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Abstract
Recent advances in neuro-imaging allowed big brain-initiatives and consortia to create vast resources of brain data that can be
mined by researchers for their individual projects. Exploring the relationship between genes, brain circuitry, and behavior is one
of the key elements of neuroscience research. This requires fusion of spatial connectivity data at varying scales, such as whole
brain correlated gene expression, structural and functional connectivity. With ever-increasing resolution, these tend to exceed the
past state-of-the art in size and complexity by several orders of magnitude. Since current analytical workflows in neuroscience
involve time-consuming manual data-aggregation, incorporating efficient techniques for handling big connectivity data is a
necessity. We propose a novel data structure enabling the interactive exploration of heterogeneous neurobiological connectivity
data with billions of edges. Based on this data structure we realizedAggregation Queries, i.e. the aggregated connectivity from, to
or between brain areas allows experts to compare the multimodal networks residing at different scales, or levels of hierarchically
organized anatomical atlases. Executed on-demand on volumetric gene expression and connectivity data, they allow an interac-
tive dissection of networks in real-time and based on their spatial context. The data structure is optimized in order to be accessible
directly from the hard disk, since connectivity of large-scale networks typically exceeds the memory size of current consumer
level PCs. This allows experts to embed and explore their own experimental data in the framework of public data resources
without the need for their own large-scale infrastructure. Our data structure outperforms state-of-the-art graph engines in
retrieving connectivity of arbitrary user defined local brain areas. We demonstrate the feasibility of our approach by analyzing
fear-related functional neuroanatomy in mice. Further, we show its versatility by comparing multimodal brain networks linked to
autism. Importantly, we achieve cross-species congruence in retrieving human psychiatric traits networks, which facilitates the
selection of neural substrates to be further studied in mouse models.

Keywords Brainnetworks .Spatialdatastructures .Aggregationqueries .Structuralconnectivity .Functionalconnectivity .Large
networks . Hierarchical Parcellation . Big data . Interactive datamining

Introduction

Recent brain initiatives, such as the Allen Institute (Oh et al.
2014; Hawrylycz et al. 2012; Lein et al. 2007), the Human
Brain Project (Markram et al. 2011), the WU-Minn Human

Connectome Project (Van Essen et al. 2013), and the China
Brain Project (Poo et al. 2016), have accumulated large sets of
brain data for neuroscience research. Visual analytics emerges
as a promising tool to mine this multimodal neurobiological
data for insight into the functional organization of the brain
(K. Li et al. 2012). Such technologies allow the direct explo-
ration of relations between genes, neuronal circuitry and brain
function and can quickly add context to experimental findings.
However, the major challenges for visual analytic workflows
arise from accessing, fusing and visualizing spatial brain data,
such as brain gene expression, structural and functional con-
nectivity, and non-spatial data, like genes associated with a
given brain function. A particular challenge when exploring
such heterogeneous neurobiological data is the alignment of
their spatial reference. Depending on the data acquisition
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technique, it can be volumetric or region-wise, and different
resources are not necessarily in the same reference space. This
can lead to time consuming workflows that involve manual
aggregation of the data that do not work continuously on dif-
ferent scales.

The entry point for many neuroscience workflows are local
brain regions/areas and/or gene expression sites (sites where
the gene creates products, such as proteins (Lein et al. 2007))
that are linked to a specific brain function. The functional
annotations of such sites are typically the results of neuronal
recording, imaging, optogenetics and behavioral neurogenetic
studies (e.g. amygdala subnuclei in emotional processing
(Haubensak et al. 2010; Kim et al. 2017)). The knowledge
of where these local regions/areas- and/or primary expression
sites are connected to, is a first step to relate them to a specific
brain circuit or a particular function. This information is
encoded in so called spatial networks. In these networks,
nodes represent regions/areas in the brain, while edges de-
scribe their structural (Oh et al. 2014), functional (Betzel and
Bassett 2017) or genetic (Richiardi and Altmann 2015) rela-
tion/connectivity. Since the size of these networks increases
squarely to the number of nodes, these networks can easily
grow to hundreds of gigabytes, with billions of edges.

Comparing different types of connectivity is essential for
identifying neural circuits. For example, two brain regions can
have a high structural connectivity (a connection via neurons)
but do not necessarily express the same genes (e.g. a so called
ligand-receptor binding (Young and Wang 2004)). Depending
on data acquisition techniques, different types of networks are
not necessarily available at similar resolution and scale (Betzel
and Bassett 2017). Besides being time-consuming, up-
sampling networks to higher resolutions requires more storage
space, while down-sampling to a lower resolution or even
region-level would waive information. When operating on
different anatomical scales, i.e. different levels of anatomical
parcellation, it is necessary to perform cumulative operations
on these networks (e.g. calculate region-wise connectivity
from voxel-wise connectivity, aggregate voxel-connectivity
of brain areas) to map the networks’ common brain space. In
this case large parts of the network need to be loaded and
aggregated. The size and complexity of these networks creat-
ed a need for sophisticated data handling techniques to allow
further analyses and exploration (Bassett and Sporns 2017).

Several interactive frameworks for querying connectomic
data in neuroscience have been published in recent years. The
Allen Brain Institutes’s BrainExplorer as well as its web inter-
face (Oh et al. 2014) can identify pre-computed incoming and
outgoing connections of pre-defined locations (injection sites)
and anatomical regions in mice. Meso-scale source/target sites
are visualized in 3D at voxel level. For quantitative examina-
tion this data is ordered by brain region and shown in a list.
Although this is an easy-to-use tool for neurobiologists, re-
sults cannot be compared directly to other connectivity data

or examined with respect to user-generated data. Other tools
allow to locally explore the connectomes built by neurons
traced on a single EM stack (volumetric electron microscopy)
l i k e CATMA ID ( S a a l f e l d e t a l . 2 0 0 9 ) a n d
ConnectomeExplorer (Beyer et al. 2013). They are working
on a local level of a single network with a fixed scale. This
also applies for Sherbseondy et al. (Sherbondy et al. 2005),
who used queries on volumes of interest and pre-computed
pathways to explore diffusion tensor imaging data, and
Tauheed et al. (Tauheed et al. 2013), who developed tree-
based spatial management techniques for dense spatial neuron
simulations.

The problem of efficiently querying large-scale spatial net-
works was originally addressed by different domains, partic-
ularly on transportation/road networks (Barthelemy 2010).
Early approaches in optimizing local queries on road network
data were proposed in 1997 by Shekhar and Liu (Shekhar and
Liu 1997). In principle, network nodes, and respectively their
edges are stored as adjacency list. The list is ordered by a
space filling curve, so nodes that are spatially close are stored
on the same disk page. This reduces Input/Output (I/O) costs
and therefore increases query speed. The data structure was
further improved by Papadias et al. (Papadias et al. 2003) and
Demir and Aykanat (Demir and Aykanat 2010) with a grid
based tree-like hierarchical structure partitioning the spatial
domain to efficiently process range queries (perform queries
in circular range around a query point) and successor retrieval
operations (get all successors of a network node).

Further techniques to speed up network queries can be
found in the more general domain of graph computation
(Pienta et al. 2015). A common method is the use of
advanced caching/paging strategies to hold often accessed
parts of a graph in memory (Kyrola et al. 2012; Han et al.
2013; Roy et al. 2013; Chi et al. 2016; Leskovec and
Sosič 2016). Other approaches apply memory mapping
of large-scale graphs as edge-list files to handle them on
the disk programmatically as if they were in the main
memory (Lin et al. 2014). This allows for graph process-
ing with billions of edges on consumer level computers
and mobile devices (Lin et al. 2014; Lin et al. 2013; Chen
et al. 2015). LLAMA (Macko et al. 2015) further uses
compressed row storage to harness sparsity. Recent graph
computing frameworks such as FlashGraph (Zheng et al.
2015) further facilitate solid-state disks in combination
with minimization of I/O operations to perform out-of-
memory graph analysis algorithms (Ai et al. 2017).

Despite their universal applicability, the lack of spatial op-
timization results in inferior performance for Aggregation
Queries, i.e. aggregated connectivity from, to or between a
set of nodes on spatial networks (see Section Performance
Evaluation). Some of these implementations are tailored to
unweighted, binary graphs (Han et al. 2013; Lin et al. 2014;
Chi et al. 2016) that are unsuitable to be generalized to

Neuroinform



perform Aggregation Queries on weighted, i.e. non-binary,
connectivity data.

To our better knowledge, there is currently no tool, which
combines those state-of-the art techniques to allow interactive
exploration of multimodal, multiresolution neurobiological
connectivity on a “big data” level across local-global scales.
Thus, from the neuroscientist’s perspective, bridging this gap
is essential for significant synergies in updating, mining, com-
municating and sharing brain data.

We meet this demand by proposing a data structure for
integration and real time querying of heterogeneous large-
scale connectivity matrices at multi-scale voxel and region
level by exploiting the hierarchical organization of brain
parcellations in combination with spatial indexation.

Region-wise (e.g. resting state functional connectivi-
ty) or voxel resolution (structural connectivity, spatial
gene expression correlation) connectivity data is aggre-
gated hierarchically, to bridge the gap between different
scales and resolutions. The hierarchies are anatomy-
driven and can be flexibly generated for different ontol-
ogies and their related spatial region annotations. On the
lowest level of these hierarchies, high resolution, voxel-
wise connectivities with billions of edges (matrices with
hundreds of gigabytes) are stored on hard disk in spa-
tially organized indices for high-speed data access.
Therefore, aggregated connectivity from, to or between
brain areas can be retrieved, from voxel-level to large
anatomical brain regions, in an instant.

For direct correlation of different connectivity data at
voxel level, we expect the data to reside in the same
spatial reference brain space, i.e. registered to the same
(multi-resolution) standard brain.1 However, the dual
indexing strategy allows us also to easily integrate and
correlate data available only at region level with voxel
wise data within the same brain space, but in principle
also across brain spaces at region level if the corre-
sponding regions are known. Data from public resources
can be easily integrated in our data structure as well as
private data generated during experiments in the lab.

We demonstrate the practical significance of this tool by
presenting use cases for which we used data provided by large
scale brain initiatives. We reproduced recent biological find-
ings by performing data integration and interactive queries on
heterogeneous neurobiological data from mice and humans.
We created a web-based, interactive local 3D segmentation on
visualized data to define volumes of interest (VOI) that can be
used to query user-selected connectivity data sets accessible
via our data structure. The result is the cumulative voxel-wise
connectivity of the selected VOI that is visualized as intensity
volume in a 3D rendering. This kind of interaction allows the

researcher to relate integrated resources, for example
incoming/outgoing connectivity on voxel-level, directly to
spatial data like gene expressions.

In general, the proposed data structure allows for handling
data of different modalities delivering volumetric and/or con-
nectivity data, which can be used for experimental hypothesis
finding. The presented framework is applicable for multilevel
functional predictions and extends its relevance across species.
Therefore, it is suitable for virtual screening of complex net-
works, like those linked to psychiatric disorders, and to func-
tionally dissect the corresponding neural correlates in mice.

Materials and Methods

Data

The data relevant for our system can be divided into three
types, which in principle can stem from any species or
modality:

A Hierarchical Definition of Brain Regions and their
Associated Positions on a Reference Brain. This is basically
a hierarchical parcellation of a given standard brain and its
related ontology. A hierarchy generally starts with the whole
brain divided iteratively into sub-regions, where the lowest
level contains the highest resolved regions. These regions
can have a dense voxel-level representation (Lein et al.
2007) or a set of coordinates representing biopsy sites (coor-
dinates in the brain from where the gene expression data has
been sampled (Hawrylycz et al. 2012)). We exemplarily use
the Allen Mouse Brain Atlas (AMBA) ontology with 1288
regions on 5 levels (Lein et al. 2007) on a 132x80x114 voxel
space, and Allen Human Brain Atlas (AHBA) ontology with
1840 regions also on 5 levels (Hawrylycz et al. 2012) on 3600
MNI152 coordinate space (representing biopsy sites).

Connectivity data is given as weighted adjacency matrices.
Rows/columns represent the connectivity strength between
brain areas on different scales (voxel or region-wise). The
weights can be in any range, positive or negative. In the con-
text of the use-cases described in this paper, we used three
different types/sets:

1. Structural connectivity: In Ganglberger et al.
(Ganglberger et al. 2017) we compiled a voxel-wise
structural connectivity matrix that shows the projections
(efferent neurons) of ~15% of the brain from AMBA and
respectively how voxels are structurally connected in a
132x80x114 mouse brain (100 μm resolution, i.e. the
side of a voxel has a length of 100-μm). Further details
in Supplementary Note 1. The 67,500 × 450,000 directed
connectivity matrix is stored as an uncompressed 91.5
gigabyte CSV (comma separated value) file. Weights are
normalized to range between 0 and 1.

1 Such a multi resolution reference brain space is e.g. available from the Allen
Institute, providing different kinds of data at 100-μm and 200-μm resolution.
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2. Functional connectivity: Functional connectivity,
representing correlation of BOLD fMRI signal shows
the functional association of brain regions for specific
tasks or resting state. We used a resting state connectome
for human (Van Essen et al. 2013) and experimental
mouse data, which is only available region-wise (~80
regions). Weights are undirected and represent positive
correlation coefficients between 0 and 1.

3. Spatial gene expression correlation networks:
Correlated gene expression networks quantify
tissue-tissue relationships across genes (Lein et al.
2007; Richiardi and Altmann 2015). Details on ma-
trix creation can be found in Supplementary Note 1.
The data consists of a 60000 × 60000 undirected
connectivity matrix for mice, that shows the tran-
scriptional similarity for a specific gene set and
3600 × 3600 for humans (Hawrylycz et al. 2012).
The mouse data has a resolution of 200 μm
(67x41x58 voxels mouse brain), and is about 12
gigabyte as uncompressed CSV file. The data con-
sists of undirected weights, showing positive corre-
lation coefficients between 0 and 1.

A Volume of Interest (VOI) is a spatially related set of co-
ordinates in a reference space. These can be arbitrary selected
voxels of a user or a brain region. AVOI defines an area in the
brain, of which the user would like to know the aggregated
source or target connectivity of its individual points.

Managing and Aggregating Hierarchical Connectivity
Data

The data access structure we propose is tailored to take
advantage of sparseness, anatomical or hierarchical
parcellations, and spatial organization of the data,
which, to our best knowledge, standard graph managing
frameworks such as graph databases are not optimized
for.

To allow interactive (real time) exploration of the brain
connectivity space, the purpose of the data structure is to re-
trieve the aggregated source or target connectivity of specific
VOI, such as anatomical regions or arbitrary user defined
areas, on a voxel- or region-level in an instant. These
Aggregation Queries are executed on connectivity matrices,
which we define as weighted directed adjacency matrix

C ¼ cij
! "

i¼1::jIj; j¼1::j Jj ;C∈ℝjIj x jJj

of a graph, where the rows I correspond to outgoing-, and the
columns J to incoming edges of spatial regions, defining the
spatial and/or anatomical resolution of the respective connec-
tivity data (which can be voxel level) in the discretized stan-
dard brain space B = {px}x = 1. . n, px ∈ℝ3.

Here and in the following, the term region refers to a
spatial related set of positions in a standard brain space
such as certain anatomical brain regions, a group of
voxels or a single voxel. Furthermore, we assume the
standard brain space to represent the highest occurring
resolution of all data to be queried.

Spatial Mapping between Connectivity Matrices
and Brain Space

We define the spatial association of the rows, respectively
columns of the connectivity matrix C, to be a set of ordered
disjunct sub-regions (i.e. from anatomical regions or voxel-
level), so

RROW ¼ RROW
1 ; ::;RROW

jIj

n o

RROW
i ⊆B;RROW

i ∩RROW
k ¼ ∅;∀i≠k∧i; k∈I

and respectively column associations RCOL

RCOL ¼ RCOL
1 ; ::;RCOL

jJj

n o

RCOL
j ⊆B;RCOL

j ∩RCOL
l ¼ ∅;∀ j≠l∧ j; l∈J

Note that C represents voxel-wise connectivity if

jRij ¼ 1; ∀Ri∈RROW=COL

To directly associate spatial positions in brain space
px ∈B with rows and columns of C, i.e. incoming/
outgoing connections, we define the following mapping:
At first, we map positions in brain space px to the
indices of brain regions contained in RROW and RCOL

ψROW pxð Þ:¼

(
i i f px∈RROW

i

∅ i f px∈B∖RROW ; ∅ i f px∈B∖RCOL

ΦψCOL pxð Þ:¼

(
j i f px∈RCOL

j

∅ i f px∈B∖RCOL ; ∀px∈B

This creates non-unique mappings of arbitrary VOI in the
brain reference space V ⊆B to rows/columns (i.e. a set of
positions in the brain space can point to multiple rows or
column indices)

ψROW Vð Þ≔
n
i j ψROW pxð Þ ¼ i; ∀px∈V

o

ψCOL Vð Þ≔
n
j j ψCOL pxð Þ ¼ j; ∀px∈V

o

Please note that specific indices in the resulting set
might be represented more than once, i.e. if there are m
voxels in V laying in region Ri, then i is m times
present. This allows the application of this mapping
for aggregation of connectivity.
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Vice versa, we map a set of indices to the union of
their corresponding regions. As the voxel wise represen-
tation of regions in the standard brain space is known,
this generates a representation of connectivity at highest
voxel resolution independent from the resolution or un-
derlying parcellation of the original connectivity data.

ψROW−1 Uð Þ≔ ∪
i∈U

RROW
i ;∀U⊆I

ψCOL−1 Wð Þ≔ ∪
j∈W

RCOL
j ;∀W⊆J

Therefore, a connection cij might represents equal connec-
tions of several points in brain. This has several advantages
(see Fig. 1):

1. Compare connectivity data defined on different resolu-
tions of the standard brain: ψROW−1 and ψCOL−1 define
the relation of rows respectively columns to voxel at a
certain resolution. Since the overlap of regions with stan-
dard brain space is known, this enables a comparison of
connectivity matrices in respect to different brain
parcellations and/or different resolutions. If the resolution
is smaller than the reference space, this mapping would
represent up-sampling (see Fig. 1a).

2. Map region wise connectivity to voxel level: Nodes of a
connectivity matrix can also represent (anatomical) brain
regions to store region-wise connectivity data. Using
ψROW−1 and ψCOL−1 allow a retrieval of the data in
voxel-wise brain space and therefore also allow the com-
parison of connectivity with respect to different brain
parcellations (see Fig. 1b).

3. Build caches: This technique can also be used to store
precomputed data, such as connectivity of brain regions
(from voxel level data) or pyramids representations with
lower resolution (like an image pyramid). Although this

increases the required storage, it improves scalability (see
Fig. 1c).

A Dual Data Stucture Strategy for Aggregation
Queries

Aggregation Queries are defined as follows. Let V ⊆B be a
VOI. The result of a target aggregation query is the cumulated
outgoing connectivity for every position in space B

τ Vð Þ ¼ ∑
i∈ψROW Vð Þ

ci;ψCOL pxð Þ

 !

px∈B

and the result of a source aggregation query the cumulated
incoming connectivity for every row

ς Vð Þ ¼ ∑
j∈ψCOL Vð Þ

cψROW pxð Þ; j

 !

px∈B

We are proposing a dual strategy unifying two complemen-
tary data structures to efficiently realize Aggregation Queries.
The Connectivity Storage handles the data access for the
Aggregation Queries, and the Region-Wise Connectivity in a
Graph-Database manages queries on (anatomical
brain-)region level. Figure 2 gives an overview of the overall
system. Incorporating a connectivity matrix into our data
structure begins with a preprocessing, that harnesses spatial-
organization of the data (Fig. 2 (1)) and uses row-compression
to minimize disk-space (and therefore reading-time for
queries) (Fig. 2 (2)) to create a Connectivity Storage File.
Region-wise connectivity of a hierarchical anatomical brain-
region parcellation is precomputed and stored in a graph-

Fig. 1 a Connectivity matrix in a 4 times lower resolution than the
reference brain space. Therefore every row/column is associated with 4
voxels. b Region-wise connectivity matrix. Every row/column is

associated with voxels that form brain regions. c Region cache.
Preprocessed aggregated outgoing connectivity for brain regions on voxel
level
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database Fig. 2 (3)). To further improve query performance,
Connectivity Cache Files are created, that store pre-computed
connectivity for faster data access (Fig. 2 (4)). Voxel-wise
connectivity can then be queried from cache files and
Connectivity Storage Files (Fig. 2 (5)), region-wise connec-
tivity form the graph-database (Fig. 2 (6)). Preprocessing (Fig.
2 (1,2,3)) is further described in the following subsections
(Connectivity Storage, Region-wise Connectivity Database),
and cache-creation as well as querying (Fig. 2 (4,5,6)) in sub-
section Implementation.

Connectivity Storage Since Aggregation Queries involve the
reading and aggregation of whole rows or columns of connec-
tivity matrices, we use a row-wise storage scheme. Allthough
edge lists are popular for many graph management tools (Lin
et al. 2014), which store connections in a < source node, target
node, value> combination, they create a significant storage
overhead for dense connectivity matrices.

Reducing data size allows higher query speed, since fewer
data needs to be read. Therefore we apply a row-wise compres-
sion, that exploits potential sparseness of the data. First, the rows
and columns of C are ordered by a space filling curve (Hilbert

1891) to preserve locality. The reordering causes sparse/dense
areas to cluster within each row/column, since the connectivity
of a region/voxel is not randomly distributed over the brain, but
spatialy related. Then, a compressed row starts with the column
index of the first non-zero value (NZV), the amount of NZV to
follow, and the following NZVs. This is repeated similarly with
the column index of the next NZV until the end of the row is
reached. To identify each row in the file, an additional mapping

Ω ið Þ≔ f ; ∀ f∈F; i∈I

needs to be created, depicting the beginning of each row to their
position f in the fileF. A connection cij can be identified by going
to the corresponding position of the i-th row f, reading the j-th
value from the row-wise compression. Figure 3 illustrates this
process.

Other compression methods would also reduce the data
size, but would not allow to directly access single rows with-
out decompression of the whole file or significant parts of the
file (Barrett et al. 1994).

For every connectivity matrix, we create a separate
Connectivity Storage File, consisting three indices as header

Fig. 2 Overview of Connectivity Storage and the Region-wise
Connectivity in the Graph-Database. Black arrows: Preprocessing of the
data. 1. Spatial Reordering of a (voxel-wise) connectivity matrix with a
space filling curve. 2. Row-wise compression of spatially-ordered
connectivity matrix. 3. Generation of hierarchical region-wise
connectivity and storage in graph-database. 4. Cache creation

(preprocessed voxel-wise connectivity for predefined regions), and
storage with row compression. Red arrows: 5. Querying a VOI (yellow
circle) on Connectivity Cache Files, then on Connectivity Storage File,
resulting in aggregated connectivity (red). 6. Querying connectivity
between preselected brain regions (from a hierarchical parcellation),
resulting in a region-wise connectivity graph
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(FILE: Ω(i), ROW: ψROW(V), COLUMN :ψCOL(V) followed
by compressed rows (Fig. 4b). Even after compression, the
compressed file does not necessarily fit into memory, especially
when one wants to query on multiple connectivity matrices. We
use memory mapping (MMap) to map the file into virtual ad-
dress space. This allows to programmatically access rows if they

were in the main memory, without overhead of system calls.
Furthermore, the OS employs paging strategies, such as read-
ahead paging. When performing a query for outgoing connec-
tions, the rows can be read in the order of their position in the
file, and directly benefit from read-ahead paging of the operating
system to reach near-sequential reading speed. This additionally

Fig. 4 a Brain Space overlayed with Hilbert curve (blue) and a VOI (red)
that is queried for outgoing connectivity, b Connectivity matrix file (rows
ordered by Hilbert curve). Red-blocks represent rows that are read in

order to get outgoing connectivity of VOI shown in A. Blocks can be read
sequentially. Purple rows benefit by read ahead paging

Fig. 3 aAmouse brain with overlayed Hilbert curve (blue), mapping the
space to a one-dimensional space b The outgoing connectivity of the
voxels corresponding to the colored voxels in A. These would represent
3 rows in a connectivity matrix. c The connectivity of B along the
Hilbert curve (for simplicity in this example, connectivity is either

0 or 1). d Row-wise compression of C. The compression can be
read this way: On the 52nd position, 5 NZVs are following (green).
On the 10th position, 3, and on the 52th position 2 NZVs are
following (orange). On the 33rd position, 4 NZVs and on the
47th position, there is 1 NZV following (cyan)
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exploits the spatial organization of the data, that has been created
with the ordering by space filling curve (see Fig. 4a). Multiple
connectivity matrices can then be queried sequentially without
loading the whole matrices into memory. Note that a connectiv-
ity matrix of a directed graph needs an additional transposed
Connectivity Storage File to query incoming connectivities
(for undirected graphs, outgoing and incoming connections are
equal due to symmetry).

Region-Wise Connectivity Database On higher levels, the (an-
atomical brain-)region level, the aggregated connectivity of a
region consists of the connectivity of its subregions (and on
the lowest level voxel-wise connectivity). When looking at
brain wide region-wise graphs, it is not feasible to read the
entire Connectivity Storage and compute the connectivity hi-
erarchically at runtime. This would be too resource consuming
for real-time computation. Instead, we compute it once when
the Connectivity Storage is created. The resulting region-wise
hierarchical connectivity is stored in a graph-database. The
region-wise connectivity is computed recursively bottom up:
First, the lowest level regions are aggregated from the
Connectivity Storage, then the regions above are aggregated

by their levels below until the top of the hierarchy. We further
compute the connectivity between the levels in a similar way.
Therefore, it is not necessary to compute any region-level
connectivity at runtime (Fig. 5).

Implementation As central access point for the data, we created
a RESTAPI in GO (golang). It provides calls for importing data,
creating caches as wells as Aggregation Queries. These are exe-
cuted on the Connectivity Storage, which was implemented in
C++ for memory and performance optimization. Connections
are stored in a 4-byte floating point format, which supports a
range of values ±1.18× 10−38 to ±3.4 × 1038, with single preci-
sion (about 7 decimal digits). We choose this as trade-off to
storage space, since higher precision would also cause higher
reading times. ROW and COL indices have a 4-byte unsigned
integer format. Therefore the maximum amount of edges is lim-
ited by 4,294,967,295× 4,294,967,295 (= 1.84467 × 1019). The
FILE index associates rows the with 8-byte unsigned integers to
file positions, limiting the file size similarly to 1.84467 × 1019

connections or 64 petabyte.
We implemented two types of Connectivity Caches to in-

crease performance: A region-cache, that stores the

Fig. 5 Scheme of the data
structure: The Connectivity
Storage stores the connectivity on
the lowest level (voxel-wise
connectivity). Region-wise
connectivity (dotted blue lines) is
aggregated from the Connectivity
Storage hierarchically
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aggregated voxel-level connectivity of lowest-level of the hi-
erarchical brain-region parcellation, and factor h low-
resolution versions (h ∈ ℕ, h ≤ ∣ I∣) of the Connectivity
Storage, which cumulates the connectivity of h voxels along
the Hilbert curve (basically every h rows of the Connectivity
Storage being aggregated).

When executing an Aggregation Query for a VOI,V⊆B, the
Connectivity Cache Files will be accessed first to check if the
VOI contains cached regions RROW (CACHE) defined in the
ROW index of the cache. The connectivity of a region Rc ∈
RROW (CACHE) will be added to the results from the cache,
if Rc ⊆V, i.e. all spatial positions of a region are contained
within the VOI. Before the Connectivity Storage will be
accessed, all Connectivity Cache Files will be queried until
no further region in the cache can be found. Only after this, the
remaining brain space positions of the VOI will be queried
from the Connectivity Storage, hence, the total number of
row-reads is minimized.

The anatomical hierarchy is represented in OrientDB
(Garulli 2010), a graph database that can be used to store
further region information, such as masks, 3D models or links
to online repositories. Region-wise connectivities within those
hierarchies consist of 1000–2000 regions with a maximum of
4 million edges. When querying such comparatively small
graphs, the performance differences of standard graph data-
bases to the Connectivity Storage is neglectable. Therefore,
we store them in OrientDB, where it is directly linked to the
brain regions.

To access the API, we created a web-component that al-
lows visual queries that are based on selections ofVOI directly
in 2D slice views, visualized simultaneously in a 3D volume
rendering. Via a spherical brush tool, a user-defined area can
be marked. Figure 6a shows for example a gene-expression
volume, where the spherical area is drawn on voxel with high
gene-expression. After selection, Aggregation Queries can be
used to link connectivity data with volume data. The selected
area (Fig. 6b), is used as input for an Aggregation Query on
the API. The API retrieves the connectivity from the
Connectivity Storage to all voxels that are either targets or
sources of the selection, and the web component will instantly
render the connectivity as volume. This represents the cumu-
lative connectivity to (target) or from (source) the selected
area (Fig. 6c). Furthermore, the connectivity can be quantified
in Connectivity Profiles, which shows the cumulated connec-
tivity of the VOI to preselected (brain) regions (Fig. 6d).

Results

To assess the efficiency and effectiveness of the data structure
in context of its practical application, we performed a quanti-
tative and qualitative evaluation on real world data that was
introduced above in Section Data. We quantified the effect of

the data structure’s parameters (row-compression, spatial
ordering, caches) on query performance and compared these
resu l t s wi th two s ta te -of - the-a r t g raph engines
(Section Performance Evaluation). We further performed
two Case-Studies that we designed with domain experts in
order to demonstrate the relevance of the data structure for
neuroscientific research (Section Case Study 1 and 2).

Performance Evaluation

To verify the data structure’s applicability for real-time
Aggregation Queries, we created test queries on three
voxel-level connectivities which were introduced in
Section Data. We used one directed structural connec-
tivity matrix SC, resulting in two Connectivity Storage
Files for targets and source queries, and two undirected
spatial gene expression correlation networks CS1 and
CS2 (which are further used in Case Study 1 and 2),
creating one Connectivity Storage File each (because
they are undirected).

Creating the two Connectivity Storage Files for SC
(91GB CSV file) took 32 min in total (19 for the first,
13 min for the transposed) while CS1 (12 GB CSV file)
and CS2 (13 GB CSV file) took about 3 min each on
an SSD with our REST API. Therefore, the file creation
takes approximately 21 s/GB for directed, and 13 s/GB
for undirected matrices. Generating the Region-Wise
Connectivity Database lasted less than 10 min for each
Connectivity Storage which depends on the I/O perfor-
mance of the OrientDB.

In cooperation with domain experts, we defined 10
queries in our web-component (user-queries), which are
shown in Supplementary Note 2. The VOI of these
queries range from 0.2% to 10% of the mouse brain
space. In addition, we selected 10 distinct anatomical
brain regions to act as VOI (region-queries) with sizes
ranging from 0.2% to 4% (see Supplementary Note 3).
To evaluate queries on a bigger scale, we further created
100 random queries by using randomly placed spheres
with random radii as VOIs. The sizes of these range
from 0.2% to 5%, because it was not possible to place
larger spheres within the mouse brain space.

We used these queries to assess the effects of individual
components of the Connectivity Storage, such as row-com-
pression, the spatial-ordering of rows/columns and
Connectivity Caches. To demonstrate the data structure’s rel-
evance for performing AggregationQueries, we compared the
results to the state-of-the art tools FlashGraph (Zheng et al.
2015) and GraphChi (Kyrola et al. 2012). We did not evaluate
the performance of the Region-wise Connectivity Database in
the OrientDB specifically, since retrieving a connection be-
tween two regions only involves accessing a single database
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entry (<10 ms), in comparison to aggregating mega- to giga-
bytes of data from the Connectivity Storage.

Performance has been evaluated on an Ubuntu 16.10 64-bit
machine with Intel Core i7–4470 CPU, 32 GB RAM and a 1
Terabyte SSD with a sequential read-speed of 520 MB/s. Test
result on anHDDwith 120MB/s sequential read-speed can be
found in Supplementary Note 4.

Effect of Compressed Row-Storage on Data Size For 3 con-
nectivity matrices (SC, CS1 and CS2), we created 4
Connectivity Storage Files (2 for SC and 1 for each CS1 and
CS2). Figure 7a shows that Connectivity Storage Files with
compression reduces the initial file size of SC by half, even if
one is using random ordering of rows/columns. Spatial order-
ing by a Hilbert-curve further improves file size by reducing it
by half. The effect is smaller for CS1 and CS2, since they are
not as sparse as SC (i.e. they contain not as many zeroes).

Effect of Spatial-Ordering on Query Speed We executed the
user-, random-, and region-queries on SC, CS1 and CS2
for their sources and target connectivity. Figure 7C
shows the mean query time and their standard error bars
on the connectivity matrices for different query types.

Not, that the spatial ordering along a Hilbert curve
greatly reduces query-time compared to random-order-
ing, especially for the bigger SC matrix (from up to
20 s to <2 s). This is due to read-ahead-paging, which
benefits from sequential reading. Note that the mean
query time for different query types depends on the size
of their VOI. Hence, region-queries are faster than user-
or random-queries simply because they involve reading
fewer data (detailed query sizes see Fig. 7b).

Effect of Connectivity Caches on Query Speed As described
in Section Implementation , we created a region
Connectivity Cache of the lowest level of the hierarchi-
cal brain-region parcellation, and factor h low-resolution
Connectivity Caches, where every h rows of the
Connectivity Storage are aggregated, for h =10 and h
=100. Figure 8 shows the mean query time and its stan-
dard error for different cache combinations. One can see
that for high resolution Connectivity Matrices such as
SC, h-factor caches can save up to half of the query
time, while region queries especially benefit from the
region-caches. For lower resolutions (CS1 and CS2),
this effect of h-factor caches is not as strong. The

Fig. 6 a gene expression (cyan) with brush selection (yellow) of VOI in 3D b Selection has been performed on 2D slice views, c Accumulated target
connectivity (red) of VOI in 3D d Connectivity Profile of the target query, showing the mean connectivity to each brain region
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reason is that connectivity retrieved from Connectivity
Caches leaves “holes” in the VOI of the query, hence,
the remaining rows that need to be read from the
Connectivity Storage File are fragmented. This reduces
the overall read speed, for it relies on read-ahead paging
(the effect of sequentially reading spatially close rows
has been shown in Fig. 7c). Figure 9 depicts this in
further detail: In the left column, one can observe that
the query time depends on the query size, and that
query time benefits increasingly from Connectivity
Caches for larger query sizes (i.e. more data to read
leads to higher chances of read-ahead paging). The right
column shows read-speed on Connectivity Storage Files
vs query size and therefore the effect of reads from the
Connectivity Caches and the resulting fragmentation.
The lower read speed after cache reads is a direct cause
of the higher fragmentation rate (i.e. many reads from
10-factor caches lead to more “holes” in the VOI than a
few reads from 100-factor caches).

Comparison to State-of-the-Art Tools We compared our
method to the state-of-the-art graph engines FlashGraph
(Zheng et al. 2015) and GraphChi (Kyrola et al. 2012).

Both tools are capable of computing graph algorithms
(page-rank, breath-first-search etc.) on graphs with bil-
lions of edges on consumer level machines (i.e. without
hundreds of gigabytes RAM). They achieve this by uti-
lizing data access mechanisms that are able to load data
from hard-drive on demand, instead of holding the whole
graph in memory. GraphChi’s approach is splitting the
data into small parts (so called shards), and loading them
on demand, while FlashGraph uses optimized I/O re-
quests for SSDs. Therefore, these methods benefit from
graph queries that do not involve whole graphs respec-
tively, do not need to load entire connectivity matrices,
such as Aggregation Queries. To compare their perfor-
mance to the Connectivity Storage, we have implemented
Aggregation Queries for both (see Supplementary Note 5
for details) and created edge-lists (in their common input
data format <source node, target node, value>) of our
connectivity matrices. Further, we have ordered the node
indices spatially (according to a Hilbert curve) to test
them under equal conditions. Figure 10 shows that even
with Hilbert ordering, FlashGraph and GraphChi do not
perform as fast as our method. While on smaller graphs
(CS1 and CS2), the Connectivity Storage is still faster

Fig. 7 a Effect of compressed row storage on the data size of different
connectivity matrices. Bars indicate the size of the original CSV, the
Connectivity Storage file without compression, random-ordering with
compression and Hilbert-ordering with compression. b Boxplot of the
VOI size as amount of voxels (i.e. the query size of 10 user-defined VOI
queries (green), 100 random VOI queries (blue) and 10 region VOI

queries (yellow) c Effect of spatial-ordering on query-speed on different
connectivity matrices. Bars show themean query-time with standard error
of 10 user-defined VOI queries (green), 100 random VOI queries (blue)
and 10 region VOI queries (yellow), for Hilbert-Ordering and Random-
Ordering

Neuroinform



than FlashGraph by a factor of 2–3, this effect is even
stronger for larger matrices (SC1) with a factor of 6.

Overall, our method performs more than 5 times faster
than FlashGraph, and 160 times faster than GraphChi.

Fig. 8 Effect of Connectivity Cache on query-speed on different connectivity matrices. Bars show the mean query-time with standard error of 10 user-
defined VOI queries (green), 100 random VOI queries (blue) and 10 region VOI queries (yellow), for different types of caches and their combination
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One has to note, that these tools were developed for
performing various graph analysis methods, thus, they
are probably not optimized for Aggregation Queries.
Especially GraphChi is more suited for analyzing whole

graphs, while Aggregation Queries only require loading
of subgraphs.

Example Video for Real-Time Performance For further dem-
onstration, Supplementary Video 1shows a target query

Fig. 9 Relation of query-time and read-speed on query size for different
Connectivity Matrices, Connectivity Caches and query types. The left
column depicts the query time vs query size for queries executed with
cache (●) and without (▲), while the color depicts the query type

(green = user query, blue = random query and yellow = region query).
The right column depicts read speed on the Connectivity Storage Files
vs query size, similarly encoded. LOWESS regression lines are added to
see the overall trend for different cache sizes
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on the structural connectivity matrix (similar to Fig. 6)
performed in real-time.

Case Study 1: Exploring Different Types
of Connectivity Emerging from a Brain Area
of Interest

This case study has been chosen for its particular application
in circuit dissection. Recent advances in circuit neuroscience
(e.g. neuro- and behavioral genetics, optogenetics, imaging)
identified gene sets underlying specific behavioral function.
Hence, wemapped such function-related network context on a
genetically well dissected microcircuitry (Radke 2009). To
illustrate this case, we focused on the central amygdala
(CEA), an amygdala subnucleus and hotspot expressing sev-
eral functionally related genes, whose role in fear behavior is a
heavily researched topic in the neuroscience community.

The connectivity data used for this case study consists of
directed structural connectivity (Data Set 1) and undirected
spatial gene expression correlation (Data Set 3). Hence, this
case demonstrates the exploration of connectivities of differ-
ent type and different resolution.

The entry point for our experts is a subset of these genes
consisting of Prkcd (EntrezID: 18753), Sst (20604), Crh
(12918), Dyn (18610) and Penk (18619) that have been
known to regulate fear responses (Haubensak et al.
2010). We examined the gene expression density of these
genes in 3D and 2D slice views for areas of high co-
expression (where multiple genes are expressed). An im-
age overlap of Prkdc, Crh and Dyn revealed an enclosed
area (Fig. 11a, red arrow) that is selected by using a
brushing tool allowing the user to interactively mark
VOIs on 2D slice views of the brain space. We further
overlaid the outlines of CEA so the selected area is this
brain region indeed (Fig. 11b, red arrow).

After a target query on the structural connectivity (Data Set
1)matrix (Fig. 11c), which is performed in less than a second,
particularly strong connected areas are visualized and identi-
fied by Connectivity Profiles. It highlights, that among other
regions, the bed nucleus of the stria terminalis (BNST) has a
strong connection to the central amygdala (CEA) (Fig. 11, red
arrow). It is important to note, that this confirms known struc-
tural anatomy from literature (Radke 2009). Interestingly, the
BNST is functionally related to CEA.While CEA causes brief

Fig. 10 Comparison of query speed with state-of-the-art tools. Bars show
the mean query-time with standard error of 10 user-defined VOI queries
(green), 100 random VOI queries (blue) and 10 region VOI queries

(yellow), for the Connectivity Storage, FlashGraph and GraphChi. The
bars are log scaled, indicated by equidistant grey dotted lines (distance
between two lines represent 1 s)
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phasic fear responses, BNST shows more long-lasting tonic
anxiety-like states. Thus, this approach recaptures a functional
CEA-BNST circuit module for fear.

To further verify the query’s result quantitatively, we com-
pared the outgoing connectivity to known region-level structural
connectivity of CEA. Therefore we used the normalized projec-
tion strength of 469 sites (positions in the brain) to 590 brain
regions provided by Oh et al. (Oh et al. 2014) (Fig. 3/
Supplementary Table 2), i.e. the cumulated outgoing strength
of projection neurons. Out of these 469 sites, we choose the five
that lie within CEA since there is a high overlap (Fig. 11b, red
arrow) between the query’s VOI and CEA. Figure 12 depicts the
rank correlation of the query result to the five sites chosen by us,
as well as the mean connectivity thereof. A correlation of 0.817
demonstrates the validity of the query. When using a VOI con-
gruent to CEA, the correlation increases to 0.92.

This is repeatedwith the spatial gene expression correlation
network (Data Set 3) of Prkcd, Sst, Crh, Dyn and Penk, a
connectivity matrix representing the voxel-wise correlation
of the gene set used for this case study. BNST has again one
of the strongest connections (Fig. 11d). Figures 11 e, f, g and h
visualize the overlap of both connectivities from different per-
spectives demonstrating a dominant structural and genetic
linkage of CEA and BNST.

Case Study 2: Comparing Networks of Different
Modalities and Species

Comparative visualization of human and animal models might
be of particular interest for biomedical research and transla-
tional psychiatry. To investigate comparative functional net-
works across species the experts next assess this workflow by
exploring functional connectivity and gene co-expression cor-
relation from gene sets related to psychiatric traits, here exem-
plary autism in human (Li et al. 2017).

For this case study we used voxel-level undirected spatial
gene expression correlation (Data Set 3), and region-level func-
tional connectivity (Data Set 2). The data is retrieved from the
Region-Wise Connectivity Database, which highlights the us-
ability of our data structure on different levels of hierarchical
brain parcellations. An example how the user navigates these
hierarchies can be seen in Supplementary Video 2.

To explore and compare global gene expression correlation
networks and functional MRI networks across species, it is
necessary to find corresponding anatomical brain regions. To
our better knowledge, no comprehensive mapping of brain
regions between mouse and human exists. Nevertheless, find-
ing similarities in networks can be identified by comparing
them iteratively on different anatomical levels in parallel

Fig. 11 A: Overlap of Prkcd (cyan), Crh (green) and Dyn (purple) by
aggregating the image intensity (i.e. strong overlap is white in the 2D slice
view). Outlines of CEA in blue (red arrow). B: Selecting a VOI on the
image overlap (yellow), C: Structural connectivity of the VOI. Outlines
of BNST in dark blue (red arrow) and its connectivity profile (bars reflect

mean connectivity to (Allen Brain Atlas) brain regions, with
corresponding colors). D: Gene-coexpression correlation of the VOI,
analogue to C. E: Overlap of C and D in 3D. F: Overlap of C and D in
a 2D slice (XY).G: Overlap ofC andD in a 2D slice (XZ).H: Overlap of
C and D in a 2D slice (YZ)
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between the two species (Fig. 13 a, b, left side, colors are
picked from the AMBA and AHBA and do not corre-
spond to each other). When a user navigates the hierar-
chical brain parcellations (for mouse and human sepa-
rately), the data structure returns the connectivity of the
selected brain regions in real-time after each interaction
(Supplementary Video 2). Consequently, domain experts
can iteratively adapt their choice of brain regions not
only by their knowledge of individual inter-species re-
gion correspondence, but also based on the network
similarity.

We found high coupling mostly in cortex (agranular
insular and temporal association areas) and primary sen-
sory areas (olfactory, gustatory and somatosensory
areas) to the amygdala (central and medial).

Closer inspection of a subnetwork related to social
behavior in autism, consisting of higher association cor-
tex, namely insula cortex (IC), frontal pole (FP), hypo-
thalamus (HY) and midbrain (MB), as well as the CEA,
revealed gene co-expression correlation within the au-
tism gene set was strongest within cortical regions
(FP,IC) and weaker between cortex and subcortical
structures (CEA,HY,MB). Figure 13a shows the overlap
(product) of functional connectivity and gene expression
correlation of this subnetwork for mice, Fig. 13b is
analogue for humans.

Discussion

We have shown that our spatial connectivity data structure
outperforms state-of-the-art graph engines when querying
connectivity of local brain areas. To achieve additional real-
time access of outgoing/incoming connections without hold-
ing the whole connectivity matrices in the memory, a combi-
nation of data compression, spatial locality, memory mapping
and hierarchical anatomical annotations is used.

Aggregation of outgoing/incoming connections of a brain
area requires the reading of all edges of the involved network
nodes. Therefore, row-wise data compression is used based on
the specificity of the task: It reduces the total amount of data
that needs to be read from the hard drive for whole rows, while
it is neglectable that it is not optimized for reading single
connections. As shown in the Evaluation section, spatial or-
ganization and sparsity of the data increases the compression
factor by 2, compared to random ordering. Sparsity is often
given in neurobiological connectomic data (Sporns 2016), and
can be further improved by extended preprocessing of the data
(Xu et al. 2015) which we suggest for future projects. One has
to note that row-wise compression improves only the reading
speed of rows, and therefore outgoing connections. This is not
an issue for undirected connectivity graphs, since those are
symmetrical (outgoing connections are equal to incoming
connections), but requires a separate transposed Connectivity

Fig. 12 Correlation between mean outgoing connectivity of the query’s VOI (Fig. 11 B) and the normalized projection strength of sites within CEA
according to Oh et al. Fig. 3/Supplementary Table 2 (Oh et al. 2014).

Neuroinform



Storage for retrieving incoming connections. While this does
not influence query speed, twice the disk space is needed.

A Hilbert curve is used to generate spatial locality of rows,
i.e. rows, whose nodes are spatially close in the brain space are
also close in the Connectivity Storage file. In combination
with memory mapping, read-ahead paging, this greatly in-
creases read speed, as shown in section Evaluation.
Further, it is not necessary to hold a Connectivity
Storage file in the memory. Therefore, one can access
large matrices, with billions of edges, and execute
Aggregation Queries on multiple matrices sequentially
without loading them into memory.

New data can be imported with a RESTAPI which creates
Connectivity Storages and Region-Wise Connectivity
Databases in less than an hour for connectivity matrices
<100GB, scaling linearly with file size. This enables users to

integrate their own, as well as data form large-scale brain
initiatives on a consumer-level machine efficiently.

Depending on data acquisition techniques, neurobiological
data is available on diverse scales (Betzel and Bassett 2017).
To operate on different region wise levels, we used hierarchi-
cal anatomical annotations (Lein et al. 2007) and aggregated
connectivity from bottom (voxel) to top (large brain regions).
Since those annotations consists of only 1288 brain regions,
the additional stored connections are neglectable. To bridge
the gap between region and voxel levels, we created a row and
column indices. These allow retrieving voxel-wise data for
brain regions and mapping lower resolution data to a common
reference space enabling the comparison of connectivity of
different resolution. One has to note that this only represents
an upsampling of the data. Since this is done in run-time, a
continuous experience in visual analytics workflows is

Fig. 13 a 2Dmouse brain regions (green: cortical regions, red: HY, pink:
MB and blue: CEA) and with overlap (product) of functional connectivity
and gene expression correlation (blue: weak, red: strong) b 2D human

brain regions (orange, brown and yellow: cortical regions, green: HY,
dark-green: MB and pink: CEA), also with overlap (product of
functional connectivity and gene expression correlation
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possible, for data does not need to be preprocessed.
Furthermore, this technique can be used to create region-
wise caches (voxel-wise outgoing/incoming connectivity of
brain regions), or pyramids representations with lower resolu-
tion (voxel-wise outgoing/incoming connectivity of lower-
resolution super voxels). Although these create additional
storage overhead, we show in Evaluation that scalability is
greatly improved by doing so, hence, future projects could
work with even larger matrices in tera- or petabyte range.

Conclusion

In this paper, we present a novel data structure to explore
heterogeneous neurobiological connectivity data of different
types, modalities and scale for interactive visual analytics
workflows. It enables domain experts to combine data from
large-scale brain initiatives with user-generated data, by uti-
lizing the hierarchical and spatial organization of the data.
Connectivity data at different resolutions, such as mesoscale
structural connectivity and region-wise functional connectivi-
ty can be queried on different levels on a common hierarchical
reference space. On the lowest level, voxel-wise brain net-
works with billions of edges can be accessed/queried in real-
time without having them loaded into working memory. It
outperforms state-of-the-art graph engines in receiving con-
nectivity of local brain areas, which allows continuous inter-
active exploration workflows on consumer level machines
and/or via web. We demonstrate this with the implementation
of a web-component for visual queries, based on VOI selec-
tions in 2D slice views. Results are visualized in a 3D volume
rendering together with brain anatomy. Case studies conduct-
ed with domain experts showed that we could reproduce find-
ings of neural circuits research which are currently extensively
investigated experimentally. An inter-species comparison of
multimodal brain networks linked to autism showed even
more versatile applications, and potential use in studying psy-
chiatric conditions.

For the future, we are aiming to extend this prototype to
create a holistic framework for interactive exploration of neu-
robiological data. This should not only allow to access the
data, but also include importing, preprocessing as well as
computing network statistics in the web.

Information Sharing Statement

The implementation of the data structure is available upon
individual request to the corresponding author, Florian
Ganglberger or Katja Bühler.
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