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Abstract
Development and verification of real-time algorithms for robotic total stations usually require hard-ware-in-the-loop
approaches, which can be complex and time-consuming. Simulator-in-the-loop can be used instead, but the design of a
simulation environment and sufficient detailed modeling of the hardware are required. Typically, device specification and
calibration data are provided by the device manufacturers and are used by the device drivers. However, geometric models of
robotic total stations cannot be used directly with existing ro-botic simulators. Model details are often treated as company
secrets, and no source code of device drivers is available to the public. In this paper, we present a complete workflow
for automatic geometric model extraction of robotic total stations using the Denavit-Hartenberg convention. We provide a
complete set of Denavit-Hartenberg parameters for an exemplary ro-botic total station. These parameters can be used in
existing robotic simulators without modifications. Furthermore, we analyze the difference between the extracted geometric
model, the calibrated model, which is used by the device drivers, and the standard spherical representation for 3D point
measurements of the device.

Keywords Robot control · Robot kinematics · Forward kinematics · Robotic total station · Denavit-Hartenberg parameters

1 Introduction

Robotic total stations (RTS) are commonly used for mea-
suring 3D points with high precision and accuracy. Appli-
cations vary from land surveying over building and road
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construction to as-built verification and deformation moni-
toring. Modern devices allow the measurement of distances
and angles, provide image data, and automatically compen-
sate various system effects, such as inaccuracies in produc-
tion, sensor drifts and environmental influences [38]. While
measured 3D points are usually represented in spherical
coordinates, these devices are calibrated with extended geo-
metric models by the manufacturers to reduce systematic
errors, to combine multiple sensors and to achieve higher
precision and accuracy. Manufacturers usually provide a
software development kit (SDK) to access and convert the
measured data. However, the detailed mathematical formu-
lation of the corrections is often a company secret and is not
available to the public.

The contribution of this work is a detailed description
of the forward kinematics model parameter estimation for
an (RTS) using the Denavit-Hartenberg (DH) convention
[8], which can hardly be found in the literature in a closed
form. Based on this description, we provide the estimated
(DH) parameters for an exemplary (RTS). These parameters
can be used for custom or existing robotic simulators,
such as Roboanalyzer [27], WorkcellSimulator [37], ABB
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RoboStudio [5] or OpenSim [7]. The introduced model
estimation workflow can also be applied to open chain
robots with comparable actuators and sensors in general. In
particular, we extended the methods described by Barker
[2] and Rajeevlochana et al. [28] to extract the relationship
between the robot control parameters, one or more cameras
and the electronic distance meter (EDM) of an (RTS)
automatically. Furthermore, we compared three different
kinematics model representations for the exemplary (RTS):
(a) the geometrically extracted kinematics model, (b) an
simplified model using a spherical coordinate system and
(c) the numerically optimized kinematics model.

This paper is structured as follows. Related work on
(RTS), (DH) parameter estimation and robotic modeling
are described in Section 2. In Section 3, the kinematics
modeling workflow is described. In Section 4, experimental
results for the kinematics model of an exemplary RTS
are presented, including the comparison of the error for
the geometrically extracted, analytically simplified, and
numerically optimized models. A brief discussion about
findings, limitations and possible future work is provided in
Section 5, while concluding remarks are given in Section 6.

2 RelatedWork

Most robotic simulation environments for open kinematic
chains use DH parameters for geometric linkage simulations
[3, 5, 7, 22, 27, 30, 35, 37]. While DH parameter
based models are quite common in robotic theory, RTS
specifications do not provide this kind of information.
Without the claim to completeness, this section provides
an overview of published work in the field of RTS, the
particular device used in this paper, the DH convention and
related kinematics modeling approaches.

Uren and Price [38] provide an introduction to surveying
devices and methods, including standardized mathematical
models, measurement methods, error calculations and
common workflows. Forward kinematics modeling or
device simulation are not described, however.

Klug et al. [21] use a spherical model for the RTS in
the context of human structure measurements. However,
the applied model is an idealized representation of the
device. The full kinematics model and the influence of the
simplification are not analyzed (see Fig. 1).

Kinematics modeling and model identification has been
addressed extensively in the literature, using different
models and notations [6, 8, 12, 13, 33, 36]. Reuleaux [29]
introduced the concept of kinematic chains in 1876. Denavit
and Hartenberg [8] presented a systematic notation for
kinematic chains, later called DH convention, which is still
the most common method to identify rigid kinematic chains.
Veitschegger andWu [39] added the base and tool transform

Fig. 1 Simplified kinematics model used in [21]

for complete kinematics description. A general introduction
to the field of robotics, including a detailed description
of the DH convention and its variants, can be found in
the book by Siciliano and Khatib [34]; a comparison of
different DH convention variants and an extensive study of
geometric linkages can be found in book by McCarthy and
Soh [25]. Despite the long history of kinematics modeling of
robotic devices, to the best of our knowledge, no complete
description for kinematics model extraction of an RTS with
camera has been presented so far.

Barker [2] describes a vector-algebra approach for
extracting geometric properties of assembled robotic arms.
Rajeevlochana et al. [28] present a description for automatic
model parameter estimation using a modified version of the
algorithm based on line geometry. More details about their
workflow, data acquisition, model extraction, and modeling
error evaluation are given in the work of Hayat et al. [15]
and in the work of Chittawadigi et al. [4]. However, their
work is not tailored to RTS, hence device-specific algorithm
steps are missing. Furthermore, numerical optimization of
the geometrically extracted models was not addressed by the
authors.

In our work, we describe a workflow based on DH
parameters, which is tailored to kinematics modeling and
simulation of modern RTS. To the best of our knowledge,
we are the first to describe such a workflow in self-contained
form. Furthermore, we show the significance of numerical
optimization with a global cost function in addition to the
geometric approach. Finally, instead of focusing on a single
application case, we analyze the difference between the
geometrically extracted model, the numerically optimized
model and the spherical approximation.

3 Forward Kinematics Modeling of RTS

An RTS is an electrical theodolite, which consists of an
optical telescope, an electrical distance meter and one or
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more cameras [38]. Modern devices support teleoperation;
hence, the optical telescope of the instrument is completely
replaced by a camera module without any eyepiece.
While the idealized model of the robotic module defines
a spherical coordinate system, this model is violated
by inevitable inaccuracies in manufacturing and physical
device calibration. Manufacturing details are usually trade
secrets, and only limited information is available to the
public. Software-side calibration can reduce these errors,
but requires an extended kinematics model of the RTS.

By extracting a combined model for hardware and
software, a more accurate simulation environment can be
implemented, device specifications can be verified, and less
in-depth knowledge of the physical device is required.

The linear geometric properties of the rigid body can
be described using a series of Euclidean transformation
matrices with six degree of freedom (DOF) each. In the
field of robotics, more systematic approaches with fewer
DOF are known for estimating kinematic and dynamic
properties, such as the DH convention. In this section,
we provide a detailed description of how to derive a
geometric model for RTS using the DH convention. This
allows to estimate device properties when specification are
missing, to verify calibration results, and to re-use existing
simulation environments for robotic devices.

3.1 Forward Kinematics

The dynamic parts of an RTS can be described as a
spatial kinematic chain. Forward kinematics describes the
pose of an end effector using links and joints without
consideration of driving forces or moments [23]. Joints are
rigidly connected by links and can be affected at run-time,
using the related joint control variables. End effectors or
tools are sensors or actuators attached to the last link of a
robotic device.

The DH convention was originally introduced to describe
the geometric relationship of an open kinematic chain with
M − 1 joints and M links, using a series of homogeneous
joint displacement matrices Zi and link displacement
matrices Xi [8]. In this work, we used the (DH) notation
proposed by Rajeevlochana and Saha [27, 31].

By convention, joint i connects link i − 1 and link
i. The displacement matrices Zi and Xi define the local
coordinate frame i by {oi , xi , yi , zi} where oi is the frame
origin, and xi , yi , and zi are the normalized x, y, and z
axes, respectively. Frame i is rigidly attached to the end
of link i − 1 and must satisfy the following conditions: (i)
The xi axis is perpendicular to the zi−1 axis; (ii) the xi axis
intersects with the zi−1 axis.

The DH convention defines two types of joints: (a)
revolute joints and (b) prismatic joints. A revolute joint
allows a rotation around the z axis of frame i by the angle

γi . A prismatic joint allows the translation along the z axis
of frame i by the distance di .

The relative poseMi,j of frame j with respect to frame i

is given by

Mi,j =
j∏

n=i

Mn,n+1 (1)

Mi,i+1 = Zi · Xi (2)

The joint matrix Zi describes a screw displacement along
the z axis of frame i

Zi = Tz(di) · Rz(γi) (3)

where di and γi are the control variables for joint i.
The link matrix Xi describes a rigid screw displacement
along the x axis of frame i

Xi = Tx(ai) · Rx(αi) (4)

where ai and αi are used to define the static properties of
link i. Figure 2 shows the relative poseMi,i+1 of frame j in
respect to frame i using the DH convention.
The set Qi contains the control variables for link i, which
are called the DH parameters:

Qi = {di, γi, αi, ai} (5)

The rigid twist of link i − 1 is given by the rotation matrix
Rx , while the rigid length of link i − 1 is given by the
translation matrix Tx :

Tx(ai)=

⎡

⎢⎢⎣

1 0 0 ai

0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦Rx(αi)=

⎡

⎢⎢⎣

1 0 0 0
0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1

⎤

⎥⎥⎦ (6)

The rotation of link i around joint i is given by the rotation
matrix Rz, the translation of joint i along the zi axis is given
by the translation matrix Tz:

Tz(di)=

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 di

0 0 0 1

⎤

⎥⎥⎦Rz(γi)=

⎡

⎢⎢⎣

cos γi − sin γi 0 0
sin γi cos γi 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ (7)

Fig. 2 Relative pose Mi,i+1 of frame i + 1 with respect to frame i as
defined by the DH convention
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Fig. 3 a Coordinate frames of
an exemplary RTS. For better
visualization, the position of the
frames are drawn
non-overlapping. b DH model
of an RTS, showing joints and
links with related frames and
transformations. In literature,
this is also called an RR open
chain [25]. c Workflow for
extracting DH parameters
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The pose of frame i+1 with respect to frame i can be written
as

Mi,i+1 =

⎡

⎢⎢⎣

cos γi − sin γi cosαi sin γi sinαi ai cos γi

sin γi cos γi cosαi − cos γi sinαi ai sin γi

0 sinαi cosαi di

0 0 0 1

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣
Ri,i+1 ti,i+1

0 0 0 1

⎤

⎥⎥⎦ (8)

where Ri,i+1 is a 3×3 rotation matrix, and ti,i+1 is a 3×1
translation vector.

3.1.1 Forward Kinematics ModelingWorkflow for RTS

Estimating the forward kinematics model of an RTS can be
reduced to the problem of deriving the DH parameters for a
robotic device.

Figure 3a shows the coordinate frames of an RTS with
a single camera.1 The pose of the RTS with respect to the
reference frame C0 could be defined by the base transform
MB , which allows arbitrary placement of the robot in the
scene. Multiple tools which are rigidly attached to the last

1Coordinate frames for different RTS are not standardized and vary
between individual devices.

link can be described by adding individual tool transforms
M(k)

T . The pose of tool k with respect to the reference frame
can be written as

M(k)
B,T = MB · M1,2 . . .MM−1,M · M(k)

T (9)

The transformation of homogeneous points from tool space
k to the reference space is given by

x̂i,0 = M(k)
B,T x̂

(k)
i,T (10)

where x̂(k)
i,T defines a homogeneous point in the tools space

k, and x̂i,0 defines the same point in the reference space.
The steps required for estimating the DH parameters

according the workflow of Chittawadigi et al. [4] are: 1.
identify joint count and type of joints, 2. identify end
effectors, 3. record end effector poses, while varying a
single joint, and 4. calculate the DH parameters. Figure 3b
shows the model of an exemplary RTS. The system can be
described by a reference frame C0 = CB , two revolute
joints, and two end effectors C(EDM)

T and C(CAM)
T .

The first and second joint describe the horizontal rotation
ϕ and the the vertical rotation θ , respectively. The rigidly
attached end effectors are described by the (EDM) frame
C(EDM)

T and the camera frame C(CAM)
T , respectively.2

2Note that only the end-to-end transformations between base frame
and tool frames matches the device manual, the inner frames of the
model are defined differently by the DH convention.
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Fig. 4 Circular feature extraction. The algorithm steps are labeled in
ascending order: 1,2: measure points; 3,7: fit plane; 4,8: project to 2D;
5,9: fit circle and transform result to 3D; 6,10: define frames

The rotation and orientation of a joint can be estimated
by recording end effector positions with respect to the
reference frame, while rotating only one joint at a time.
Figure 3c shows the flow chart for measuring end effector
positions and extracting DH parameters.

The recorded 3D points describe a planar circular
trajectory. The center of the circles and the plane of rotation
can be used to estimate the DH parameters. Figure 4 shows
the concept for circular feature extraction.

3.1.2 Data Acquisition for DH Parameter Estimation

The estimation of DH parameters usually requires an
external measurement setup for measuring the pose of
the end effectors. However, for forward kinematics model
estimation of an RTS, the required data can be fetched from
the application programming interface (API) of the device
without any external devices.3

For each joint, a trajectory is defined by recording end
effector positions, while varying the related joint control
parameter and keeping other control parameters constant.
A linear trajectory of the recorded end effector positions
indicates a prismatic joint. A circular trajectory of the
recorded points indicates a revolute joint.

If the recorded data does neither describe a linear or
circular movement, the affected joint type is either not
prismatic or revolute, or the end effector coincides with the

3For device calibration, external measurements would still be required.

rotation axis of a revolute joint. To avoid singularities during
DH parameter extraction, the recording for the affected joint
has to be repeated using different fixed joint settings or
different API parameters.4

Figure 5a shows the required measurement API. Joint
i = 1 is the horizontal rotation, joint i = 2 is the
vertical rotation, and F(ϕ, θ) is the control function for the
corresponding joints. Data recording for joint 1 can be done
by varying ϕ in the range [0, 2π ], while keeping θ = π

2
constant. Data recording for joint 2 can be done by varying
θ between [0, π ], while keeping ϕ = 0 constant. The device
API function

xi = F (EDM)(ϕi, θi, dEDM) (11)

applies the control variables {ϕi, θi} and converts a 1D
distance dEDM from (EDM) space to to a 3D point xi in the
reference frame. The device API function

xi = F (CAM)(ϕi, θi, u, dCAM) (12)

applies the control variables {ϕi, θi} and converts a 2D
image pixel u to a 3D point xi in the reference frame. The
two functionsF (EDM) andF (CAM) are sufficient for forward
kinematics modeling. They must be provided by the API of
the RTS. Figure 5b shows the parameter space of the angle
control variables {ϕi, θi}; Fig. 5c and d show the positions of
the recorded EDM and camera end effectors, respectively.

3.1.3 Estimating Circular Features

A plane p can be defined as

p =
[

n
−nT · x̄

]
||n|| = 1 (13)

where n = [nx ny nz]T is the normalized plane normal.
Given a set of 3D points Sp = {x1, x2, . . . , xN }, the center
of mass x̄ is given by

x̄ = 1

N

N∑

i=1

xi (14)

The plane normal can be fitted to the point cloud Sp using
Singular Value Decomposition (SVD):

SVD(Ã) = U · S · VT (15)

4If all link lengths are close to zero, an artificial end effector offset
must be applied. This can be done by recording 3D points which do
not coincide with the end effector origin.
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Fig. 5 a Control behavior for
recording 3D points of the end
effector during DH parameter
estimation. b Angle control
parameter space coverage for
model estimation. c Recorded
EDM end effector positions ci

with artificial link length by
setting EDM distance
measurement to 1 m. d
Recorded camera end effector
positions ci with artificial link
length by setting back-projected
pixel ray length to 1 m

where U is a 3 × 3 matrix, S is a 3 × N matrix, V is
a N × N matrix. Ã is a 3 × N matrix containing the
normalized and centered measurement samples.

A = [
x1 x2 . . . xN

]
(16)

Ā = [
(x1 − x̄) (x2 − x̄) . . . (xN − x̄)

]
(17)

Ã = 1

k
Ā k = max

aij ∈Ā
|aij | (18)

The normalization k is the absolute maximum value of all
elements in Ā. A vector parallel to the plane normal n is
given by the eigenvector of Ã, which corresponds to the smallest
eigenvalue, which is simply the last column u3 of U =
[u1 u2 u3]. Plane p is then fully defined by Eqs. 13 and 14.

It is convenient to define a right-handed orthogonal basis
B for each plane such that the plane normal is aligned with
the z axis, and the plane contains two additional orthogonal
vectors according to

B =
⎡

⎣
1 0 0
0 1 0
0 0 det(U)

⎤

⎦U (19)

B = [
b1 b2 b3

]
n = b3 (20)

The determinant of U is either equal to 1 if no reflection
happens or equal to −1 in case of a reflection. Therefore B
can be interpreted as a reflection-free rotation of the plane
with respect to the reference frame.

All points must be transformed to the xy plane and
projected to a 2D Euclidean space before fitting a circle
to the planar measurements. This can be formalized as
projection of the centered measurement matrix Ā given in
Eq. 17:

Ac = Pc · Ā Pc =
[
bT
1

bT
2

]
(21)

where Ac is a [2× N] matrix, and Pc is a [2× 3] projection
matrix which applies the inverse plane rotation BT and the
projection of the stacked 3D points Ā to the 2D space.5

A circle in 2D is given by the implicit equation

(ui − c1)
2 + (vi − c2)

2 = r2 (22)

5No homogeneous coordinates are required, since Pc does not include
any 3D translation.
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Fig. 6 a Sign correction of
circular features: �α is the
difference of the angular control
parameters of two consecutive
measurement samples, ±ni is
the extracted plane normal,
defined up to sign. b Distance
between two lines in 3D

where r is the radius of the circle, c̃ = [c1 c2]T is the center
of the circle, and [ui vi]T is a point on the circle in 2D.
Rearranging (22) leads to

2 · ui · c1 + 2 · vi · c2 + k3 = u2i + v2i (23)

k3 = r2 − c21 − c22 (24)

which is linear in the unknown parameters c1, c2 and k3.
This can be written as an inhomogeneous linear system

ÃT
c · xc = bc Ãc =

[
2 · Ac

11×N

]
xc =

⎡

⎣
c1
c2
k3

⎤

⎦ (25)

bc =

⎡

⎢⎢⎣

ξ1
ξ2
. . .

ξN

⎤

⎥⎥⎦ ξi = u2i + v2i (26)

where Ãc is a 3×N matrix, and ξi is the sum of squared 2D
coordinate values of point i. SVD can be used to solve for
the unknown circle parameters:

SVD(ÃT
c ) = Uc · Sc · VT

c (27)

xc = Vc · S+
c · UT

c · bc (28)

S+
c =

⎡

⎣
1/Sc,11 0 0

0 1/Sc,22 0 03×(N−3)

0 0 1/Sc,33

⎤

⎦ (29)

where Uc is a N × N matrix, Sc is a N × 3 matrix and VT
c

is a 3 × 3 matrix.
The 3D circular feature 	c for a single joint is fully

defined by 	c = {c, r}, using

c = B ·
⎡

⎣
c1
c2
0

⎤

⎦+ x̄ r =
√

k3 + c21 + c22 (30)

where B is the plane rotation according to Eq. 20, c is the
center of the circle with respect to the reference frame, and
r is the radius of the circle.

3.1.4 Correcting the Sign of Circular Features

A plane normal n as given in Eq. 13 is defined up to sign.
This leads to sign ambiguities in the DH control parameters.

For revolute joints, this can lead to an inverse rotation,
for prismatic joints, this can lead to an inverse translation.
The ambiguity can be resolved using two consecutive
measurement points x1 and x2 of the circular feature i

ñi = sign
(
((x1 − ci ) × (x2 − ci ))

T ni

)
ni (31)

where ci is the center of the circle, and sign(x) is the sign of
the scalar value x according to

sign(x) =
{−1, x < 0
1, otherwise

(32)

The corrected plane normal ni ensures a positive rotation
direction for increasing control parameter values, if point x1
was recorded with a smaller control parameter than point
x2.6 Figure 6a shows the concept for sign correction of
circular features.

3.1.5 Link Constellation and Frame Alignment

The link constellation and frame alignment are based on
the the spatial relationship of the zi−1 and the zi axes. An
intersection is treated as special case of skewed lines.

Rajeevlochana et al. used Plücker coordinates and Dual
Vector Algebra for estimating the line constellation [28].
Plücker coordinates allow closed form line intersection
testing. However, for kinematic chains with low link counts,
we did not observe any computational benefits when using
Plücker coordinates instead of simple vector algebra as
described in the work by Barker [2]. Thus, for the sake
of simplicity, we describe line constellations using simple
vector algebra.

Figure 6b shows the distance of two lines in the 3D space.
Given two lines L0 and L1 in their parametric form

L0(s) = q0 + sd0 L1(t) = q1 + td1 (33)

we wish to find the minimum distance between the two
lines. Let qs and qt define points on line L0 and L1 which
minimizes the length of the vector

v = qs − qt (34)

6For revolute joints, it is advisable to use control angles between
{0 . . . π} for sign correction to avoid errors caused by periodicity.
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using

qs = q0 + ssd0 qt = q1 + tsd1 (35)

The minimum Euclidean distance between the lines is given
by ||v||, if v has the same direction as the common normal,
which can be written as

dT
0 v = 0 dT

1 v = 0 (36)

If we substitute Eqs. 34 and 35 in Eq. 36 we can solve for
the two unknown parameters ss and ts

ss = be − cd

ac − b2
ts = ae − bd

ac − b2
(37)

where

a = ||d0||2 b = dT
0 d1 c = ||d1||2 (38)

d = dT
0 (q0 − q1) e = dT

1 (q0 − q1) (39)

The constellation type of two lines cc ∈ {parallel, skewed}
can be determined from the divisor of Eq. 37:

cc =
{
parallel, (ac − b2) = 0
skewed, otherwise

(40)

The parameters sc and tc for calculating the closest points
qs and qt on line L0 and L1, respectively, are given by

sc =
{
0, parallel
ss, skewed

tc =
⎧
⎨

⎩

d/b, parallel, b ≥ c

e/c, parallel, b < c

ts, skewed
(41)

Finally, the points qs and qt can be calculated by substituting
the parameters from Eq. 41 into the line equations given in
Eq. 33:

qs = L0(sc) qt = L1(tc) (42)

3.1.6 First Link Frame

The z direction of the first frame is aligned with the plane
normal of the first circular feature ñ1

z1 = ñ1 (43)

The origin of the first frame o1 must lie on the first rotational
axis Lz1(s) = c1 + sñ1; the x axis of the first frame must lie
on the plane defined by o1 and z1. The rotation of x1 around
z1 can be arbitrary defined. The first frame is fully defined
by

o1 = c1 B1 = [x1y1z1] (44)

where B1 is a right-handed orthogonal base according to
Eq. 20.

However, this approach will lead to different DH parame-
ters for different point sets of the first circular feature.

A more convenient approach is to further align the x
direction of the reference frame x0 with the x direction of

the first frame x1 by projecting x0 onto plane p1:

x1 = x0 − (xT
0 z1)z1

||x0 − (xT
0 z1)z1||

y1 = z1 × x1 (45)

If plane p1 is parallel to the yz plane of the reference frame,
the alignment of the y directions can be used instead.

3.1.7 Middle Link Frames

The frames i = 2, . . . , M − 1 can be defined iteratively
using

zi = ñi zi+1 = ñi+1 oi+1 = q(i)
t (46)

xi+1 =

⎧
⎪⎪⎨

⎪⎪⎩

zi×zi+1
||zi×zi+1|| , Li and Li+1 intersect
q(i)

t −q(i)
s

||q(i)
t −q(i)

s || , are skewed or parallel

xi , are identical

(47)

yi+1 = zi+1 × xi+1

||zi+1 × xi+1|| (48)

where q(i)
s and q(i)

t are the common normal intersections
of Li and Li+1 according to Eq. 35, respectively. Based on
the calculated coordinate frames, the (DH) parameters for a
revolute joint i can be derived by

bi = (oi+1 − oi )
T zi

θi = arctan2
(
(xi × xi+1)

T zi , xT
i xi+1

)

ai = (oi+1 − oi )
T xi

αi = arctan2
(
(zi × zi+1)

T xi+1, zT
i zi+1

)

⎫
⎪⎪⎬

⎪⎪⎭
(49)

3.1.8 Last Link Frame

The last frame can be used to define the tool pose. However,
a general pose of the tool would require six DOF whereas a
single frame of the DH framework is limited to four DOF.
One solution to this problem is to use multiple DH frames to
describe the tool pose. In this work, we used a more general
approach by extracting a six DOF tool matrixM(k)

T for each
tool k separately.

By including individual tool matrices, the rotation of the
last link frame around the zN axis is arbitrary. However, it
is convenient to align the last frame with the previous one:

xM = xM−1 yM = yM−1 zM = zM−1 (50)

The DH parameters are then calculated according to
Section 3.1.7.

3.1.9 Base Transform

The base transform defines the pose of the first coordinate
frame {o1, x1, y1, z1} with respect to the reference frame
{o0, x0, y0, z0} using the six DOF Euclidean transformation
MB . This problem can be described as estimating 3D rigid
transformations between two point sets and has been studied



J Intell Robot Syst

extensively [1, 9, 17, 18]. In this work, we follow the SVD
approach from reference [1].

Let Sa = {a1, a2 . . . aN } and Sb = {b1, b2 . . .bN } be
two point sets with corresponding points. To determine the
Euclidean transformation three or more correspondences are
needed. We are looking for the best transformation in the
least squares sense:

(R, t) = F(Sa, Sb) = argmin
R,t

N∑

i=1

||Rai + t − bi ||2 (51)

The centroids ā and b̄ of of the point clouds are given by

ā = 1

N

N∑

i=1

ai b̄ = 1

N

N∑

i=1

bi (52)

The cross-covariance matrix of the two point sets is given by

H = (Sa − ā)(Sb − b̄)T (53)

where the measurement matrices Sa and Sb contains the
stacked points of the two point sets

Sa = [a1 a2 . . . aN ]T
Sb = [b1 b2 . . . bN ]T (54)

The SVD of the cross-covariance matrix H is

SVD(H) = UP · SP · VT
P (55)

The rotation R can be calculated by

R = VP

⎡

⎣
1 0 0
0 1 0
0 0 det (VPUT

P )

⎤

⎦UT
P (56)

Finding the optimal rotation R is also known as Kabsch
algorithm [20]. The optimal translation t is given by

t = −Rā + b̄. (57)

The rigid transform MB which describes the pose of the
first link frame {o1, x1, y1, z1} with respect to the reference
frame {o0, x0, y0, z0} can be calculated according to Eq. 51:
Sa = [

c0 + x0 c0 + y0 c0 + z0
]

(58)

Sb = [
c1 + x1 c1 + y1 c1 + z1

]
(59)

(RB, tB) = F(Sa, Sb) (60)

MB =

⎡

⎢⎢⎣
RB tB

0 0 0 1

⎤

⎥⎥⎦ (61)

3.1.10 Camera Tool Frame

The pose of the end effector k with respect to the last
link frame {oM, xM, yM, zM} is defined by a six DOF rigid
transform. If two point sets with N ≥ 3 correspondences

Fig. 7 a Recorded back-projected pixels for camera tool pose
estimation. b Simplified view ray relation between principal ray and
back projected pixel to validate ray length approximation during the
camera tool pose estimation

can be obtained, the point set alignment algorithm as
described in Section 3.1.9 can be applied.

The pose of the camera end effector can be defined by the
end effector position, two orthogonal vectors describing the
x and y direction, and the right-handed coordinate system
constraint. The end effector position was already used for
the DH parameter extraction. The x and y directions of
the camera are aligned with the u and v direction of the
image space, respectively. By extending the set of back-
projected pixel coordinates during the measurement flow
for the DH parameters, the x and y direction of the end
effector with respect to the reference frame can be extracted.
Figure 5c and d shows the end effector recordings, including
the observable frame axis of the end effectors; Fig. 7a shows
the back-projection method and the alignment of camera
and image frame.

Given the camera intrinsics, the camera projection matrix
P can be written as

û = PCAMM−1
B,T x̂i (62)

PCAM = [K|0] K =
⎡

⎣
fu s cu

0 fv cv

0 0 1

⎤

⎦ (63)

where û is a homogeneous pixel point, x̂i is a homogeneous
world space point, s is a skew factor, {fu, fv} describe the
focal lengths and c = [cu cv]T describe the principal point
offset in 2D.7

Matrix MB,T is the camera tool pose with respect to
the reference frame, using M(k)

T = M(CAM)
T in Eq. 10. By

defining the tool space as camera space, the relationship
between a homogeneous point x̂T in the camera space and a
homogeneous point x̂0 in the reference space is given by

x̂0 = MB,T x̂T

= (
MBM1,MMT

)
x̂T (64)

7For the sake of simplicity, we set s = 0 and fu = fv = f , and we do
not include lens distortion parameters.
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where M1,M is the relative pose of frame M with respect to
frame 1 as defined in Eq. 9. Rearranging Eq. 64 leads to

M−1
1,MM−1

B x̂0 = MT x̂T (65)

where M1,M and MB are already known. The substitution
of x̃0 = M−1

1,MM−1
B x̂0 in Eq. 65 leads to

x̃0 = MT x̂T (66)

which can be solved for MT using N ≥ 3 point correspon-
dences. Finding point correspondences x̂T and x̃0 can be
done using back-projection of pixels into the camera space.
Let Su = {u1, u2, u3} be a set of 2D image points using

u1 = c u2 = c +
[
1
0

]
u3 = c +

[
1
0

]
(67)

where c is the principal point of the camera. The image coor-
dinates given in Su are back-projected by using the API
function given in Eq. 12

xi = F (CAM)(ϕj , θj , ui , dCAM) (68)

using dCAM = 1 and constant parameters {ϕj , θj } for the set
Su.

The measured points are then converted to a local
coordinate frame using x1 as origin

x̂1 = M−1
1,MM−1

B

[
x1 1

]T

x̂2 = M−1
1,MM−1

B

[
x1 + x2−x1||x2−x1|| 1

]T

x̂3 = M−1
1,MM−1

B

[
x1 + x3−x1||x3−x1|| 1

]T

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(69)

The rigid transformation M(CAM)
T can be extracted

according to Section 3.1.6 using the two point sets

Sa =
⎧
⎨

⎩ct , ct +
⎡

⎣
1
0
0

⎤

⎦ , ct +
⎡

⎣
0
1
0

⎤

⎦

⎫
⎬

⎭ (70)

Sb = {x̃1, x̃2, x̃3} (71)

where x̃i is the Euclidean representation of the homoge-
neous coordinate x̂i given in Eq. 69 and ct is given by
[0 0 1]T .

A constant distance dCAM = 1 for all back-projected
points in Eq. 68 will lead to a systematic error, which
is negligible for the tool transform estimation. This can
be shown by calculating the corrected length dCAM,i of
the back projected ray for the image coordinates ui,i∈{2,3}
in Eq. 67. Assuming u1 is aligned with the principal ray
and the focal length f is known, the ray length d̃CAM,i is
given by triangle similarity and the Pythagorean theorem
according to

d̃CAM,i =
√

d2
1 + b2u,i

bu,i

d1
= ||u1 − ui ||

f
(72)

d̃CAM,i = d1

√

1 +
( ||u1 − ui ||

f

)2

(73)

where ||u1−ui || describes the distance of two pixels {u1, ui}
in the image space and {bu,i , d1, d̃CAM,i} define a right-
angled triangle. For f � ||u1 − ui || and d1 = dCAM = 1
we can set d̃CAM,i ≈ di . Figure 7b shows the simplified
relationship of back projected rays with respect to the
principal ray.

3.1.11 EDM Tool Frame

Similar to the camera tool, the pose of the EDM end effector
can be described by a six DOF Euclidean transformation.
Distance measurements can be modelled by a 3D ray in the
Euclidean space. This leads to a tool pose defined up to an
arbitrary rotation around the measurement axis. However,
it is convenient to align the EDM frame with the camera
frame.

The pose of the EDM end effector can be defined by
a ray which describes the distance measurement in 3D, a
related orthogonal vector, and the right-handed coordinate
system constraint. The end effector position, which defines
a point on the ray, was already used for the DH parameter
extraction.

We define the z axis of the EDM as the distance
measurement direction. By extending the set of back-
projected distances during the measurement flow for the
(DH) parameters, the z direction of the end effector with
respect to the reference frame can be extracted.

A 1D distance measurement can be back-projected using

x̂i = M(EDM)
B,T d̂i (74)

M(EDM)
B,T = MBM1,MM(EDM)

T (75)

where x̂i is a homogeneous point in the reference frame,
and d̂i is a homogeneous point in the (EDM) space. The
homogeneous point d̂i for a distance measurement di along
the z axis of the (EDM) frame is defined as

d̂i = [0 0 di 1]T (76)

Rearranging Eq. 74 leads to

M−1
1,MM−1

B x̂i = M(EDM)
T d̂i (77)

which is of the same form as Eq. 65. We construct three
correspondences for solving (74) for the rigid transform
M(EDM)

T . Let Sd = {d1, d2} be a set of two distances where
d1 = 1 and d2 = 2. The back-projection of the distances
di to 3D points in the reference frame can be done with the
API function given in Eq. 11

di = F (EDM)(ϕj , θj , di) (78)

using constant parameters {ϕj , θj } for the set Sd . The x
direction of the (EDM) frame can be found by projecting
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the x direction8 of the camera frame onto the plane defined
by point d1 and plane normal n = zEDM = d2−d1||d2−d1||

xEDM = xCAM − (zT
CAMzEDM)zEDM

||xCAM − (zT
CAMzEDM)zEDM|| (79)

The points are then converted to an intermediate coordi-
nate frame with d1 as origin

d̂1 = M−1
1,MM−1

B

[
d1 1

]T

d̂2 = M−1
1,MM−1

B

[
d1 + xEDM 1

]T

d̂3 = M−1
1,MM−1

B

[
d1 + zEDM 1

]T

⎫
⎪⎬

⎪⎭
(80)

with M = 3. The rigid transformation M(EDM)
T can be

extracted according to Section 3.1.6, where we define the
two point sets as

Sa =
⎧
⎨

⎩ct , ct +
⎡

⎣
1
0
0

⎤

⎦ , ct +
⎡

⎣
0
0
1

⎤

⎦

⎫
⎬

⎭ (81)

Sb =
{
d̃1, d̃2, d̃3

}
(82)

where d̃i is the Euclidean representation of the homoge-
neous coordinate d̂i , and ct is given by [0 0 d1]T .

4 Experimental Results for the Forward
Kinematics Model of an Exemplary (RTS)

In this section, we apply the modeling method which we
introduced in Section 3 to the HILTI PLT 300 [16]. To cover
a wide spectrum of possible applications, we compare the
DH results to the related spherical model, which represents
simplified and idealized relationships between actuators
and sensors, and the numerically optimized model of the
exemplary RTS.

The RTS HILTI PLT 300 is a high precision measurement
device which contains one EDM and supports RGB
and infrared (IR) image and video streaming using a
single camera. The device driver provides access of basic
control and measurement variables, calibration values, data
streams and seven manufacturer-side calibrated optical
zoom positions of the camera. While the device can be
geometrically described by standard kinematics models
of theodolites and robotic total stations [38], no detailed
kinematics model of the device is available.

8If the x direction of the camera frame and the z direction of the (EDM)
frame are parallel, the y direction of the camera frame can be used
instead.

The data set for the DH model extraction of the PLT 300
contained 15 points for each joint, which have been recorded
using the API functions introduced in Eqs. 11 and 12. End
point positions for the first joint were recorded by setting the
control variable θ to the fixed value θ = π

2 , while varying
ϕ from 0 to 2π . End point positions for the second joint
were recorded by setting the control variable ϕ to the fixed
value ϕ = 0 while varying θ from 0 to π . The angular
parameter space coverage is shown in Fig. 5b. For each
position, the length of the back projected EDM ray and the
length of the back-projected camera view ray were set to one
meter (d1 = 1). The pixel position for the back-projected
camera view ray was aligned with the principal point of
the camera, which was also provided by the API of the
device. For EDM tool pose extraction, a second ray at each
control position was extracted using a constant ray length of
two meter (d2 = 2). For camera tool pose extraction, two
additional rays at each position were used, for which the
back-projected image coordinates were shifted by one pixel
in x and one pixel in y direction, respectively.

Table 1 shows the extracted DH parameters, Table 2
shows the base and tool transforms for both, the EDM and
camera end effectors. The complete extracted kinematics
model, including all coordinate frames and transformation
matrices, is shown in Fig. 8. We show results for only one
of the seven fixed zoom levels.

4.1 Model Simplification

The extracted model parameters in Section 4 are sufficient
for building a device simulator. However, an idealized
device simulation is often preferred. Idealized models can
be used for analytic system and algorithm design and
verification, for calculating or simulating desired system
behaviours or for generating reference data sets.

The device used for this work shows similarities in the
tool transforms, translation parameters, which are close to
zero, and rotation parameters, which can be approximated
by multiples of π

2 . In this section, we apply numerical
approximations to relate the extracted kinematics model
with the simplified and idealized spherical model. We
represent a rotation with a 3D rotation matrix according to

R = Rz(γ )Ry(β)Rx(α) (83)

where {α, β, γ } are the Euler angles [32].

Table 1 Estimated DH parameters for the PLT 300

joint αi ai γi di

1 1.5708 0.0 ϕi − 1.5708 0.0

2 0.0 0.0 θi 0.0
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Table 2 Estimated base and
end effector transforms for the
PLT 300

transform α β γ tx ty tz

MB 3.1416 0.0 0.0 0.0 0.0 0.0

M(CAM)
T −1.5020 1.5646 3.2103 −0.0003 0.0 0.0003

M(EDM)
T −1.5020 1.5646 3.2103 −0.0003 0.0 0.0003

By setting the translation parameters to 0 and replacing
the rotational components by the nearest multiple of π

2 , we
get following forward kinematics model of the PLT 300:

MB,T = MBM1,2M2,3MT (84)

M1,2 = Rz

(
ϕi − π

2

)
Rx

(π

2

)
(85)

M2,3 = Rz(θi) (86)

MB = Rx(π) (87)

MT = Rz(π)Ry

(π

2

)
Rx

(
−π

2

)
(88)

The rotation matrices Rx and Rz are defined in Eqs. 6
and 7, respectively. The rotation matrix Ry is defined as

Ry(βi) =

⎡

⎢⎢⎣

cosβi 0 sinβi 0
0 1 0 0

− sinβi 0 cosβi 0
0 0 0 1

⎤

⎥⎥⎦ (89)

Multiplying and simplifying matrixMB,T leads to

MB,T =

⎡

⎢⎢⎣

cos(ϕi) cos(θi) sin(ϕi) sin(ϕi) sin(θi) 0
− sin(ϕi) cos(ϕi) cos(θi) cos(ϕi) sin(θi) 0

0 − sin(θi) cos(θi) 0
0 0 0 1

⎤

⎥⎥⎦

(90)

which can be written as an Euler rotation according to
Eq. 83:

MB,T = Rz(−ϕi)Ry(0)Rx(−θi) (91)

Fig. 8 Coordinate frame relations of the RTS PLT 300 using the DH
convention

4.2 Model Error Estimation

The (DH) model error can be expressed using the average
point distance d̄ and the unbiased standard deviation σ̂

between recorded and calculated point sets according to

d̄ =
∑N

i=1||xi,meas − xi,calc||
N

(92)

σ̂ =
√∑N

i=1(||xi,meas − xi,calc|| − d̄)2

N − 1
(93)

where xi,meas are points of the measurement set and xi,calc

are points of the calculated point set. The measured point
sets for the (EDM) tool and for the camera tool have been
created using Eqs. 11 and 12, respectively. The calculated
point set for the (EDM) tool is given by Eq. 74.

The calculated point set for the camera tools can be
derived from Eq. 62. A back-projected homogeneous image
coordinate û defines a view ray XT (û, λ) in the reference
frame [14]:

XT (û, λ) = P† · û + λ · c (94)

where P† is the pseudo-inverse of the projection matrix P
and c is the camera center. The 3 × 4 projection matrix P is
defined by

P = PCAMM−1
B,T (95)

which projects points from the reference frame to the
camera image.

While SVD can used to reduce numerical instabilities
for estimating the pseudo-inverse P† [14], Eq. 94 has two
further problems: 1. A camera center c = 0 does not
result in a valid ray equation, and 2. λ is not a linear
parameterization of the ray length.

Therefore, the following alternative view ray calculation
should be used for finite cameras [14]:

XT (û, μ) = μ

||M−1 · û||
(
M−1 · û

0

)
+
[−M−1 · p4

1

]
(96)

where û is a homogeneous coordinate vector, and μ is the
length of the back-projected ray. The decomposition of the
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Table 3 Evaluation taxonomy, showing the most suitable choice for
different applications

evaluation variant usage

aspect

end effector EDM only non-vision based

type camera only measurements

both (EDM, camera) vision-based

measurements

end effector position only (A) non-vision based

error position and rotation measurements

around principal ray (B) vision-based

measurements

optimization none DH modeling

workflow evaluation,

start values for

optimization,

comparison with

previous work

reduced angle parameter evaluate influence

space of parameter space

complete angle parameter coverage

space

projection matrix P into the 3 × 3 matrix M and the 3 × 1
column vector p4 is given by

P = [M|p4] . (97)

Equation 96 can be used to calculate the evaluation point set
for the camera tool frame, using the ray length μ = dCAM.

We analyzed different aspects of the modeling error and
the influence of the individual end effectors. Traditionally,
the camera of the (RTS) is used by the operator to measure
a certain 3D point, but the actual measurement does not
use image based measurement (IBM) methods. Scanning
applications may not use the camera at all. Ideally, the
z axes of the camera and the EDM are aligned, the tool
rotations around the principal ray and the EDM ray do
not influence the result. For such applications, the tool
rotations around their respective z axis should be excluded
in the error analysis (method A).9 Advanced applications
use IBM methods; hence, errors of all tool poses have to
be considered (method B). The different aspects of the
evaluation are shown in Table 3.

The results in Table 4 show that the simplified, spherical
model, compared to the geometrically extracted (DH)

9Previous work in (DH) modeling does not address the complete tool
pose, but only the position of the end effector [2, 4, 15, 28, 31].

Table 4 Kinematics model error of the extracted (DH) model, eDH ,
and of the simplified model, esimplif ied

method end effector eDH [m] esimplified [m]

(A) EDM 8.16e−4 ± 1.43e−6 1.24e−17 ± 3.39e−17

camera 2.79e−6 ± 1.73e−6 8.14e−4 ± 1.15e−6

compound 4.09e−4 ± 4.07e−4 4.07e−4 ± 4.07e−4

(B) EDM 1.04e−3 ± 2.19e−4 3.80e−17 ± 8.05e−17

camera 1.65e−4 ± 1.15e−4 4.38e−3 ± 2.52e−3

compound 5.13e−4 ± 4.57e−4 2.63e−3 ± 2.90e−3

The individual and compound errors for the end effectors are provided.
(A) Tool rotations around principal ray and (EDM) ray ignored. (B)
Tool rotations around principal ray and (EDM) ray considered

model, is a good approximation for the (EDM) end effector;
the (DH) model shows lower modeling error for the
complete system.

4.3 Model Optimization

The kinematics modeling method proposed in Section 3
is a greedy algorithm, which only optimizes local cost
functions. While this is sufficient for many applications,
the estimated model can be refined using nonlinear
optimization techniques to decrease the error of the model.
In this section, we briefly discuss model optimization using
a global error function. However, this is only a proof of
concept, while a detailed optimization analysis is beyond
the scope of this work.

Finding an optimal model can be formalized as nonlinear
optimization problem with boundary conditions and linear
scalarization

min
So

(ωd d̄d + ωσ σ̂d)

tmin < ti < tmax

rmin < ri < rmax

⎫
⎪⎬

⎪⎭
(98)
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Fig. 9 a Residual evolution of SQP optimization. b Angle control
parameter space for cross-validation
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Table 5 Errors of optimized
model, with tool rotations
around principal ray and EDM
ray considered (method B)

end effector eoptimized [m] eoptimized,cross [m] eoptimized,full [m]

EDM 1.72e−5 ± 5.19e−6 2.12e−05 ± 7.64e−06 1.99e−05 ± 6.88e−06

camera 1.98e−5 ± 8.20e−6 2.16e−05 ± 9.50e−06 1.41e−05 ± 7.79e−06

compound 1.87e−5 ± 7.26e−6 2.15e−05 ± 8.81e−06 1.64e−05 ± 7.95e−06

Table 6 DH parameter results
of SQP optimization i αi ai γi di

1 1.570808 0.0 ϕi − 1.5203 0.0

2 0.2055e−3 −0.1117e−3 θi − 0.4432e−3 0.0684e−3

Table 7 Base and tool
transformation results of SQP
optimization

transform α β γ tx ty tz

MB 3.1416 0.0 0.0504 5.915e−9 7.216e−9 3.312e−9

M(CAM)
T −1.4632 1.5646 3.2103 −0.1451e−3 −2.152e−9 0.1505e−3

M(EDM)
T −1.4219 1.5693 3.2910 0.1421e−3 1.415e−6 −9.014e−5

Fig. 10 Modeling error
distribution with respect to the
angle control parameter space,
using Eq. 92 for each control
point {ϕi, θi}. a Simplified
model. b Geometrically
extracted model. End effector
error (method B), encoded as
color: EDM (top row), camera
(middle row), compound
(bottom row)
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Fig. 11 Modeling error
distribution with respect to the
angle control parameter space,
using Eq. 92 for each control
point {ϕi, θi}. a Optimized with
reduced parameter space. b
Optimized with full parameter
space. End effector error
(method B), encoded as color:
EDM (top row), camera (middle
row), compound (bottom row)
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where ωd and ωσ are weighting factors and where the mean
value d̄d and the unbiased standard deviation σ̂d are given
in Eqs. 92 and 93, respectively. The set So contains the 26
model parameters:10

So = {rB, tB,Q1,Q2,

r(CAM)
T , t(CAM)

T , r(EDM)
T , t(EDM)

T

}
(99)

The two sets Q1 and Q2 contain the eight (DH) parameters
of the model. The rigid base transform is described by the
3 × 1 vector rB , containing the Euler angles, and the 3 × 1

translation vector tB . Analogously,
{
r(CAM)
T , t(CAM)

T

}
and

{
r(EDM)
T , t(EDM)

T

}
describe the rigid end effector transforms.

We used the lower boundary tmin = −1e−2m and the
upper boundary tmax = 1e−2m for all translational model
parameters. Additionally, we used the lower boundary
rmin = −π and the upper boundary rmax = +π for all
rotational model parameters.11

10We do not include the camera intrinsics, (EDM) calibration
parameters or scale factors of the system control parameters {ϕ, θ}.
11We mapped the result to the range [0, 2π ] for better comparison
between optimized and non-optimized model.

Sequential quadratic programming (SQP) was used to
refine the initial kinematics model, which is a gradient based
iterative numerical optimization method. Details about SQP
can be found in the book by Nocedal and Wright [26].

Usually the weights of the objectives are normalized to
one, hence ωd + ωσ = 1 [10]. In this work, however, we
weighted the mean value with ωd = 1.0 and the unbiased
standard deviation with ωσ = 1.0 for better comparison
between the non-optimized result given in Table 4 and the
evolution of the residual over the optimization iterations
shown in Fig. 9a.

The optimization was implemented and executed with
MATLAB 2017 and the MATLAB Optimization Toolbox
[24] using four parallel sub-processes, Microsoft Windows
10, an Intel Core i7 processor with 64GB RAM. The run-
time of the SQP based optimization was 1.326e3s (≈ 0.4h).

The error results of the optimized model eoptimized are
shown in Table 5; the optimized model parameters are
shown in Tables 6 and 7, respectively. Error distributions
with respect the angle control parameter space are shown in
Figs. 10 and 11, respectively.12

12The high dynamic range of the modeling errors does not allow for a
common heat map encoding.
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5 Discussion

The model error eoptimized of Table 5 was calculated using
the reduced control parameter set {ϕi , θi} as shown in
Fig. 5b for both, optimization and evaluation. For simple
cross-validation, the optimized model was applied to all
samples of the full control parameter space, as shown in
Fig. 9b, which corresponds to the error eoptimized,cross in
Table 5. Cross-validation is explained in the book by Witten
and Frank [40]. In Table 5, eoptimized,f ull shows the error of
the optimized model, where the full control parameter space
for model fitting and validation was used. The errors for all
three methods {eoptimized, eoptimized,cross, eoptimized,full} were
calculated using Eqs. 92 and 93. The error values of all three
methods are in the same order of magnitude, which shows
that the sub-set of the recorded samples is sufficient for
RTS model optimization. However, a slight decrease in the
modeling error can be observed when using samples from
the full angle control parameter space.13

The comparison of Table 4 with Table 5 shows a
decrease in the modeling error by one order of magnitude
when applying numerical optimization subsequent to the
geometric DH parameter estimation. Hence, numerical
optimization is essential for kinematics modeling.

Figures 10 and 11 show the distribution of the modeling
error with respect to the angle control parameter space for
the non-optimized and the optimized model, respectively.
Sample points in the critical vertical angle regions were
excluded throughout this work for stability reasons. In
Fig. 11, samples of the full control parameter space were
used for optimization and validation. The critical regions
exclude samples near the poles of the spherical model from
the calculations. The poles are defined by θi = {0, π}. In
particular, the critical region around θi = π also excludes
the non-measurable area of a physical (RTS), as shown
in Fig. 12. In this work, we set critical regions to |θi | ={
0, 3

4π . . . π
}
.

All calculations were carried out with 64-bit precision
arithmetic. In particular, a 64-bit value has a precision of
16 decimal digits. The integer part of the values of all
distances and angles used in this work can be represented
with one decimal digit; the fractional parts are represented
by 15 decimal digits. Details about floating point arithmetic
are given in the IEEE 754-2008 standard for floating-point
arithmetic [19]. The range of the EDM error distribution
of the simplified model, shown in the top left diagram of
Fig. 10, is in the magnitude of the round-off effects of the
64-bit floating point arithmetic. Hence, the error distribution
can be considered as noise, introduced by round-off effects.
The error distribution of the geometrically estimated DH

13The analysis of the effect of using a reduced distance parameter
space is beyond the scope of this work.

zinstrument (zenith) 
spherical RTS model 

xinstrument 

yinstrument 

camera view frustum 
of current pose 

critical region around 
(EDM data invalid) 

vertical angle 

zEDM, zcam

tripod 

RTS 

critical region at

horizontal angle 

critical region at

Fig. 12 Critical vertical angle regions of an RTS

model of the EDM end effector is shown in the top right
diagram of Fig. 10; accuracy and precision are in the
magnitude of 1e − 3m and 1e − 16m, respectively. The
distribution indicates an EDM pose error of the model,
which appears as increasing error between |ϕ| = {0 . . . π}
when applying horizontal rotations. The approximately
uniform distribution over the vertical parameter space θ =
{0 . . . π} indicates that the major offset is along the y-axis
of the instrument frame. A scale and offset error of the
angle control parameter ϕ could also lead to a similar error
distribution, but is contradicted by the error analysis of the
simplified EDM model.

For each model in Figs. 10 and 11, the error distributions
of the camera end effector are given in the middle row; the
compound error distributions are given in the bottom row.

When comparing all analyzed models, the simplified
model is the best match for the device, if only the EDM
end effector is considered. In particular, the EDM modeling
error distribution, shown in the top left diagram of Fig. 10,
is in the magnitude of numerical round-off effects. This
indicates that the driver uses a spherical coordinate system
to convert angle and distance sensor data {ϕi, θ, di} to
Euclidean points xi .

When only considering the camera end effector, the
accuracy of the geometrically estimated model is by a
order lower, compared to the simplified model; the error
distribution is more uniform with respect to the angle
parameter space. The distribution of the simplified model
indicates a translational component of the camera pose,
which cannot be modeled by a single spherical coordinate
system.

The compound errors of the individual models are mainly
influenced by sample points of the camera frame. This
indicates that the camera model used in this work is too
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simplistic. To lower the modeling accuracy and precision, a
more general camera model can be applied.

The results presented in Section 4 show that a spherical
representation of the RTS is sufficient for idealized
kinematics simulation of the system. If a more detailed
model is required, the system can be described by DH
parameters using the method we introduced in Section 3.
The results proposed in Section 4.3 show the significance of
the downstream numerical optimization.

While the analyzed models cover a wide range of
possible applications, additional aspects can be addressed to
improve the simulation of the device properties:

Optical Zoom Levels An RTS usually provides different
optical zoom levels. The exemplary device used for the
project supports seven optical zoom levels [16]. In this
work, only the first optical zoom level was presented.

A more detailed description would include individual
tool matrices M(k)

T and projection matrices P(k) for each
zoom level.

Faces An RTS supports measurement in both faces to
reduce systematic measurement errors [38]. Changing the
face for a particular measurement from face one to face two
means to change the control variables by ϕ2 = ϕ1 − π

and θ2 = −θ1, where {ϕ1, θ1} and {ϕ2, θ2} are the control
variables for face one and face two, respectively. Depending
on the particular device specific API, face control could be
either coded into the control variables or accessed explicitly.
Hence, either an unique kinematics model for both faces or
a separate kinematics model for each face has to be applied.
In this work, we used only one face for model estimation.
Furthermore, the image orientation of the second face might
be corrected implicitly by the device driver or explicitly by
the application software.

Simulation of Complete Model A complete kinematics
model allows arbitrary rigid placement of the robot base and
tools [11]. The complete kinematics description used in this
work requires base and tool transforms in addition to the
(DH) parameters, as proposed by Veitschegger andWu [39].
However, some existing kinematics simulators might not
support this extension without further modifications [27].
For end-to-end simulation, it might be required to express
base and tool transforms as (DH) joints.

Nonlinear Kinematics Model Including non-linear system
properties could further increase the model accuracy. For
example, signal conditioning for angular control variables
can be included in the circular feature extraction method
of Section 3 or in the numerical optimization method of
Section 4.3.

Fig. 13 Exemplary scene graphs for for RTS simulators, including
following nodes: Scene node (reference frame), environment node
(measurement targets), RTS (device model). Simple scene graph: no
visualization of the kinematics of the individual RTS components.
Extended scene graph: DH parameters can be applied to the individual
RTS components

Dynamic Model of the Robot The RTS prototype used in
this work provides only limited access to dynamic control
parameters, hence no dynamic model was derived. We will
further work on modeling the dynamic behavior of the PLT
300.

Alternative Error Formulation The model error used in this
work is based on Euclidean distances between recorded
and calculated point sets. A more detailed error formulation
could separate translational and angular errors.

The estimated models can be used for RTS simulation,
using custom or standard robotic simulators. Figure 13
shows the scene graph of an exemplary RTS simulator,
Fig. 14 shows a custom RTS simulator in Unity3D. An
early version of the simulator was used by Klug et al. for
the design of interactive RTS algorithms [21]. A detailed
description of the simulator is beyond the scope of this
work.

RTS model EDM laser environment

live data streams

interac�ve 
OpenCV UI

custom Unity3D  
simulator for RTS 

live_stream 

interac�ve 
MATLAB UI 

Z

X

Persp

Fig. 14 Exemplary RTS simulator in Unity3D. Klug et al. [21] used
the simplified model for the design of interactive RTS algorithms
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6 Conclusion

In this work, we presented a complete workflow for forward
kinematics modeling of an RTS using the DH convention.
The workflow is tailored to RTS and includes a detailed
formalization and description of all individual steps.

Furthermore, we provided the forward kinematics model
of the PLT 300, for which we validated the influence of
simplifying and optimizing the extracted kinematics model.
The applied error analysis clearly shows the significance of
the downstream optimization.

The choice between simplified and optimized model
depends on the application. The simplified model represents
an ideal device without systematic errors, which can
be used for basic algorithm design, development and
verification. A typical application of this model is the error
propagation analysis [38]. The optimized model matches
the analyzed device more precisely. Typical applications
of this model are device simulation, test data generation
and conversion of sensor data. By using (DH) parameters,
existing robotic simulators could be used, or custom
simulation environments could be implemented.

The modeling error distribution shown in Figs. 10 and 11
indicates that further enhancements could be achieved by
applying more general camera models.

In general, we believe that the DH parameters and the
proposed workflow is feasible for RTS simulation. We will
further work on including more complete models of the
sensors, modeling dynamics of RTS, and on comparing the
usability of existing simulators for RTS simulation.
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