. The re-usability of animation
setups was therefore regarded as highly valuable.

6.2. Applicability

While our technique is in principle applicable to different
data types, it is especially valuable for large-scale molecular
data. On the one side, the authoring of illustrative animations
for large-scale molecular structures is a cumbersome task, as
reported by domain experts. On the other side, large-scale molec-
ular data bridges the disciplines of molecular visualization and
cellular visualization, as microorganisms are depicted on molec-
ular/atomic resolution. In terms of molecular visualization, the
visual transformation of individual elements in a data set is com-
mon, as many different well established visualization techniques
exist. In the visualization of complex biological structures, illus-
trative abstractions of the organic structures and compartments
are commonly applied to convey specific information about an

8



organism. Metamorphers are especially suitable for this type of
data, as abstractions of both molecular and biological structures
are supported by our approach, i.e., in the morphing and layout
stages respectively.

Our technique supports in theory arbitrary animations of
typed data with point cloud characteristics It is especially well
suited for the purpose of creating short illustrative animations,
most notably, transitions between different representation forms.
Re-usability is mainly a benefit in application scenarios where
the same illustrative technique is frequently re-applied to differ-
ent data sets. An example is to highlight a certain characteristic
in a series of related data sets for the purpose of comparison.
Stories with a more complex plot typically do not need to be
re-usable, in the sense that the contained animations and trans-
formations are applied to different data sets. For complex stories,
the overhead of creating metamorphers would most likely out-
weigh the benefit if re-usability is not a concern.

The re-usability of our technique remains intact as long as the
conditions in Section 3.1 are met. An explicit description of an
animation state might require less effort than programmatically
creating multiple metamorphers from scratch. However, once
a metamorpher is defined, it can instantly be applied to other
appropriate data as well. The flexible interface further broadens
the scope of achievable results in combination with already
defined metamorphers. The potential results are only limited
by transformations that cannot be defined in relation to implicit
semantic or geometric properties of the data.

6.3. Future Work
There are several directions that we consider as possible

extensions to the concept of metamorphers. In terms of general
applicability, our method could be adapted to be used with point
clouds, or volumes in general, as the molecular data is repre-
sented by a set of points in 3D space. The topologies of objects
that are formed by spatial proximity of individual elements in
point clouds and volumes are not changed, e.g., when spatially
splitting a data set along a plane. However, for the application of
our approach to polygonal data, an implementation would need
to support changes of the mesh topology.

Another interesting direction for further research is the tran-
sition between multiple scales at different orders of magnitude,
such as the transition from the scale of a blood cell to the scale
of the human body as presented by Hsu et al. [25].

Segel and Heer formulate a design space for storytelling
in visualization [26]. They classify a narrative visualization
by genre, visual narrative, and narrative structure. Our tech-
nique gives the animation author great flexibility in terms of
visual structuring, highlighting, transition guidance, and order-
ing. Since in this work we focus on the definition of animation
states and transitions, we currently do not explicitly support
interaction and messaging. These two aspects are priorities for
our follow-up work, in order to further improve the storytelling
capabilities. Since the environment, in which we implemented
our method [23], renders the animated transitions in real-time,
interaction is possible but not yet explicitly supported.

To offer a compensation for the fleetingness of animations,
the metamorpher output could be sparsely sampled to produce

a series of static images. This could be achieved, for instance,
with object-based key-frame extraction techniques, as described
in previous work [27, 28].

The set of metamorphers that we presented in this paper
serves as a proof of concept to illustrate our technique and to
create the examples in Section 5. It is by no means feature
complete. An interesting possibility would be to create a public
data base where users can share the metamorphers that they
defined and modify existing ones.

7. Conclusion

Our method allows users to create re-usable animated transi-
tions for molecular data sets. The re-usability has the advantage
that target representations and transitions to them do not have
to be manually re-modeled and key-framed. Instead, users can
create animated transitions by combining pre-made templates,
which we refer to as metamorphers. The same chain of metamor-
phers can be used to generate animated transitions for multiple
data sets, while individual metamorphers can be re-used in differ-
ent combinations. The set of introduced metamorphers already
demonstrates the flexibility of our technique, but the presented
list of operations is by no means complete. To extend the list
of achievable animations, our interface provides access to the
source code of individual metamorphers. It thereby allows users
with programming expertise to modify existing metamorphers,
or to create new ones. The grouping to high-level metamor-
phers hides complex low-level animation concepts. In this way,
metamorphers can be exchanged between users from different
domains and of different levels of expertise.

Acknowledgments

This project has been funded by the Vienna Science and
Technology Fund (WWTF) through project VRG11-010 and
was supported by the EC Marie Curie Career Integration Grant
through project PCIG13-GA-2013-618680, as well as by the
OeAD Scientific & Technological Agreement SK 14/2016
through the ManyViews project. The authors would like to ex-
tend their gratitude to Bara Kozlikova, Manuela Waldner, Martin
Ilk, and Wiktor Manczarski for their valuable input.

References

[1] Johnson, G.T., Noske, A., Marsh, B.. Rapid visual inventory and
comparison of complex 3d structures. accessed: 3/5/2017. URL https:

//www.youtube.com/watch?v=Dl1ufW3cj4g.
[2] Berry, D.. Molecular animations. accessed: 3/5/2017. URL http:

//www.molecularmovies.com/movies/viewanimatorstudio/

drew%20berry/.
[3] Jenkinson, J., McGill, G.. Using 3D animation in biology education:

Examining the effects of visual complexity in the representation of dynamic
molecular events. Journal of Biocommunication 2013;39(2):E42–E49.

[4] Iwasa, J.H.. Animating the model figure. Trends Cell Biol
2010;20(12):699–704.

[5] Li, W., Ritter, L., Agrawala, M., Curless, B., Salesin, D.. Inter-
active cutaway illustrations of complex 3d models. ACM Trans Graph
2007;26(3).

[6] Dı́az, J., Monclús, E., Navazo, I., Vázquez, P.. Adaptive cross-sections
of anatomical models. Computer Graphics Forum 2012;31(7):2155–2164.

9

https://www.youtube.com/watch?v=Dl1ufW3cj4g
https://www.youtube.com/watch?v=Dl1ufW3cj4g
http://www.molecularmovies.com/movies/viewanimatorstudio/drew%20berry/
http://www.molecularmovies.com/movies/viewanimatorstudio/drew%20berry/
http://www.molecularmovies.com/movies/viewanimatorstudio/drew%20berry/


[7] Kosara, R., Mackinlay, J.. Storytelling: The next step for visualization.
IEEE Computer 2013;46:44–50.

[8] Wohlfart, M., Hauser, H.. Story telling for presentation in volume
visualization. In: Proceedings of the 9th Joint Eurographics / IEEE VGTC
Conference on Visualization. EUROVIS’07; Eurographics Association;
2007, p. 91–98.

[9] Grimm, S., Bruckner, S., Kanitsar, A., Gröller, M.E.. Flexible direct
multi-volume rendering in interactive scenes. In: Vision, Modeling, and
Visualization. 2004, p. 386–379.

[10] Hyun, K., Lee, K., Lee, J.. Motion grammars for character animation.
Computer Graphics Forum 2016;35(2):103–113.

[11] Karp, P., Feiner, S.. Automated presentation planning of animation
using task decomposition with heuristic reasoning. In: Proceedings of
Graphics Interface ’93. GI ’93; Toronto, Ontario, Canada: Canadian
Human-Computer Communications Society; 1993, p. 118–127.

[12] Seligmann, D.D., Feiner, S.. Automated generation of intent-based 3d
illustrations. SIGGRAPH Comput Graph 1991;25(4):123–132.

[13] Mühler, K., Bade, R., Preim, B.. Adaptive script based animations for
intervention planning. In: Proceedings of the 9th International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention -
Volume Part I. MICCAI’06; Berlin, Heidelberg: Springer-Verlag; 2006, p.
478–485.

[14] Mühler, K., Preim, B.. Reusable Visualizations and Animations for
Surgery Planning. Computer Graphics Forum 2010;29(3):1103–1112.

[15] Iserhardt-Bauer, S., Hastreiter, P., Tomandl, B., Köstner, N., Schemper-
shofe, M., Nissen, U., et al. Standardized analysis of intracranial
aneurysms using digital video sequences. Medical Image Computing
and Computer-Assisted InterventionMICCAI 2002 2002;:411–418.

[16] Hurter, C., Taylor, R., Carpendale, S., Telea, A.. Color tunneling:
Interactive exploration and selection in volumetric datasets. In: Proceed-
ings of IEEE Pacific Visualization Symposium (PacificVis 2014). 2014, p.
225–232.

[17] Basch, C.. Animated transitions across multiple dimensions for volumetric
data. Master’s thesis; Institute of Computer Graphics and Algorithms,
Vienna University of Technology; 2011.

[18] Richardson, J.S.. The anatomy and taxonomy of protein structure. Ad-
vances in protein chemistry 1981;34:167–339.

[19] Goodsell, D.S.. Atomistic vs. continuous representations in molecular
biology. In: Visual Representations and Interpretations. Springer; 1999, p.
146–155.

[20] Heer, J., Robertson, G.. Animated transitions in statistical data
graphics. IEEE Transactions on Visualization and Computer Graphics
2007;13(6):1240–1247.

[21] Dragicevic, P., Bezerianos, A., Javed, W., Elmqvist, N., Fekete, J.D..
Temporal distortion for animated transitions. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM;
2011, p. 2009–2018.

[22] Christie, M., Olivier, P., Normand, J.M.. Camera control in computer
graphics. In: Computer Graphics Forum; vol. 27. Wiley Online Library;
2008, p. 2197–2218.

[23] Le Muzic, M., Autin, L., Parulek, J., Viola, I.. cellVIEW: a tool for
illustrative and multi-scale rendering of large biomolecular datasets. In:
Eurographics Workshop on Visual Computing for Biology and Medicine.
2015, p. 61–70.

[24] Johnson, G.T., Autin, L., Al-Alusi, M., Goodsell, D.S., Sanner, M.F., Ol-
son, A.J.. cellpack: a virtual mesoscope to model and visualize structural
systems biology. Nature methods 2015;12(1):85–91.

[25] Hsu, W.H., Ma, K.L., Correa, C.. A rendering framework for multiscale
views of 3d models. ACM Trans Graph 2011;30(6):131:1–131:10.

[26] Segel, E., Heer, J.. Narrative visualization: Telling stories with data. IEEE
Transactions on Visualization and Computer Graphics 2010;16(6):1139–
1148.

[27] Lee, T.Y., Lin, C.H., Wang, Y.S., Chen, T.G.. Animation key-frame ex-
traction and simplification using deformation analysis. IEEE Transactions
on Circuits and Systems for Video Technology 2008;18(4):478–486.

[28] Huang, K.S., Chang, C.F., Hsu, Y.Y., Yang, S.N.. Key probe: a technique
for animation keyframe extraction. The Visual Computer 2005;21(8):532–
541.

10

View publication statsView publication stats

https://www.researchgate.net/publication/321385747

	Introduction
	Related Work
	Metamorphers
	Re-usability & Flexibility
	Molecular Data: Inherent Properties
	Metamorpher Modular Interface
	Metamorpher Classes
	Data-restructuring Metamorphers
	Layout Metamorphers
	Morphing Metamorphers
	Trajectory Metamorphers
	Timing Metamorphers
	Camera-Control Metamorphers


	Implementation
	Interface
	High-Level Metamorphers
	Producing the Animation

	Results
	Exploded View
	Bar Chart

	Discussion
	Expert Feedback
	Applicability
	Future Work

	Conclusion

