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Abstract
A current quest in neuroscience is the understanding of how genes, structure and behavior relate to one another. In recent
years, big brain-initiatives and consortia have created vast resources of publicly available brain data that can be used by neu-
roscientists for their own research experiments. This includes microscale connectivity data - brain-network graphs with billions
of edges - whose analysis for higher order relations in structural or functional neuroanatomy together with genetic data may
reveal novel insights into brain functionality. This creates a need for joint exploration of spatial data, such as gene expression
patterns, whole brain gene co-expression correlation, structural and functional connectivities together with neuroanatomical
parcellations. Current experimental workflows involve time-consuming manual aggregation and extensive graph theoretical
analysis of data from different sources, which rarely provide spatial context to operate continuously on different scales.
We propose a web-based framework to explore heterogeneous neurobiological data in an integrated visual analytics workflow.
On-demand queries on spatial gene expression and connectivity data enable an interactive dissection of dense network graphs -
with of billion-edges on voxel-resolution - in real-time based on their spatial context. In order to take higher order connections
between brain regions into account, queries can be executed in a cascading way. Relating data to the hierarchical structure of
common anatomical atlases allows experts to quantitatively compare multimodal networks on different scales. Additionally, 3D
visualizations have been optimized to accommodate for the domain experts’ need for publishable network figures.
We demonstrate the relevance of our approach for neuroscience by exploring social-behavior and memory/learning functional
neuroanatomy in mice.

1. Introduction

The quest for understanding the principle organization of the brain
and its functional parcellation is constantly changing due to the
increasing wealth of multimodal neurobiological data generated
by brain initiatives, such as the Allen Institute [all], the Human
Brain Project [hum], the WU-Minn Human Connectome Project
[VESB∗13], and the China Brain Project [mPlDI∗16]. They offer
rich information about genes, structure and behavior, while under-
standing their relationship is a key factor in neurocircuit research.
Mining these resources can provide researchers with additional
context for their experiments. The major challenges for visual an-
alytics in neuroscience involves accessing, fusing and visualizing
spatial brain data such as brain-wide gene expression, structural
and functional connectivity, and non spatial data like gene lists re-
lated to behavior or the functional association of genes.

Our work takes recent advances in circuit neuroscience into ac-
count (e.g. neuro- and behavioral genetics, optogenetics, imag-
ing) that identified gene sets underlying a specific behavioral func-
tion [KZM∗17]. However, there is a lack of tools to explore the
mesoscale as well as the global structural and functional brain net-
works related to these gene sets in silico. We meet this demand by

proposing a framework allowing visualization, iterative exploration
and the integration of spatial data like imaging data showing brain-
wide gene expressions, fMRI, or structural data, with structural,
functional and genetic anatomical relations at different scales and
different hierarchical anatomical labels. This data can be retrieved
from public resources and integrated in our framework. The same
applies to private data generated during experiments in the lab.

The data we handle includes hierarchical parcellations and struc-
tural annotations (e.g. Allen Mouse Brain and Allen Human Brain
region annotations), classical 3D image data (e.g. brain template,
spatial gene expression), 3D aggregated data (e.g. Allen Mouse
Brain gene expression data or viral injection traces), region-wise
connectomes/relations (e.g. resting state functional connectivity)
and voxel-resolution connectomes/relations (structural connectiv-
ity, gene co-expression), all aligned to a common reference space.
Voxel-wise connectivity/relational data generally has a very dense
connectivity with up to billions of connections, so their matrices
can take up hundreds of gigabytes.

Our framework visualizes volumetric, geometry and graph data
simultaneously in 3D rendering and 2D slice views, linked to views
showing quantitative profiles at a hierarchical parcellation level.
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The user can interactively navigate the hierarchical levels, which
provide spatial context by rendering their brain regions in 2D/3D
views. In a previous paper [GKHB18], we described a specialized
data structure that organizes and aggregates the voxel-wise con-
nectivity data hierarchically. Via so called Aggregation Queries
[GKHB18], which represent the aggregated incoming/outgoing
connectivity of volumes of interest (VOI), the data is made ac-
cessible in real time and can be explored interactively on different
anatomical scales. The hierarchical organization is anatomy-driven.
It can be flexibly generated for different ontologies and their re-
spective spatial region annotations.

In this paper, we used interactive local 3D selection on visual-
ized data to define VOIs with high intensity. Based on these, Ag-
gregation Queries can be executed on a user selected connectiv-
ity data set. The result is the cumulative voxel-wise connectivity
of the selected VOI that, again is visualized as intensity volume
in the 3D rendering as well as quantitative brain-region-wise pro-
file. These are augmented with hierarchical information (i.e. inten-
sity of sub-regions) to provide an overview of different hierarchi-
cal levels. This kind of interaction allows the researcher to relate
integrated resources, for example incoming/outgoing connectivity
at voxel-level and region level, directly to imaging data showing
brain-wide gene expressions (spatial gene expression data). Higher
order network connections can be targeted by repeatedly cascading
over the query results, which can be selected directly in the brain-
region-wise profile. This represents an iterative exploration of the
networks. The query results can further be visualized as graph rep-
resentation rendered as 3D and 2D network graphs. This reduces
the complexity of voxel-level results to region-level graphs and
provides neuroanatomical context, so they can be presented in a
way that is particularly suited for neuroscience publications, as ad-
vised by domain experts. We integrated the framework components
into workflows for interactively fusing volumetric with connectiv-
ity data, brain network exploration at different anatomical levels,
and intuitive 3D graph visualization. We demonstrate the practical
significance of this tool by presenting several use cases based on
heterogeneous neurobiological data from large scale brain initia-
tives that allowed to reproduce several recent biological findings.

Our previous work enabled us to realize, for the first time, meth-
ods for interactive exploration of dense voxel-wise brain connec-
tivity data of several gigabytes of size. Based on this, we propose
additional visual analytic methods for interactive:

• joint exploration and fusion of brain network data over different
scales ranging from multi-resolution voxel-wise connectivity to
connectivity defined in respect to different anatomical region hi-
erarchy levels
• joint exploration of data from different brain network types (e.g.

structural, functional, gene co-expression)
• identification of higher order connectivity in dense network

graphs with billions of edges

2. Background

We have been collaborating with experts interested in neuronal cir-
cuits in the mouse brain, how they control emotional states and
behavior, and how they are modulated by genes and psychoactive

drugs [HKC∗10]. The data they use and the related use cases pro-
vide a good starting point for understanding how nowadays data-
driven research is done in neurocircuit science. Based on previous
projects, informal interviews and discussions with our collaborat-
ing domain experts we jointly identified the following major ana-
lytical workflows and user stories:

Relating spatial gene expression data to different kinds of
connectivity: The entry point for many data analytics workflows
are ’candidate regions’ - brain regions that may be part of a specific
brain circuit. Those are affected by genes that are either related
to a certain behavior, or targeted by a psychoactive drug. Thus, the
knowledge of where a gene affects the brain is a first step in relating
it to a particular function. The effect is rather broadly defined. Well
documented cases are primary gene expression sites [LHA∗07]
(sites where the gene creates products, such as proteins) and struc-
tural connectivity (regions to which primary gene expression sites
project) [OHN∗14]. Spatial gene expression and structural connec-
tivity data for the mouse brain is provided e.g. by the Allen Mouse
Brain Atlas (AMBA) at a voxel-level, that was published by the
Allen Institute in 2007 and 2012. This data has been studied for
this purpose before [LHA∗07]. Here, the primary expression sites
of a gene are made available as 8 bit intensity volumes, representing
the density of cells expressing the gene (i.e. spatial gene expression
data), related to a specific standard brain. To use those resources for
hypotheses building, it is necessary to aggregate data manually by
querying online databases and literature research. Therefore, an in-
tegrated workflow for data fusion is therefore missing. Identifying
brain regions that are functionally or structurally connected (either
directly or transitively) to this expression site may also contribute
to this function or be a second order effect thereof. Performing this
tasks at a voxel-level is a particular challenge, since connectivity
matrices can easily grow up to hundreds of gigabytes.

Comparing different types of connectivity is of essential im-
portance for identifying neural circuits. For example, two brain re-
gions can have a high structural connectivity (a connection via neu-
rons) but do not necessarily express the same genes (e.g. a so called
ligand-receptor binding [YW04]). Therefore, their genetic connec-
tivity for a specific gene set, represented as gene co-expression
correlation (the correlation of the gene-expression between two re-
gions) is low. Finding a correlation between regions in their fMRI
activity may show their functional relation, but a difference in gene
co-expression correlation could reveal that this activity relies on
completely different molecular mechanisms. Directional structural
connectivity can reveal the flow of information for (undirectional)
fMRI connectivity [GSB∗15]. The possibilities of brain network
comparisons are versatile, but the given examples are in particular
relevant for domain experts. Combining specific circuits for larger
networks can be done again by manual data aggregation, such as
whole brain fMRI studies, but require the expertise of a bioinfor-
matitian.

Exploring the data on different scales: Operating region-wise
on the data (for example a region-wise network graph) depends
on spatial hierarchy. Brain regions are organized by ontologies as
trees with larger regions at the top, and ultimately resolves into
voxel-resolution at the lowest level of the related standard brain.
In order to keep an overview while comparing global networks
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Figure 1: Web-component for iterative exploration of multiscale brain data. A) Parcellation Browser showing a hierarchical (anatomical)
brain parcellation. This controls the parcellation level of visualized graphs and profiles. B) Query Toolbar to start visual queries for tar-
get/source connectivity on different connectivity matrices. C) Viewer Items List shows all volumes/geometries visualized in 2D and 3D. D)
3D View for rendering volumetric (spatial gene expression and connectivity) data, brain region geometry and network graphs E) 2D slice
view of 3D representation. F) Filtering Toolbar showing histograms of the visualized graphs and threshold sliders for edge filtering. G)
Expression/Connectivity Profile providing a region-wise quantitative representation of volumetric data.

with different modalities, larger regions are preferred. On the other
hand, visualizing small subnetworks for circuit dissection requires
smaller regions of the hierarchy or even voxel-level. A hierarchi-
cal organization of the network graph can therefore replace time-
consuming pre-selection of relevant regions in current experimental
workflows.

3. Related Work

Joint exploration of neurobiological data on different scales:

As various studies have already shown for the mammalian brain,
combining information of the macroscale connectome with mi-
croscale neuronal architecture does provide a deeper understand-
ing of the brain’s organization [SSDV14]. Recently, this has also
been confirmed for the living human brain, associating resting state
functional connectivity with both gene expression [PLK∗15] as
well as cortical microstructure such as T1-based myelin content,
as obtained from ultrahigh-resolution MRI [HBG∗17]. This em-
phasizes the growing need for visualization tools which incorporate

data of multiple scales. To visualize the relationship between multi-
scale data, mentioned studies primarily utilize enhanced heatmaps,
as it can be seen in Scholtens et al. [SSDV14], where the ma-
trix entries depict anatomical projections. Structural connectivity
strength is encoded by color, projection distance by dot size. To
provide spatial context, the matrix is presented side-by-side to a
brain surface, color-coding anatomical areas. This approach pro-
vides a good overview on region-level. However its complexity in-
creases on higher resolution, such as voxel-level.

To integrate macroscopic data at a brain region level with mi-
croscale data from simulation of neural activity, Nowke et al.
[NSvA∗13] have introduced the interactive analytics tool VisNEST,
for Macaque monkeys visual cortex. They provide views for visu-
alizing connectivity between brain regions, within-region connec-
tivity representation and time-varying activities across regions. Re-
gions of interest can be selected in a 3D anatomical view and are
represented as meshes, where color and opacity depict activity. Al-
though VisNEST allows comparison of region-level connectivity,

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



Florian Ganglberger / Iterative Exploration of Big Brain Network Data

it is not tailored for high-resolution connectivity data nor does it
relate to volumetric data.

For Drosophila, Lin et al. [LTW∗11] introduced Neuron Naviga-
tor, a tool that allows queries for connectivity of regions of interest
in the Drosophila brain space. These spatial queries are achieved
by accessing a 3D neuron image database and matching the region
of interest with annotated locations of neuron terminals. Although
these queries represent connectivity between neurons, they are not
executed on actual graph/network data.

BrainExplorer [LNT∗08] is an interactive visualization tool, pro-
vided by the Allen Brain Institute to explore the spatial gene ex-
pression and structural connectivity data provided by the Allen
Mouse Brain Atlas. Brain Explorer provides volume rendering and
blob-like visualization of gene expressions mapped to a standard
brain. Voxels are colored according to their expression level. The
tool enables the execution of pre-computed source/target connec-
tivity queries of brain regions, which is also available via a web-
interface on the Allen Institute’s website [all]. This work comes
closest to our solution. However, they provide (pre-computed)
queries for incoming/outgoing connections only on pre-defined
sites or anatomical regions. Other tools allowing exploration of
connectomic data are CATMAID [SCHT09] and ConnectomeEx-
plorer [BAAK∗13], which allow tracing neurons on single EM
Stacks, so that they work at a local level of a single network with
fixed scale. Similar accounts for Sherbondy et al. [SAM∗05], who
query pre-computed pathways on diffusion tensor imaging data
from volumes of interest. NeuroLines [AABS∗14] offers a visu-
alization as simplified skeleton graph, similar to a 2D subway map.
Different levels of abstraction allow for multi-scale exploration, but
is ultimately tailored to branched, tree like connections in electron
microscopy data.

A more generic framework, named neuroVIISAS [SE12] pro-
vides multiple ways of organizing, visualizing and analyzing multi-
scale brain network simulation data. NeuroVIISAS offers a collec-
tion of visualization techniques in 2D such as different representa-
tions of hierarchical connectivity matrices, circular connectograms,
various layouts for planar graphs, as well as in 3D, where regions
are rendered as spheres or true anatomical surface meshes, colored
based on the color defined in the reference ontology. Connections
are depicted as tubes with or without arrows. Moreover, individual
source and target queries can be performed textually by defining
filters on a table of all the available connections. The resulting se-
lections can be viewed side-by-side in 2D atlas views. However, as
this tool is designed for analysis of simulation data it has a different
scope.

Visualization of structural, functional and gene co-
expression brain networks: Brain networks are commonly
represented as node-link diagrams, connectivity matrices or con-
nectograms, where only the first can be visualized in anatomical
space both in 2D, with slice views of the anatomical planes
and 3D. In volumetric space, edges have been rendered as
straight lines in between nodes depicted as spheres across the
brain [XWH13, LDTS14] or curved lines along the brain sur-
face [LFG∗15]. However, with a dense number of connections,
this produces clutter and obscures the underlying anatomy.
Mostly, brain networks are too complex to be able to show all

details up to the highest level of resolution whilst seeing the
entire global structure. Thus, hierarchies can define the level
of partition. Applied to rendering in 3D space, the hierarchical
level can be determined by the distance to the viewpoint in a
level-of-detail-visualization [BD07], edge bundling [BSL∗14].
Hence, brain network visualization tools [MBB∗16] often present
network structure and anatomical context side-by-side and achieve
reference through linked views and coloring network nodes
according to their anatomical region. This provides the flexibility
to layout the connectivity network according to network properties
such as using a spring-embedded layout where well-connected
groups of nodes are pulled together as seen in [PLK∗15]. Different
graph layouts, such as an anatomical layout, are also supported by
NeuroMap [Sor13], which renders potential neuronal connections
in the fruit fly’s brain as interactive circuit-style wiring diagrams.
Spatial context is provided by introducing brain regions as spatial
constraints to a 2D layout by providing a 2D abstraction of
anatomical organizations and by linking NeuroMap with 3D
visualizations, showing the neurons in their 3D anatomical context.
Although these tools provide spatial/anatomical context, they
are limited to a regional level, and do not scale to voxel-level
resolution with billions of edges.

4. Core Tasks

Based on the user stories described in Section 2 we identified the
following core tasks and requirements to be supported by our sys-
tem. It is necessary that all tasks can be performed interactively i.e.
without time-consuming computation:

R1: 3D target/source assessment: What is connected to a certain
volume of interest? The user has 3D volume data that shows activ-
ity in certain areas, for example where a certain gene is expressed.
She wants to know which areas are connected via structure or by
function at a voxel-level. She can directly select the areas that are
interesting for her based on the visualization and receives the re-
sults instantly. The user can select additional connectivity modali-
ties, which she can visualize similarly or by their overlap.

R2: Higher order target/source assessment: What is transitively
connected to a certain volume of interest? Originating from the tar-
get/sources of R1, the user wants to know what further connections
exist i.e. which brain regions (also on a voxel-level) are transitively
connected to a certain area. Using R1 iteratively is simply too time
consuming for the user, since it involves the accurate selection of
potentially large brain areas.

R3: Anatomical context: To which brain regions is my data re-
lated? 3D volume data, such as spatial gene expression data or
target/source connectivity query results need to be related to their
anatomical context, so that the user has quantified information of
what she is seeing. Therefore, the volume data needs to be summa-
rized to show how much gene expression/connectivity individual
brain regions exhibit. The hierarchical nature of the regions makes
it necessary to navigate/visualize different hierarchical levels.

R4: Explore 3D network graphs with spatial reference: How do
my networks look like on different scales? The user wants to explore
connectivity of experimental data, such as a fMRI network of a
study. She executes target/source queries on the fMRI network and
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other modalities and renders a graph representation of the results.
She wants to navigate hierarchical brain parcellation until the graph
fits her needs. Multiple connectivities need to be represented as a
graph for purposes of comparison, i.e. to see the difference from
and the overlap with her experiment.

R5: Publishable figures: Give me a publishable figure! The
region-wise network graph, generated by R4 needs to be visualized
in a way with which neuroscientists feel intuitively familiar. The
figure needs to be easy to understand, interpretable and suitable
for neuroscientific publications/presentations. The domain experts
consider the best solution to be a 3D graph visualization overlayed
by the outlines of the brain. Furthermore, the workflow for gener-
ating the figure has to be traced in order to be reproducible.

5. A Data Structure for real-time Aggregation Queries of Big
Brain Networks

Querying large graphs, with billions of edges can be time consum-
ing. This data, represented as connectivity matrices (weighted adja-
cency matrices) can easily grow up to hundreds of gigabytes, which
is why keeping them in memory becomes infeasible with increas-
ing size. This requires special solutions for fast disk access (R1,
R2). When operating on different anatomical scales, it is neces-
sary to perform cumulative operations on the connectivity matrices
(e.g calculate region-level connectivity from voxel-wise connectiv-
ity). In this case large parts of the connectivity matrix need to be
loaded and processed. We created a data structure in our previous
work [GKHB18] to allow these Aggregation Queries to happen in
real-time, directly on the hard disk. It uses a specialized Connectiv-
ity Storage to efficiently manage and access large connectivity data
(Figure 2). By exploiting the sparseness of the data and its spatial
organization, it optimizes disk-reading speed via read-ahead paging
and therefore achieves almost sequential reading-speed for local
Aggregation Queries (i.e. cumulated connectivity of a brain area).
To scale for larger brain areas, we implemented a cache mecha-
nisms that uses pre-computed queries in a hierarchical way, simi-
lar to an image pyramid. Moreover, the Connectivity Storage pro-
vides a mapping to a standard reference space, which allows the
retrieval of connectivity data regardless of its original resolution.
The Connectivity Storage has been combined with a multi-model
graph/document-database, which is tailored to hierarchical brain
parcellations (i.e. hierarchical anatomical brain atlases) to store
region-level connectivity for different hierarchy levels. It is also
used to organize spatial data, such as volume data (e.g. spatial gene
expression), binary masks and meshes of region definitions.

A REST API is acting as the central access point for the data. It
provides calls for querying the connectivity matrices, as well as im-
porting them. Data import can be performed by providing the ma-
trices in a row/column table format as csv. The data structure will
then convert the data to a compressed file format for the Connectiv-
ity Storage and automatically aggregats region-level connectivity in
the graph-database (see details in [GKHB18]). It can then be used
immediately afterwards for real-time connectivity queries. These
can be executed in less than one second for brain areas involving
about 1% of the brain, and less than four seconds for larger areas up
to the whole brain on SSD. On HDD the queries are approximately
three times slower.

6. Visualization Components

6.1. Parcellation Browser

The Parcellation Browser (Figure 1A) shows a hierarchically or-
ganized brain parcellation in a tree view, where every brain region
has a name and a color code. Its main purpose is to define the brain
regions that are visualized in the Expression and Connectivity Pro-
files as well as the query result’s graph representation (the selec-
tion state). Navigating the tree adds/removes regions to/from the
selection state to let the user control the current level of detail (first
column), or mask parts of the brain (column S), depending on her
research question. The uppermost regions are the two hemispheres
that can be expanded further down the hierarchy. Each major brain
region has a color code that is varied in shade depending on its hi-
erarchical level, providing the user with an indirect reference to the
larger anatomical context of a subnode and to the spatial position in
the brain. This effect is further enhanced by using established color
codes for brain regions together with the brain ontologies, which,
for example, available in the AMBA context.

6.2. Query Toolbar

The Query Toolbar (Figure 1B) can be used to execute target/source
queries on connectivity matrices (R1), selected by a dropdown
menu. Furthermore, it can start brushes, which is a spherical se-
lection tool in the 2D slice view.

6.3. Viewer Item List

The Viewer Item List (Figure 1C) controls the visibility and ap-
pearance of spatial volumetric data and geometry that is visible in
the application. Visibility of volumetric data can be controlled by
setting brightness, contrast and transparency. Moreover, it contains
entries for all regions in the selection state, since they are visible
in 2D (color-coded in the same way as in the Parcellation Browser.
For all items, the visibility and color, and for query results (i.e. con-
nectivity data), the visibility of the graph representation can be set.

6.4. 3D Visualization in Anatomical Space

To visualize data in its original spatial, anatomical environment we
are using classical volume rendering (Figure 1D) and multi-planar
reformation (Figure 1E) for the visualization of volumetric data and
graph rendering in a ball-and-stick model, since they are common
in the neuroscience community. We further render anatomical con-
text in the planar view, visualized by region contours, and mesh ge-
ometry in 3D (if enabled via Viewer Items List) in order to provide
anatomical context. 3D mesh rendering is turned off by default,
since it would obstruct 3D volume rendering.

6.4.1. Visualization of Volumetric Data

Volumetric data, like gene expression data or voxel-level structural
connectivity is rendered in 3D (Figure 1D), as well as three pla-
nar slice views (Figure 1E). A maximum of four volumes can be
blended simultaneously in 3D using single color-based transfer-
functions (limited by the four RGBA channels, since the volume
is loaded as texture). In the slice views, blending is also used for
multiple images. Therefore, the rendering of intensity-overlap con-
verges to white.
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Figure 2: Principle of the Connectivity Storage and real time Aggregation Queries: 1. Spatial reordering of a (voxel-level) connectivity
matrix. Rows/columns that represent the outgoing/incoming connectivity of voxels are reordered, so that rows/columns that belong to spatially
close voxel are close to each other. 2. Row Compression: The reordered connectivity matrix is stored with a row-wise compression as
Connectivity Storage File on the hard disk. Row-wise compression saves disk space (and therefore reading time) by exploiting sparseness. 3.
Aggregation Query: A volume of interest (yellow) is selected on 3D spatial data (e.g. spatial gene expression data, red). Outgoing connectivity
is aggregated by reading the corresponding rows (yellow) from the Connectivity Storage File. Since spatially close rows are also close in the
file, they can profit from read ahead paging (blue). The result is the aggregated connectivity for every voxel (green).

6.4.2. Region-level Graph Representation of Voxel-Wise
Connectivity

A result of a target/source query can be also visualized as a 3D
ball-and-stick-model within its anatomical reference space (R4 and
R5). Network nodes are rendered as spheres, where size is deter-
mined by the size of the corresponding anatomical region and color
reflects their anatomical representation in the originating parcel-
lation. Rendering them as meshes instead, would cause blocking
the view by larger brain regions. For directed networks, edges are
rendered as tubes with arrows, differentiating incoming from out-
going connections. Undirected network edges are represented by
tubes. For weighted networks, connectivity strength is color-coded,
ranging from white to the color selected in the Viewer Item List.
Rendering arrows that are indicating the direction of connections,
were specifically requested by our expert users as they are an intu-
itive way of differentiating incoming from outgoing edges in pub-
lications. Edges and nodes are user-adjustable via color-transfer-
functions. Moreover, thresholding edge weights enables dynami-
cal network refinement and an exploration of connections of in-
terest. Node labels further support orientation. In addition to the
network model in the 3D view, network regions are shown as col-
ored outlines of their anatomical equivalent in the corresponding
2D slice views; arrows (for directed) or lines (undirected networks)
are rendered between the region centers in every slice. Although
this shows only a part of the network (i.e. in the specific slice), it has
the advantage that one can corectly render the regions by anatomy
(instead of using a sphere), without facing the problem caused by
possible obstruction in 3D.

6.4.3. Filtering Connectivity Strength

Since the mean number of edges increases quadratically with the
number of nodes, the user can apply thresholding on edges to high-
light stronger connections. This is done with a slider to set a user
defined threshold, in combination with a histogram that shows the
edge weight distribution in the Filtering Toolbar (Figure 1F). The

colors of the histogram bars map directly to the visualized edges.
Hence, color directly relates to connectivity strength.

6.4.4. Multiple Network Graphs

The comparison and joint exploration of multiple graphs, which re-
late to the same anatomical parcellation, has been realized by over-
laying several graphs, i.e. simply rendering multiple edges between
nodes (Figure 4E). Our domain experts found this the most intuitive
method, since one can directly see the similarity/contrast of two
edges between two nodes. Showing only two graphs even renders
up to four arrows between nodes. Therefore, we also implemented
an overlap visualization. Between two nodes, a maximum of two
edges, whose weight is defined by the multiplication of all edges
(at region-level) between those nodes, is rendered. If an overlap is
computed, the histograms depict a formula of the multiplication of
individual graphs (Figure 4F), so that the calculation can be com-
prehended by the user. Cascading queries are treated as a single net-
work, depicted by brackets in the formula (see Section 7.2), since
they represent connectivity of different orders.

6.5. Connectivity and Expression Profiles

Connectivity Profiles (C-Profiles) as well as Expression Profiles (E-
Profiles) (Figure 1G) summarize volumetric voxel-level data in or-
der to make them quantitatively comprehensible for the user (R3).
They visualize the mean target/source connectivity or gene expres-
sion for brain-regions in bar graphs. These brain regions are de-
fined by the selection made in the Parcellation Browser. The mean
connectivity/expression of all subregions are rendered as dots. This
allows the user both to identify regions that have highly con-
nected/expressed subregions, and to further refine the anatomical
hierarchy to focus on relevant subregions. For anatomical context,
the colors of the bars and dots are corresponding to the Parcella-
tion Browser. Names are made visible via a tooltip. One or multi-
ple regions can be picked for a high-intensity VOI selection, which
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Figure 3: Selection of parts of a gene expression pattern (red). A)
Brush-selection of spherical region (yellow) in 2D slice views and
simultaneous rendering in 3D. B) Region-selection initiated by the
Parcellation Browser, voxel-level visualization of a region (yellow).
C) High-intensity-selection of a brain-region started from an Ex-
pression Profile. A dialog which shows a histogram of voxel-level
connectivity within the selected region lets the user decide which
intensity, and therefore which voxels, will be selected. The result is
rendered in 2D and 3D (yellow).

enables the user to threshold for high expression/connectivity vox-
els in a separate dialog (see Figure 3). This allows higher order
target/source queries in an iterative workflow (R2), as further de-
scribed in Section 7.1.3. For C-Profiles, the percentual composition
of the query region is shown in a bar above the profile to indicate
the queries anatomical context. It uses the same parcellation/color
code as the profile, and reveals its region names via mouse-over.
Furthermore the query region can be added again to the 2D/3D
viewer, so that a user can reproduce the query with the same or
other connectivity matrices.

7. Basic Workflows for Joint Data Exploration

7.1. Visual Queries

A visual query allows API requests to the data structure that are
based on selections of a volume of interest directly in volume ren-
dering. The response can then be directly shown in the 2D/3D ren-

derer as well as C-Profile. This subsection describes the interaction
with volume data, and the query types we have implemented.

7.1.1. Selecting a Volume of Interest

In the volume rendering, the selection of areas can be performed in
three different ways: Brush-selection, region-selection, and high-
intensity-selection. Brush-selection is performed from the Query
Toolbar. It lets the user draw pherical areas encoded in trans-
parent yellow in the 2D slice views, which are also directly ren-
dered in 3D. Figure 3A for example shows a gene-expression vol-
ume, where the spherical area is drawn on voxels with high gene-
expression. Executing queries on this area is therefore acting as
link between volume and connectivity data. The region selection
(Figure 3B), added by the magnifying-glass-plus-button in the Par-
cellation Browser next to a region, selects only voxels within this
region rendered as transparent yellow cubes. This provides the user
with the possibility to explore the network without volume data.
High-intensity queries are started from the E-Profiles. It allows the
user to select voxels with high-intensity within user-selected brain
regions. The user selects brain regions of interest in the E-Profiles
(Figure 3 C) with high gene expression. By clicking the "add high-
intensity VOI " button, a dialog appears which shows a voxel-level
histogram of the intensity values within this region. Here the user
defines high-intensity voxels by setting a threshold. In the 3D/2D
views, the voxels are instantly selected and visualized similarly to
the region selection.

7.1.2. Target/source queries

Target/source queries can be used to link connectivity data with
volume data (R1). In the Query Toolbar, connectivity matrices for
querying can be selected and brush-drawings with a certain radius
can be started (although one can also use the other brush-types in-
stead). The selected area (Figure 3A) then acts as an input for a
target or source query on the API. The API retrieves the connectiv-
ity to all voxels that are either targets or sources from the selection,
and then returns a Connectivity Volume (connectivity from/to VOI
on voxel-level) as compressed JPEG to the web-component which
will be rendered instantly in 3D, 2D slice view and as C-Profile
(R3). This represents the cumulated connectivity to (target) or from
(source) the selected area. The Connectivity Volume automatically
gets assigned a random colorscale, from white to a color that differs
the most in its RGB value from other viewer items, to make it visu-
ally most distinctive to other visualized volumetric data. C-Profiles
are shown in a list under each another, with the most recent one on
top, so that the user does not need to scroll down.

7.1.3. Higher order target/sources

On the C-Profile of the Connectivity Volume, the user can select
regions of interest with high connectivity to start a high-intensity-
selection (Figure 3C). Similarly to the E-Profile (Section 7.1.1), the
user can choose a threshold in a voxel-level connectivity histogram,
which adds all voxel within the region, and a connectivity above the
threshold, as VOI. After performing a target/source query on the
selection, the resulting 2nd-order connectivity is visualized in 2D
and 3D as other volume data, while the associated C-Profile will be
rendered below its originating C-Profile (R2). The name is indented
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and prefixed with "2nd-order" in red font, so that it is clear to the
user that this query belongs to an iterative cascade, while the profile
itself is not indented to ensure vertical comparability between mul-
tiple profiles (Figures 5 C). The cascading nature of these queries
is further emphasized in the region-level graph representation, de-
scribed in the next section.

7.2. Transformation of Voxel-level Connectivity to
Region-level Graph Representation

Changing from voxel-level Connectivity Volumes to region-level
graph representation can be controlled either directly from a C-
Profile via "Show Graph Representation" button, or via the Viewer
Item List (R4). The Graph Representation is a mapping of already
aggregated connectivity to region-level, and therefore does not re-
flect the total and individual connectivity between brain regions
visible in the graph. It rather represents an abstract view of the
query, showing the aggregated connectivity of a VOI mapped to
a region-level in its 3D/2D spatial context. Moreover, it allows it-
erative queries for higher order target/sources to be visualized in a
cascading way, since the individual graphs are connected by arrows
(Figure 5D) (R5). Edges of the graph are drawn from all regions
in the query area, to all regions in the C-Profile (i.e. the selection
state), with their mean connectivity as weights. These edges do not
need to be calculated, since they have already been aggregated for
the C-Profiles.

7.3. Region-level Selection and Manipulation

The central control element for the C-Profile and Graph Represen-
tation is the Parcellation Browser. Navigating in the tree directly
influences the selection state, thereby determining which bars (pro-
file) or nodes (graph) are shown (R3). Opening a subtree of a re-
gion will remove the corresponding bars/nodes from the graph, and
adding all its children. Closing a region will add it, while removing
its children. Since the user is not limited by a rigid parcellation, she
can focus on regions of the brain that are relevant to her (e.g. only
sub-cortical areas),

8. Case Studies

We conducted two case studies, which were designed in colab-
oration with our domain experts. The first case study compares
different kinds of networks (structural-connectivity vs gene co-
expression correlation) related to social-bonding behavior. The sec-
ond examines neurocircuits related to memory and learning, which
we explore iteratively.

8.1. Comparison of multiple networks

In the first case study the domain experts would like to examine
brain networks related to social-bonding behavior. In particular,
they were interested in oxytocin and vasopressin (neuropeptides
known to be related to social behavior in mammals) release effect
at the network level [BA15]. For this, they wanted both to exam-
ine primary expression sites of both genes, and explore their tar-
get sites (i.e. outgoing connectivity of expression sites) on different
networks. For this case study we incorporated the following: spatial

Figure 4: Case Study 1: A) Gene expression of OXT (cyan) and
AVP (purple). B) Selected VOI with brush-selection (yellow, indi-
cated by red-arrow). C) Structural connectivity of the VOI in 3D
and 2D (green) and its Connectivity Profile. D) Gene co-expression
correlation of the VOI in 3D and 2D (blue) and its Connectivity
Profile. E) Graph representation of structural connectivity (white
to green) and gene co-expression correlation (white to blue). F)
Multiplication (overlap) of the connectivities (red).

gene expression data (67x41x58 volume on a 200-micron resolu-
tion) of oxytocin (OXT) and vasopressin (AVP), a spatial gene co-
expression correlation network (also 200-micron resolution, ma-
trix file size is ∼ 12 GB) of social-bonding related genes consist-
ing of (gene ENTREZ ID in brackets) Oxt (18429), Oxtr (18430),
Avp (11998), V1b receptor (26361), D1R (13488), D2R (13489),
Slc6a3 (13162) and Crh (12918); and a 100-micron voxel-level
(132x80x114) structural-connectivity from the AMBA (file size is
∼ 90 GB) [GKHB18]. Although these networks have billions of
edges, our data structure [GKHB18] allows real-time retrieval of
aggregated connectivity (i.e. cumulated incoming/outgoing con-
nectivity) of a VOI on a 132x80x114 standard brain space.
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Identify a volume of interest of spatial data: The entry point
for experts is the spatial gene expression data of OXT (Figure 4A
cyan) and AVP (Figure 4A purple). The user notices an overlap in
the hypothalamus (indicated by dark red contours, in the 2D slice
view) (R3). She selects the overlapping area with a spherical brush
initiated by the Query Toolbar (Figure 4B yellow spheres, high-
lighted by red arrow).

Find connected areas: The user selects the structural connectiv-
ity matrix in the Query Toolbar, a click on the Target Query button
executes the selected VOI on the data structure (R1). The accumu-
lated connectivity is instantly displayed as Connectivity Volume in
3D and 2D (Figure 4C green) and as C-Profile (Figure 4C bottom).
The profile shows that the strongest connectivity is to the Hypotha-
lamus (dark red) itself (strongest connectivity to itself is common
for structural and gene co-expression correlation). Other top con-
nections are the Striatum (light blue), Pallidum (dark blue), Mid-
brain (pink), Thalamus (light red) and some cortical areas (green)
(R3). This process is repeated for the gene co-expression correla-
tion (Figure 4D blue), where its profile depicts hypothalamus as
strongest again, but among similar connections also strong connec-
tions to Cerbellum (yellow) and Hindbrain (orange).

Compare networks: To compare the connectivities, the user vi-
sualizes them as Graph Representation (R4). Figure 4E shows the
two graphs in 2D and 3D, easily recognizable by their colors. In
the Filtering Toolbar the user selects a threshold to filter weak con-
nections. Among others, the user sees that both networks show
projections to the Septal Complex (LSX), the Anterior Cingulate
(ACA) and the Prelimbic/Infralimbic Area (PL and ILA), which are
well known nodes involved in social behavior [BA15]. To further
highlight this, the user also visualizes the overlap of both graphs
(i.e. multiplication of both connectivities). The resulting reduced
amount of edges makes it easier for the user to identify regions
which are connected via both connectivities. These types of net-
work visualization were familiar to the domain experts, who con-
firmed their suitability for neuroscientific visualization or publica-
tions (R5).

This case study illustrates the joint exploration of gene expres-
sion data and different kinds of connectivities on voxel- and region-
level. This approach allows real-time visual analytic workflows
which are fast and efficient, compared to time-consuming manual
data aggregation by querying different online databases, literature
research and scripting. A video of the case study is available as
Supplementary Video 1.

8.2. Higher-order connectivity

We designed this case study with domain experts to showcase it-
erative higher-order connectivity queries with a well-known re-
lationship between the brain-derived neurotropic factor (BDNF)
and hippocampal synaptic plasticity, respectively circuits related to
learning and memory [LBD17]. One of these circuits is Dentate
Gyrus (DG)→ CA2/CA3→ CA1→ Entorhinal cortex/Subiculum
[LBD17]. For this purpose, we explored a primary expression site
of BDNF in DG, and traversed their first-, second- and third-order
targets iteratively. This case-study required the spatial gene expres-
sion data at a 200-micron resolution for BDNF (gene ENTREZ ID:

Figure 5: Case Study 2: A) Gene expression of BDNF (light blue).
B) Selected VOI with high-intensity-selection (yellow, indicated by
red-arrow). C) Expression Profile of BDNF and its first-, second-
and third.order Connectivity Profiles D) Graph representation of
the connectivity in 2D and 3D (first-order blue, second-order red,
third-order green).

12064) and structural connectivity at a 100-micron resolution from
AMBA in the data structure [GKHB18].

Identify a volume of interest of spatial data: The experts
started their investigation by visualizing the spatial gene expres-
sion of BDNF in 2D/3D and as E-Profile (Figure 5A). Since the
circuit has its origin in DG, the user navigates in the Parcellation
Browser. In the 2D slice view the user sees that there is a high
expression level, hence she starts a high-intensity-selection in the
E-Profile (Figure 5B).

Find connected areas iteratively: By selecting the structural
connectivity matrix in the Query Toolbar and clicking the Target
Query button, the user receives the accumulated connectivity in-
stantly as 2D/3D visualization and C-Profile. The name of the pro-
file is indented and prefixed with "First-Order" to highlight the it-
erative procedure (Figure 5C). CA2 and CA3 are the strongest con-
nections (not counting DG, since it is a connection to itself), so they
are chosen for the next high-intensity-selection to go further along
the circuit (R2). Note that CA1 receives strong input, but this is pri-
marily caused by their spatial closeness and data acquisition tech-
nique for structural connectivity [AMB]. The next C-Profile shows
CA1 as strongest connection (except for the originating CA2/CA3).
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By performing a high-intensity-selection on CA1, the results show
strong connectivity in the Retrohippocampal Region. After brows-
ing its subregions in the Parcellation Browser, the connections to
Entorhinal Cortex and Subiculum are revealed (highlighted in Fig-
ure 5C bottom)

Visualize the Circuit: Finally, the experts wanted to see the cir-
cuit in a 2D-3D Graph Representation to give them a spatial con-
text (R4), so that they can use their exploration for presentation and
discussion purposes with colleagues (R5). They selected the "Show
graph representation" button next to the profiles, which instantly
shows them the network graphs (Figure 5D). After filtering for the
strongest connections, the graph shows only the DG→ CA2/CA3
→ CA1→ Entorhinal cortex/Subiculum circuit (and a connection
to the lateral septal complex LTX, which is not relevant for this
case study). Since the C-Profiles were automatically marked with
different colors, the colored histograms in the Filtering Toolbar,
that are ordered according to their iteration, allow association of
graph edges with the connectivity-order originating from DG.

In this case study, we showed the iterative exploration of a 90
GB connectivity matrix at voxel-level, enabled by quantitative in-
formation in C-Profile and high-intensity VOI selection. To our best
knowledge, this could be done so far only at region-level connec-
tivity. We provide a video of this study as Supplementary Video 2.

9. Discussion and Conclusion

In this paper we present a novel integrated workflow for analyzing
and fusing heterogeneous neurobiological data of different types,
modalities and scale via their spatial context. The workflow is inte-
grated in a framework that combines data from different large-scale
brain initiatives with user generated data. We incorporate a hierar-
chically organized data structure, which enables real-time query-
ing and aggregating of huge brain network connectivity of differ-
ent scales and resolutions on a common standard brain space. This
data structure can be accessed via a web-component, which allows
selecting VOI on 2D/3D visualizations of various volumetric data.
The resulting voxel-level connectivity is rendered again in 2D/3D,
where it can directly be compared to spatial gene expression or
connectivity of different modality. Importantly, these operations re-
main interactive, despite operating on matrices with up to hundreds
of gigabytes.

To allow a quantitative evaluation on brain-region level, the
results are shown as region-wise profile, presenting the mean-
connectivity for every brain region, as well as for all its sub-regions
in a bar chart. This directly highlights strongly connected subre-
gions, which would otherwise be missed if the user operated at
a higher brain region level. The region-level profile of connectiv-
ity further allows for VOI selection for transitive connectivity. Al-
though it would generally be possible for a user to manually select
strongly connected voxels in the 2D slice view in order to start
another target/source query, the domain experts preferred to query
for transitive connectivity within brain regions of their interest (i.e.
they were not interested in retrieving the connectivity of all tar-
get/source sites, but only from sites within brain regions of inter-
est). Therefore, the user selects strongly connected brain-regions
in the region-level profile, chooses a connectivity threshold and re-
ceives a voxel-level selection that can be used for further queries.

Query results can be abstracted as 2D and 3D network graphs,
which reduces the complexity of voxel-level while incorporating
neuroanatomical context. Multiple graphs (i.e. region-level graph
representation of connectivity query results) can be rendered with
parallel arrows/lines, or combined by multiplication. Domain ex-
perts confirmed that they feel familiar with this type of visualiza-
tion. Moreover, it is suitable to be used for discussion or as figures
in neuroscientific publications.

Finally, the case studies conducted with domain experts showed
biological validity and reproducibility by reproducing findings of
known microcircuits that are subject to current research.
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