
To appear in IEEE VR 2019, the 26th IEEE Conference on Virtual Reality and 3D User Interfaces

Real-Time Continuous Level of Detail Rendering of Point Clouds
Markus Schütz*

TU Wien
Katharina Krösl†

TU Wien,
VRVis Forschungs-GmbH

Michael Wimmer‡

TU Wien

Figure 1: Left: Discrete LOD structure with sudden jumps in density and popping artifacts under motion. Middle: Screenshot of
our method in virtual reality. No visible seams across different levels of detail due to a continuous reduction in density, and also
continuously reduced density towards the periphery to reduce geometric complexity where less is needed. Endeavor point cloud
courtesy of NVIDIA [4]. Right: Continuous transition from one LOD to another.

ABSTRACT

Real-time rendering of large point clouds requires acceleration struc-
tures that reduce the number of points drawn on screen. State-of-the
art algorithms group and render points in hierarchically organized
chunks with varying extent and density, which results in sudden
changes of density from one level of detail to another, as well as no-
ticeable popping artifacts when additional chunks are blended in or
out. These popping artifacts are especially noticeable at lower levels
of detail, and consequently in virtual reality, where high performance
requirements impose a reduction in detail.

We propose a continuous level-of-detail method that exhibits grad-
ual rather than sudden changes in density. Our method continuously
recreates a down-sampled vertex buffer from the full point cloud,
based on camera orientation, position, and distance to the camera,
in a point-wise rather than chunk-wise fashion and at speeds up to
17 million points per millisecond. As a result, additional details are
blended in or out in a less noticeable and significantly less irritating
manner as compared to the state of the art. The improved acceptance
of our method was successfully evaluated in a user study.

Index Terms: Computing methodologies—Computer graphics—
Rendering; Computing methodologies—Computer graphics—
Graphics systems and interfaces—Virtual reality

1 INTRODUCTION

Point-cloud rendering poses a variety of challenges, such as the
enormous amount of points that is necessary to represent a model
in similar detail as textured meshes, as well as aliasing artifacts due
to poor scan quality and the lack of mipmapping. One of the most
common sources of point-based models are 3-dimensional scans of
real objects, buildings and even whole countries. Smaller objects and
structures may consist of a few million coloured points in millimeter

*e-mail: mschuetz@cg.tuwien.ac.at
†e-mail: kkroesl@cg.tuwien.ac.at
‡e-mail: wimmer@cg.tuwien.ac.at

resolution, whereas scans of large areas and whole countries may
consist of hundreds of billions of points.

Typically, hierarchical acceleration structures are used in order
to efficiently load and render these amounts of data, addressing two
aspects: The reduction of data to an amount that can be rendered
in real time, and out-of-core processes to load and unload data as
needed, especially if the whole data set is larger than the available
memory. In this paper, we will concentrate on the first aspect, the
in-core rendering of data sets that fit in GPU memory, but which
are still too large to be rendered in real time in VR. State-of-the art
methods address this by generating level-of-detail structures that
group points into chunks of various extent and density. Smaller
chunks with higher density and detail are visible up to a certain
distance from the viewer. As the distance to the viewer increases,
the density of the chunks to be rendered decreases. Chunk-wise
handling of LODs has emerged as the state of the art because a
coarse-grained management of data reduces overhead on file I/O,
network transfers, graphics draw calls, etc., as opposed to handling
each point individually. The disadvantage, however, is that these
chunks are noticeable in the rendered image, especially at lower
levels of detail and during motion.

Virtual Reality (VR) introduces additional issues in point-cloud
rendering, such as drastically increased performance and quality re-
quirements. The HTC Vive and Oculus Rift head-mounted displays
(HMDs) both require a frame rate of 90 frames per second (FPS) per
eye, for a total of 180 FPS. Render target sizes are also relatively
large, with display resolutions of 1080× 1200 for the HTC Vive
and the Oculus Rift, and a recommended resolution that is about
1.4 times higher in each direction to account for distortion and alias-
ing [26]. Furthermore, anti-aliasing becomes mandatory because
aliasing and other rendering artifacts are much more noticeable in
VR. Therefore, the level of detail of a point cloud has to be reduced
considerably in order to meet these high performance requirements.
Unfortunately, this augments noticeable popping artifacts as larger
chunks of points are blended in and out during motion.

The distortion effect of the lenses inside HMDs also results in
wasteful rendering at the outer regions of the image. The lenses
create a pincushion distortion that has to be countered by a bar-
rel distortion before displaying the rendered image. By default,
this barrel distortion is applied to the rendered image and strongly

1



To appear in IEEE VR 2019, the 26th IEEE Conference on Virtual Reality and 3D User Interfaces

compresses outer regions. This results in an effectively reduced
resolution for outer regions and thus needlessly rendered pixels [26].
NVIDIA’s multi-res shading and lens-matched shading address this
issue by rendering outer regions at lower resolutions [13], but this
only reduces shading cost, not geometry cost as is relevant for point
clouds.

Fig. 1 shows an example of a model that is particularly difficult to
render using state-of-the art discrete level-of-detail (DLOD) mech-
anisms in VR even though it is only 86 million points: It has high
depth complexity from most viewpoints due to multiple floors and
additional structures like fences and wires. The commonly used
octrees and kd-trees produce chunks that do not align well with
arbitrarily oriented walls, pillars or stairs. Also, the sizes of the
chunks are limited in granularity, which makes frustum culling, but
also focusing on details towards the center, less efficient.

In this paper, we propose a continuous level-of-detail (CLOD)
method for point clouds that addresses the challenges of real-time
point cloud rendering in VR through the following contributions:

1. Our method eliminates chunk-wise popping artifacts prevalent
in state-of-the art DLOD methods, and evaluates in a point-
wise rather than chunk-wise fashion which points to render.

2. The change of detail as users move through the scene is much
less noticeable due to a subtle point-wise fading approach.

3. Our method exhibits a smooth transition in density as the
distance to the viewer increases, as opposed to sudden jumps
in density prevalent in DLOD methods.

4. The point density is decreased away from the center of the
image, in order to account for the reduced resolution after
barrel distortion in VR. As a result, significantly fewer points
have to be rendered in the periphery.

In addition, our implementation avoids hierarchy traversal and
culling based on distance, frustum or visibility, yet manages to match
the performance and exceed the perceived quality of an octree-based
approach that culls nodes by frustum and distance. Rather than
traversing through a tree, finding visible nodes, and then dispatching
draw calls for each of them, we update a vertex buffer and render
the result with a single call to glDispatchCompute and glDrawAr-
raysIndirect per frame.

2 RELATED WORK

Luebke et al. [15] describe a wide variety of algorithms, problems
and solutions in the field of level-of-detail rendering, with a focus
on meshes, and a whole chapter on LOD for terrain rendering as a
special case. According to the terminology of the book, our method
can be classified as a view-dependent, continuous LOD method
with fidelity-based simplifications. Alternatively, methods may be
classified as discrete LOD methods with either fidelity or budget-
based simplification.

Terrain rendering is a particularly popular field for LOD rendering
since terrain models are usually meshes with a lot of polygons
covering a large area, with most of the polygons being either outside
the view frustum, or so far away from the camera that fine details are
not visible. Also, commonly used height-mapped terrains provide
additional opportunities for optimizations that are not available to
meshes of arbitrary complexity. Lindstrom et al. [14], Sander and
Mitchell [20], and Schneider and Westermann [23] describe methods
to render terrain with smooth transitions between levels of detail.
The process of smoothly transforming the geometry of a mesh from
one LOD to another is referred to as geomorphing, and it helps to
avoid popping artifacts in terrain rendering as users move through
the scene. This is not exclusive to terrain, however, and methods
such as Progressive Meshes describe geomorphing techniques for

meshes of arbitrary complexity [12]. Scherzer and Wimmer also
proposed an image-space technique that achieves a smooth transition
by interpolating between renderings of different LODs, rather than
adjusting the geometry [22].

Surfels [18] and QSplat [19] were the first proposed multireso-
lution methods for the point-based rendering of meshes. Surfels
create an octree-based data structure from the original mesh and
focus on high-quality rendering. QSplat, on the other hand, uses a
bounding-sphere hierarchy and has its focus on the interactive and
progressive rendering of large point clouds.

Following the advances of GPUs, Dachsbacher et al. [7] proposed
sequential point trees, a GPU-friendly approach that first generates a
point tree hierarchy similar to QSplat, and then sequentializes it into
an array, ordered by hierarchy level. The sequential array can be
quickly rendered by the GPU, and the level of detail can be reduced
by rendering the first x points of the hierarchically sorted points.
Gobbetti and Marton [10] were the first to use an LOD approach that
groups points into a hierarchy of chunks where each chunk contains
points that are added to the points contained in the parent. Chunk-
based rendering is very efficient for GPUs and has become the de-
facto standard for displaying large point clouds. Subsequent research
introduced various improvements and alternatives on how those
chunks are generated, their size, shape, and hierarchical properties.
In particular, Wimmer and Scheiblauer [28] introduced a nested
octree system where each node of the outer octree contains an inner
octree, which is a memory-optimized version of a sequential point
tree [7]. These inner octrees constitute the chunks mentioned above,
and are used to sample the points that each outer octree node contains.
They later simplified this to sampling points on regular grids for
each node to allow for efficient addition and removal of points [21].
Schütz [25] uses the same structure, but selects points following
a Poisson-disk sample distribution to improve the appearance of
the subsamples [6]. Another structure for addition and removal of
points was previously proposed by Wand et al. [27], which stores
the original points in its leaf nodes, and representative points in
inner nodes. Goswami proposed a multi-way kd-tree structure that
achieves a better balance in the number of points in each node and
reduces unnecessary branching [11].

Futterlieb et al. [9] propose a point-based rendering approach that
preserves details from the previous frame if the camera does not
move and then adds additional detail. They also reduce popping
artifacts through an image-based LOD-blending method of multiple
render targets, whereas our method avoids popping by point-wise
filtering and size adjustments. Discher et al. [8] built a virtual reality
point-cloud renderer with a kd-tree as its level-of-detail structure,
hidden-mesh rendering optimization to skip fragments that are not
visible on the HMD, and a node-wise drawing order from front to
back to exploit early fragment testing.

Many of these LOD schemes are able to handle arbitrarily large
point clouds in theory. Entwine [1] and Massive-PotreeConverter
[16] are two implementations that put this into practice, being able
to create an LOD structure for point clouds of more than 600 billion
points.

All of the discussed methods either suffer from artifacts due to
chunked LOD representations, or do not scale well enough to render
point clouds in VR. Work in the related field of molecular visualiza-
tion already covers the continuous level of detail for molecules, and
a smooth transition between different LODs of a molecule and the
transition from an abstract molecule shape to its atoms. Le Muzic et
al. [17] developed the first tool, CellView, that is capable of visual-
izing scenes with large amounts of molecules and up to 15 billion
atoms at 60 Hz. Aside from accelerating the rendering process, their
level-of-detail method also serves to reduce the visual clutter and
display smooth abstract molecular shapes, rather than clusters of
atoms. This is possible due to the specific structure and semantics
of atoms and molecules.

2



To appear in IEEE VR 2019, the 26th IEEE Conference on Virtual Reality and 3D User Interfaces

(a) Distance (b) Center (c) Both

(d) Distance (e) Center (f) Both

Figure 2: Point density reduction by distance to camera, distance
to the center of the screen, and both. Top-row: Filtering based
on the level of a point inside the hierarchy, with sudden drops in
density. Bottom-row: Continuous results with dither-like patterns
after adding a random value between 0 and 1 to the level of each
point. Colors represent the level attribute of a point.

3 CONTINUOUS LEVEL OF DETAIL

The basic idea behind our continuous level-of-detail method is to
repeatedly create a reduced low-resolution version of the full point
cloud at runtime, based on the current camera orientation and po-
sition, and with a gradual reduction in density as the distance to
the camera increases. Our current implementation skips common
optimizations such as frustum culling or hierarchical traversal. In-
stead, it iterates through all points of the data set to identify the
points that should be rendered and stores the relevant points in a new
vertex buffer. This reduced model is created over the course of a few
frames – fast enough to give the impression that the model is always
up-to-date, yet slow enough so as not to take too much performance
away from the actual rendering process. We are able to create an
updated version of the reduced model every 5 to 6 frames on a GTX
1080 by allocating around 1.1 milliseconds to the reduction step for
point clouds up to 104 million points.

The main aspect that makes our method continuous is a runtime
randomization of state-of-the-art discrete structures. These discrete
structures organize points in level 0, 1, and so on. Adding random
numbers between zero to one to the level of each point in such a
discrete hierarchy then allows us to filter on a continuous scale rather
than integer intervals. At a distance of 9.3 meters, we may want to
display points up to level 2.3, for example. The results exhibit a
continuous smooth transition in density with dither-like patterns, as
shown in Fig. 2.

3.1 Data Structure

When designing a chunk-based LOD system for points, one has
to decide whether data from higher (more detailed) levels should
be added to the data from lower levels (corresponding to memory
optimized sequential point trees [28]), or replace it (corresponding to
the original sequential point trees [7], and similar to the data structure
by Wand et al. [27]). The advantage of the additive approach is that
it does not require additional memory and we do not have to take
care of removing lower levels before displaying a higher level. The
advantage of replacing lower levels is that each level can store and
display representative points for the current level without data from
another level inbetween.

We chose to primarily implement an additive scheme for perfor-
mance reasons. However, instead of storing the points in a hierarchy
as in the original schemes, our CLOD data structure is a single flat
array, with the hierarchy level stored as a point attribute, and the
structure is evaluated in a point-wise fashion on the GPU rather than
a chunk-wise fashion on the CPU.

(a) L0 (b) L1 (c) L2 (d) L3

(e) All points stored in a single vertex buffer, preferably but not necessarily ordered.

Figure 3: Our CLOD structure is a series of subsamples of the
original point cloud that is then flattened into a single array.

Points are subsampled by enforcing a level-dependent spacing
between points, given by

spacinglevel =
rootSpacing

2level (1)

For example, level 0 contains points with a spacing of 1 meter,
level 1 points with a spacing of 0.5 meters, and so on. Each point is
assigned to exactly one level, and merging all levels results in the
original point cloud.

To reduce aliasing at lower levels, we borrow the idea of averaging
from the replacement scheme: points that are assigned to lower-level
nodes keep their original position but have their original color value
replaced by an average color over the area they represent. This is
not an entirely accurate solution since points with averages over
different radii will be intermixed due to the additive LOD scheme,
but it is significantly better for the visual quality than aliasing effects
from keeping the original color values. Overblurring occurs but
remains a minor issue because in any given view, points with the
correct averaging radii from high LODs far outnumber points with
larger averaging radii from lower LODs.

The order of the points inside the array is not important because
our in-core method repeatedly iterates over all points to produce a
downsampled version at runtime. However, we still recommend to
order them from lowest level to highest level because the method
can be applied to any subset of the data, and ordering points from
lowest level to highest level allows us to display a coarse version of
the whole model while increasingly higher levels of detail are still
being loaded.

3.2 Build-Up
The build-up step for our CLOD structure uses the publicly available
PotreeConverter [24] [25] to organize points into an octree, and
custom scripts to average colors and flatten the hierarchy into an
array.

The PotreeConverter creates an octree out of a point cloud that
can be used to stream and render only relevant chunks of points
up to a certain level of detail. It also selects points based on the
spacing between points as given by Equation 1, which we need for
our CLOD simplification algorithm .The result exhibits two issues,
however, that we addressed with additional custom scripts.

The first issue is aliasing as discussed above, as points in lower-
resolution octree levels store the color from a single input point,
rather than the average over the area they represent. We address this
issue by computing the arithmetic mean of the color of a point in
leveln, and the colors of all points at leveln + 1 within the distance
defined by spacing at level n.

The second issue is the large amount of relatively sparsely pop-
ulated nodes that are generated, and then stored in separate files.
Each node consists of around 100 to 10,000 points. Handling a large
amount of small files results in I/O overhead that is unnecessary
since our method does not deal with individual tiles, but rather all

3



To appear in IEEE VR 2019, the 26th IEEE Conference on Virtual Reality and 3D User Interfaces

Figure 4: Over the course of a few frames, the compute shader
iterates through all points of the full point cloud and copies the
subset that will be rendered into a separate vertex buffer.

points as a single large blob. We therefore concatenate all the octree
nodes into a single file. The only hierarchical information that is
kept is the octree level of a point, which is stored as a byte inside
the alpha component of the point’s color.

The result of the build-up step is an array of points where each
point contains position, an average color over the area it represents,
and its level within the hierarchy. Each point requires 16 bytes: 12
bytes for position, 3 bytes for color, and 1 byte for the hierarchy
level.

3.3 Rendering
The rendering process consists of two steps:

1. Reduce: Repeatedly recreating a reduced vertex buffer over the
course of a few frames, based on view-frustum and a CLOD-
factor.

2. Draw: Rendering the most recent reduced vertex buffer.

3.3.1 Reduce
The reduce step creates a new vertex buffer by iterating through
all points in the full point cloud and copying those that match the
desired level of detail in the target buffer, as shown in Fig. 4.

We want to obtain a vertex buffer with a specific target spacing
between points, depending on the distance to the camera. As a base-
line, we would like a point spacing of 1 millimeter at a distance of 1
meter. The baseline is adjustable by a CLOD-factor and multiplied
by the distance. This definition for the baseline makes it independent
of the field of view and the resolution of the target devices, so that
users will get to see the same points for the same viewpoint, except
for additional points in the periphery with higher fields of view.

For desktop use, this desired minimum spacing (millimeters) be-
tween points at any given distance to the viewer (meters) is computed
as

targetSpacingDesktop =
distance ·CLOD

1000
(2)

In order to account for lens distortions and the resulting reduction
in resolution in outer regions of the image, we compute the desired
spacing in VR as

targetSpacingV R =
targetSpacingDesktop

max(1−a ·dc,minDensity)
(3)

The denominator reduces the density in the periphery, which
leads to a significantly reduced workload for the vertex shader. dc
specifies the distance to the center in normalized device coordinate
space, without depth. dc is zero at the center and one at the border
of the ellipse inscribed within the screen. a is used to adjust how
fast the density decreases and minDensity specifies a lower limit on
the reduction in percent. We suggest values of 0.5 for a and 0.3 for
minDensity.

We also tried to reduce the density from the center based on
a Gaussian function but found no significant improvement. We
therefore settled with the simpler Equation 3. Fig. 2 shows the result
of the reduction for Equation 2 and Equation 3.

In VR, the reduce step is executed once per frame for a single
HMD-centered frustum that covers both eyes, and the same reduced
model is then rendered for both eyes. During quick motions, it will
be noticeable that the currently rendered model is missing points
outside of this view frustum because it takes 5 to 6 frames to produce
an updated model. To alleviate this issue, the reduce shader clips
against an extended frustum by projecting a point to normalized
device coordinates, and then clipping the x and y axes against a
range of [−2,2] instead of [−1,1]. We suggest to set minDensity to
around 0.3 to capture additional points in the extended frustum in a
low but sufficient density to account for quick head movements.

The reduce operation is implemented as a compute shader that
iterates over all points and stores the points that pass our CLOD
requirements in a new buffer, as shown in Fig. 4. The requirements
are evaluated by first clipping against the extended frustum, and
then comparing the spacing of the currently processed point to the
target spacing at that point’s location. If the spacing of that point
is smaller than the targeted spacing, the point will be discarded
because it represents a higher level of detail than necessary. The
spacing of a point is obtained from its level in the hierarchy by
applying Equation 1. The spacing can alternatively be interpreted as
the amount of space that this point occupies for itself. If the targeted
spacing is large, only points that occupy a respectively large space
should be visible.

At this stage, all the points are still classified in discrete integer
levels, which continues to produce sharp drops in density. In order
to produce smooth transitions, we add a random factor between 0 to
1 to the level of the point. This pseudo-random factor is different for
each point, but remains the same for each point over time.

The randomization of the level of a point also randomizes the
spacing, the claimed minimum distance to another point at this
hierarchy level. Since we add to the level, the reported spacing is
reduced. Some points of the same hierarchy level are now more
likely to fail the targeted spacing requirements than others, which
leads to a smooth falloff in density.

3.3.2 Draw

The draw step renders the most recent fully reduced vertex buffer,
as created by the reduce step. Since the vertex buffers are created
directly on the GPU, we use the gl.drawArraysIndirect command
to render the data without the need to send the vertex buffer, or the
number of points it contains, back to the CPU.

Point sizes are set to targetSpacing (millimeters) in order to fill
the holes that appear due to the reduce step, as shown in Fig. 5b.
Points with a lower spacing are discarded in the reduce step, and
resizing the remaining points makes up for the reduced density.
However, this only deals with holes that would be caused by our
CLOD method. It does not deal with holes due to insufficient or
varying sample density in the original point cloud. We suggest to
additionally specify a minimum point size in millimeters, based on
the sample density of the 3D scanner, to avoid huge gaps between
points upon closer inspection by the user.

At this stage, moving through the scene still exhibits irritating
popping artifacts of individual points if points accepted by the re-
duce shader immediately appear with their full world-space size of
targetSpacing. Using targetSpacing as the world-space point size re-
sults in pixel sizes that are independent of the distance to the viewer.
As users get closer to a point, the targetSpacing at this point’s lo-
cation, and therefore that point’s world-space size, shrinks, but its
resulting pixel size remains the same. This means that depending on
the CLOD factor, newly accepted points pop in at a certain pixel size
(e.g., 5 pixels). To improve from point-wise popping to point-wise

4



To appear in IEEE VR 2019, the 26th IEEE Conference on Virtual Reality and 3D User Interfaces

(a) Fixed size of 2 pixels (b) Point sizes adjusted by density

(c) Identifying points in blend-range (red) (d) Reducing size of points in blend-range

Figure 5: Result of the reduction step and application of a blend-
threshold to fade-in additional detail.

Figure 6: Point sizes are set to targetSpacing in order to fill holes
from filtering by targetSpacing. To avoid points popping in at full
size the moment they become visible (red), we let them grow to full
size within a certain blend-range (green).

fading, we propose an additional blend range within which points
grow to their full size, as shown in Fig. 6. At the moment when
a point first becomes visible, that is as soon as targetSpacing =
pointSpacing, its size is set to 0. Once we get closer, the point grows
until it reaches its full size of targetSpacing when targetSpacing =
blendRangeFactor · pointSpacing. Within the blend range, point
sizes are linearly interpolated between [0, targetSpacing]. We sug-
gest a value of 0.8 for the blendRangeFactor so that users have to
move another 20% closer to the point until it reaches its full size.
Note that this point-wise fading method depends on targetSpacing
but not on time. As a result, points fade in or out depending on
the distance to the user as well as distance to the center of the
screen. Note also that the blend range is defined as a fraction of the
pointSpacing, and is therefore larger at lower levels of detail. It may
take 10 meters until points of lower LODs grow to their full size and
only 1 meter for points at higher LODs, but it is always the same
fraction of distance from the appearance of a point to full growth.

4 RESULTS

Fig. 7b shows that our CLOD approach achieves a more uniform
distribution of points in screen-space, as opposed to DLOD methods
like in Fig. 7a. The desired density at any location can be specified
in the reduce shader by any mapping of a 3D coordinate to a target
spacing. Equation 2 and Equation 3 are the two we propose for
desktop and VR rendering, respectively, but they can be replaced or
combined with other mathematical equations.

(a) DLOD (b) CLOD (c) CLOD focused

Figure 7: Distribution of 150k points with DLOD and CLOD.

4.1 Implementation
Our CLOD renderer is implemented in JavaScript based on Google’s
V8 engine [3], with custom bindings to OpenGL 4.5 and OpenVR [2].
While fast for a scripting engine, tree-traversal of hundreds to thou-
sands of octree nodes, as done by Potree [25], is an expensive
operation in JavaScript that, combined with also relatively expensive
OpenGL draw calls, can cost a couple of milliseconds of CPU time
per frame. A considerable advantage of the proposed CLOD im-
plementation in scripting engines is that it eliminates tree-traversal
of the point cloud and reduces draw calls to a single call to glDis-
patchCompute and glDrawArrayIndirect, at the cost of reserving 1
millisecond of GPU time per frame for the reduce shader.

Source code samples for this work are available at
https://github.com/m-schuetz/ieeevr 2019 clod.

4.2 Performance
OpenGL execution times were measured with glQueryCounter,
which returns the timestamp after all previously scheduled OpenGL
commands have finished. The difference in timestamps gives us the
duration of the OpenGL commands that were executed in-between.
The validity of the results of glQueryCounter were cross-checked
with NVIDIA’s performance profiler Nsight.

Compared with the octree-based DLOD method of Potree, our
CLOD method requires an additional millisecond per frame to create
the reduced vertex buffer, but frees the CPU from tree-traversal and
reduces the number of draw-calls down to a single call to glDis-
patchCompute and glDrawArrays. Draw performance is similar for
both approaches with a similar amount of detail. Assuming the same
number of rendered points, the CLOD approach just redistributes
points more uniformly.

4.2.1 Performance of Reduce Pass

In this section, we would like to justify our decision not to use
hierarchical culling algorithms, and show that repeatedly iterating
over all points of the full point cloud is feasible for our test data of
up to 104 million points.

We benchmarked the reduce shader on three systems: a GTX
1080 desktop system with an Intel i7-3770K processor, a GTX
1060 desktop system with an AMD Ryzen 5 1600X, and a 940 MX
notebook system with an Intel i7-7500U.

Table 1 contains profiling data of the reduce step for the point
cloud of the Endeavor building site and the Matterhorn on all three
test systems. On a GTX 1080, point clouds can be reduced at
a rate of 16 to 17 million points per millisecond. The reduction
of 86 million points down to 5 million points takes about 5.45
milliseconds out of 16.6ms for 60Hz desktop renderings or 11.1ms
for 2x90Hz VR rendering. In practice, the available time to complete
a frame in VR is closer to 9ms, and the reduced data set has to be
rendered twice, once for each eye. The reduce step is therefore
distributed over multiple frames. The profiling information in Ta-
ble 1 helps to estimate how many points it should process in each
frame. Allocating around one millisecond to the reduce step means
we can process around 16 million points per frame on a GTX 1080,
and obtain the final reduced result after 5 to 7 frames for point clouds
of 86M points and 104M points. Due to its lower memory capacity,

5

https://github.com/m-schuetz/ieeevr_2019_clod


To appear in IEEE VR 2019, the 26th IEEE Conference on Virtual Reality and 3D User Interfaces

the 940MX was profiled only for the first 50 million points of the
data set, and a maximum target buffer size of 5 million points.

Table 1: Performance of the reduce step.

model GPU reduced to duration points/ms

Endeavor GTX 1080 1.0M 5.22ms 16.58M
(86M points) 5.0M 5.45ms 15.90M

10.0M 6.04ms 14.33M
GTX 1060 1.0M 8.41ms 10.30M

5.0M 9.20ms 9.41M
10.0M 10.25ms 8.45M

Matterhorn GTX 1080 1.0M 6.25ms 16.76M
(104M points) 5.0M 6.60ms 15.87M

10.0M 6.95ms 15.07M

Endeavor 940MX 1.0M 60.11ms 0.83M
(50M points) 5.0M 65.00ms 0.77M

Table 2: Theoretical memory bandwidth according to NVIDIA
Control Panel and the utilization by the reduce shader.

GPU bandwidth utilized rate

GTX 1080 320 GB/s 267.52 GB/s 84%
GTX 1060 192 GB/s 165.12 GB/s 86%
940MX 14.4 GB/s 13.28 GB/s 92%

Table 2 shows how much of the theoretically available memory
bandwidth is utilized by the reduce shader. The values are computed
by taking the numbers for points / ms in Table 1 for a reduction
to 1 million points, and multiplying them by 16 to convert from
points per millisecond to megabytes per millisecond. We believe the
numbers to be reasonable because the reduce shader does little more
than copying a tenth or less of the input data to the target buffer.

The reduction step has an overall relatively stable and predictable
performance that is mostly dependent on the number of input points,
and to a lesser extent on the number of output points, mostly because
the number of output points is at least an order of magnitude lower
than the number of input points.

4.2.2 Performance of Draw Pass
Draw performance depends on a variety of factors and greatly dif-
fers between different viewpoints, even with the same number of
points and MSAA settings, as shown in Table 3. Factors that af-
fect performance include drawing order, point size and coverage.
Drawing points from front to back is preferable to exploit early frag-
ment testing. A certain geometric locality of points that are stored
consecutively in the vertex buffer also benefits draw performance
compared to a shuffled vertex buffer, which is why we keep points
in the same order as they were stored inside the octree nodes during
build-up. Drawing the same amount of points with the same point
sizes to a smaller part of the screen can also significantly improve
performance by a factor of two.

The numbers in Table 3 are meant to illustrate the range of draw
performances in regular use cases and are by no means an exhaustive
benchmark. We did not exploit early fragment testing but we believe
there is opportunity to do so, for example by writing the results of the
reduce step into different target buffers, depending on view-distance.

5 USER STUDY

The improved acceptance of our method was evaluated in a user
study with 23 participants. We chose to evaluate our results by a user
study instead of comparing error metrics to a ground truth because

Table 3: Draw performances of the Endeavor point cloud from
different views with 1x to 8x MSAA into a framebuffer with 1920 x
1080 pixels on a GTX 1080, with our CLOD method compared to
the octree method of Potree.

Method View #points duration (ms)
1xAA 4xAA 8xAA

CLOD 1 2M 0.73 2.04 3.92
4M 1.10 2.46 4.83

2 2M 0.78 3.06 5.43
4M 1.07 3.08 6.04

Octree 1 2M 0.74 2.15 3.67
4M 1.19 2.78 4.82

2 2M 0.86 2.63 5.15
4M 1.73 3.16 5.08

popping artifacts, perceived quality, and potential issues with density
reductions in the periphery are largely a perception issue.

We invited staff of a visual computing research center, staff of
an archaeology research center, and students and staff of the visual
computing group of a university to participate in our user study. All
three institutions work with point clouds to a certain extent, so many
of our participants have already captured, processed, or visualized
point clouds before. Our participants were between 25 to 59 years
old, 78% were male and 22% female. All participants are regular
users of computers. Two participants have never experienced VR,
5 and 7 rarely and sometimes experience VR, and 9 participants
regularly or often experience VR. 7 participants work sometimes
with point clouds, and another 7 regularly or often. 6 users have
never experienced point clouds in VR before, 12 users rarely, 2
sometimes and 3 regularly work with point clouds in VR.

Users were confronted with two point clouds, Matterhorn and
Endeavor, in four scenarios inside the VR environment. They could
freely switch between three LOD methods, labeled A, B, and C,
with the touch pad on the controller. Method A is an octree-based
level-of-detail system, implemented after Potree [25], which adjusts
point sizes to the level of detail. Method B is based on the same
octree approach, but points have a fixed pixel size. Method C is our
approach that renders with continuous level of detail.

The four scenarios are:

1. Matterhorn: 104M points; high level of detail.

2. Endeavor Small-Points: 86M points; low level of detail; small
point sizes, insufficient to fill holes

3. Endeavor Large-Points: 86M points; medium level of detail;
point sizes for method A and B adapted to cover holes

4. Endeavor Illuminated: 86M points; medium level of detail;
no colors, each point is white, but illuminated by Eye-Dome-
Lighting [5]. We decided to evaluate this case because the
original colored data exhibits strong noise and flickering arti-
facts since it is a combination of individual scans with different
light exposures.

Tests were executed on a VIVE (6 participants) and a VIVE Pro
(17 participants), depending on availability. Render-target resolution
was set to about 1512 times 1680 pixels for both in the SteamVR
settings menu. Level of detail was set conservatively to maintain 90
fps in the worst case on all of our test systems, which were equipped
with either a GTX 1070 or GTX 1080. The point budget for the
octree methods, and the CLOD factor for our method was set to
render no more than 3 million points at a time, so that participants

6



To appear in IEEE VR 2019, the 26th IEEE Conference on Virtual Reality and 3D User Interfaces

were presented with the same images (apart from HMD resolution)
regardless of the used system.

The workflow for each participant was as follows:

1. Hand participant an informed user consent form to sign.

2. Ask questions about the demographics. We asked the user’s
age, gender, their occupation, and how often they work with
computers, virtual reality, point clouds, and point clouds in
virtual reality.

3. Show users the four scenarios, one after another. During each
scenario, users were asked to rate their overall impression,
how noticeable changes in the level of detail are, and how
irritating these changes are on a scale of 1 to 10 for each
method. We filled out their answers in Google forms so that
they could remain inside the VR environment and take another
look before giving their answers.

4. After the four scenarios, users were asked to choose their
favourite method, and the second best.

Our hypotheses were:

1. H1A and H1B: Method C gives a better impression of the point
cloud than methods A and B.

2. H2A and H2B: Method C has less noticeable changes in the
level of detail than methods A and B.

3. H3A and H3B: Method C has less irritating changes in the
level of detail than methods A and B.

We tested our hypotheses using the Mann-Whitney U test as it
is non-parametric and does not assume a normal distribution, and
compared the p-values with a significance level of α = 0.005. 22
out of 24 combinations of scenarios and hypotheses have shown
a significant improvement of our method (p < 0.0037). The non-
significant cases are H1A in the Matterhorn scenario (p = 0.152;
Fig. 8c), and H2A in the Matterhorn scenario (p = 0.012; Fig. 8a), i.e.
method C does not leave a statistically significantly better impression
and LOD is not significantly less noticeable compared to method
A in the Matterhorn scenario. This is not unexpected since the
Matterhorn data set has a low geometric complexity and mostly
low-frequency color variations that do not pose a challenge for any
of the evaluated methods. However, our method C shows significant
improvements over A and B in all scenarios of the Endeavor data
set, because it has a high geometric complexity that state-of-the art
DLOD methods do not handle well.

Apart from that, 20 out of 23 participants rated our method the
preferred one. One user did not name a preferred method, and three
users did not name a runner-up.

We would also like to discuss one notable result. Fig. 8a and
Fig. 8b show that our method was more noticeable and irritating in
scenario 3, compared to its results in the other three scenarios. We
believe that this is largely caused by the inhomogeneous and noisy
colors of the points in this data set, combined with a higher level of
detail and point sizes as opposed to scenario 2. The point cloud is a
mix of laser scans from many different positions, each colored by
photographs at the respective location. Because of the varying light
exposure at different positions, some scans ended up darker than
others, even in overlapping regions. As a consequence, overlapping
regions are represented by bright to white points from one scan,
and dark to black points from another scan. When a user navigates
towards such a region, black points would suddenly appear in a
previously mostly grey region. This is less of an issue at lower levels
of detail where colors are averaged over the area they represent.

(a) How noticeable? (lower is better) (b) How irritating? (lower is better)

(c) Impressions (higher is better) (d) (e)

Figure 8: Box plots of the users’ ratings for methods A, B, and our
method, C. (d) Overall preferred method. (e) Runner-up.

6 CONCLUSIONS AND FUTURE WORK

We presented a method to create and render point clouds with a
continuous level of detail that is fast enough for VR applications.
The continuous LOD results in subtle and less irritating changes
of detail as users move through the scene, and therefore improves
the VR experience over discrete LOD methods. This is achieved
through three main contributions: first, a compute shader that iterates
over the point cloud and selects points according to a target spacing;
second, a randomization of point LODs to avoid harsh changes
between levels of detail, and third, a transition period where the size
of new points is increased smoothly. A user study has confirmed that
users prefer our method to state-of-the-art point-rendering methods.

We were able to implement our CLOD method without hierar-
chical traversal while matching the detail and performance of an
octree-based DLOD method. The downside is that this currently
limits our method to point clouds that fit in GPU memory, and also
increases the number of frames it takes to compute a new down-
sampled version of the point cloud with the number of input points.
However, we believe that CLOD can be implemented in a simi-
lar hierarchical and out-of-core fashion as state-of-the-art DLOD
methods by applying the reduction step to the nodes of the DLOD
structure and discard points the same way we do now. In the future,
we would like to evaluate optimal ways to realize this in order to
achieve continuous level of detail for arbitrarily large point clouds.

Z-fighting issues are currently augmented by repeatedly recreating
a new vertex buffer. Normally, repeatedly rendering two overlapping
triangles at the same depth would return the same result as long as
they are rendered in the same order and if they are projected with
the same matrices, i.e., if there is no motion. Since the order of
points inside the down-sampled model is unpredictable and changes
with each iteration, so does the order in which they are drawn by
the GPU, which results in constant z-fighting, even if there is no
motion. We currently don’t address this issue other than by carefully
selecting the near clip plane.

We currently reduce the point density in the periphery mainly
to account for the distortion that is applied to the rendered image
before it is displayed in an HMD. The same principle could likely
be used for foveated rendering in order to adjust the point density
to the viewing direction of the user’s eyes. A potential issue could
be that our method requires five to six frames to compute a new
reduced vertex buffer, which may or may not be too slow for quick
eye movements.

Rendering performance of our method is currently harder to pre-
dict in advance compared to DLOD methods, because it is fidelity-
based rather than budget-based. The same quality settings may result

7



To appear in IEEE VR 2019, the 26th IEEE Conference on Virtual Reality and 3D User Interfaces

Figure 9: Third-person view of a CLOD subsample selected for the
user’s current viewpoint.

in 1 million points in one viewpoint, and 3 million points in another.
However, adapting the level of detail to the performance of previous
frames may be less noticeable than with DLOD methods.

ACKNOWLEDGMENTS

The authors wish to thank NVIDIA for providing the Endeavor
data set, consisting of laser scans of the building site of their new
headquarter, and Pix4D for providing a photogrammetry scan of
the Matterhorn. This research was enabled by the Doctoral College
Computational Design (DCCD) of the Center for Geometry and
Computational Design (GCD) at TU Wien.

REFERENCES

[1] Entwine. https://entwine.io/. Accessed 2018.11.24.
[2] Openvr. https://github.com/ValveSoftware/openvr. Ac-

cessed 2018.11.28.
[3] V8 javascript engine. https://v8.dev/. Accessed 2018.11.28.
[4] Endeavor - scan of the building site of nvidia’s new headquarter. https:
//www.nvidia.com, April 2016. Accessed 2018.11.23.

[5] C. Boucheny. Visualisation scientifique de grands volumes de donnes :
Pour une approche perceptive. 2009.

[6] R. L. Cook. Stochastic sampling in computer graphics. ACM Trans.
Graph., 5(1):51–72, Jan. 1986. doi: 10.1145/7529.8927

[7] C. Dachsbacher, C. Vogelgsang, and M. Stamminger. Sequential point
trees. ACM Transactions on Graphics, 22:657, 07 2003. doi: 10.1145/
1201775.882321

[8] S. Discher, L. Masopust, S. Schulz, R. Richter, and J. Döllner. A point-
based and image-based multi-pass rendering technique for visualizing
massive 3d point clouds in vr environments. In 2018 Journal of WSCG,
vol. 26, 06 2018. doi: 10.24132/JWSCG.2018.26.2.2

[9] J. Futterlieb, C. Teutsch, and D. Berndt. Smooth visualization of large
point clouds. IADIS International Journal on Computer Science and
Information, 2:146158, 2016.

[10] E. Gobbetti and F. Marton. Layered point clouds: A simple and efficient
multiresolution structure for distributing and rendering gigantic point-
sampled models. Comput. Graph., 28(6):815–826, Dec. 2004. doi: 10.
1016/j.cag.2004.08.010

[11] P. Goswami, Y. Zhang, R. Pajarola, and E. Gobbetti. High quality
interactive rendering of massive point models using multi-way kd-
trees. In 2010 18th Pacific Conference on Computer Graphics and
Applications, pp. 93–100, Sept 2010. doi: 10.1109/PacificGraphics.2010.20

[12] H. Hoppe. Progressive meshes. In Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’96, pp. 99–108. ACM, New York, NY, USA, 1996. doi: 10.
1145/237170.237216

[13] M. Kraemer. Accelerating your vr games with vrworks. NVIDIAs
GPU Technology Conference (GTC), 2018.

[14] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A.
Turner. Real-time, continuous level of detail rendering of height fields.
In Proceedings of the 23rd Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’96, pp. 109–118. ACM, New
York, NY, USA, 1996. doi: 10.1145/237170.237217

[15] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and
R. Huebner. Level of Detail for 3D Graphics. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2003.

[16] O. Martinez Rubi, S. Verhoeven, M. van Meersbergen, M. Schütz,
P. Oosterom, R. Goncalves, and T. Tijssen. Taming the beast: Free and
open-source massive point cloud web visualization. 11 2015. doi: 10.
13140/RG.2.1.1731.4326/1

[17] M. L. Muzic, L. Autin, J. Parulek, and I. Viola. cellview: a tool for
illustrative and multi-scale rendering of large biomolecular datasets. In
K. Bühler, L. Linsen, and N. W. John, eds., Eurographics Workshop
on Visual Computing for Biology and Medicine, pp. 61–70. EG Digital
Library, The Eurographics Association, Sept. 2015. doi: 10.2312/vcbm.
20151209

[18] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface
elements as rendering primitives. In Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’00, pp. 335–342. ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 2000. doi: 10.1145/344779.344936

[19] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution point ren-
dering system for large meshes. In Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’00, pp. 343–352. ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 2000. doi: 10.1145/344779.344940

[20] P. V. Sander and J. L. Mitchell. Progressive buffers: View-dependent
geometry and texture lod rendering. In ACM SIGGRAPH 2006 Courses,
SIGGRAPH ’06, pp. 1–18. ACM, New York, NY, USA, 2006. doi: 10.
1145/1185657.1185826

[21] C. Scheiblauer. Interactions with Gigantic Point Clouds. PhD thesis,
Institute of Computer Graphics and Algorithms, Vienna University of
Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, 2014.

[22] D. Scherzer and M. Wimmer. Frame sequential interpolation for dis-
crete level-of-detail rendering. Computer Graphics Forum (Proceed-
ings EGSR 2008), 27(4):1175–1181, June 2008. doi: 10.1111/j.1467
-8659.2008.01255.x

[23] J. Schneider and R. Westermann. Gpu-friendly high-quality terrain
rendering. Journal of WSCG, 14(1-3):49–56, 2006.

[24] M. Schütz. Potree. https://github.com/potree/potree. Ac-
cessed 2018.11.26.

[25] M. Schütz. Potree: Rendering large point clouds in web browsers.
Master’s thesis, TU Wien, Austria, 2016.

[26] A. Vlachos. Advanced vr rendering. Game Developers Conference,
industry talk, March 2015. Accessed 2018.11.20.

[27] M. Wand, A. Berner, M. Bokeloh, A. Fleck, M. Hoffmann, P. Jenke,
B. Maier, D. Staneker, and A. Schilling. Interactive editing of large
point clouds. In SPBG, 2007.

[28] M. Wimmer and C. Scheiblauer. Instant points: Fast rendering of
unprocessed point clouds. In Proceedings Symposium on Point-Based
Graphics 2006, pp. 129–136. Eurographics, Eurographics Association,
July 2006. doi: 10.2312/SPBG/SPBG06/129-136

8

https://entwine.io/
https://entwine.io/
https://entwine.io/
https://entwine.io/
https://github.com/ValveSoftware/openvr
https://v8.dev/
https://www.nvidia.com
https://www.nvidia.com
https://www.nvidia.com
https://www.nvidia.com
https://www.nvidia.com
https://www.nvidia.com
https://www.nvidia.com
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/1201775.882321
https://doi.org/10.1145/1201775.882321
https://doi.org/10.1145/1201775.882321
https://doi.org/10.1145/1201775.882321
https://doi.org/10.1145/1201775.882321
https://doi.org/10.1145/1201775.882321
https://doi.org/10.1145/1201775.882321
https://doi.org/10.1145/1201775.882321
https://doi.org/10.24132/JWSCG.2018.26.2.2
https://doi.org/10.24132/JWSCG.2018.26.2.2
https://doi.org/10.24132/JWSCG.2018.26.2.2
https://doi.org/10.24132/JWSCG.2018.26.2.2
https://doi.org/10.24132/JWSCG.2018.26.2.2
https://doi.org/10.24132/JWSCG.2018.26.2.2
https://doi.org/10.24132/JWSCG.2018.26.2.2
https://doi.org/10.24132/JWSCG.2018.26.2.2
https://doi.org/10.1016/j.cag.2004.08.010
https://doi.org/10.1016/j.cag.2004.08.010
https://doi.org/10.1016/j.cag.2004.08.010
https://doi.org/10.1016/j.cag.2004.08.010
https://doi.org/10.1016/j.cag.2004.08.010
https://doi.org/10.1016/j.cag.2004.08.010
https://doi.org/10.1016/j.cag.2004.08.010
https://doi.org/10.1016/j.cag.2004.08.010
https://doi.org/10.1016/j.cag.2004.08.010
https://doi.org/10.1109/PacificGraphics.2010.20
https://doi.org/10.1109/PacificGraphics.2010.20
https://doi.org/10.1109/PacificGraphics.2010.20
https://doi.org/10.1109/PacificGraphics.2010.20
https://doi.org/10.1109/PacificGraphics.2010.20
https://doi.org/10.1109/PacificGraphics.2010.20
https://doi.org/10.1109/PacificGraphics.2010.20
https://doi.org/10.1109/PacificGraphics.2010.20
https://doi.org/10.1109/PacificGraphics.2010.20
https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/237170.237216
http://on-demand.gputechconf.com/gtc/2018/presentation/s8846-enhancing-and-accelerating-your-vr-applications-with-the-vrworks-sdk.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8846-enhancing-and-accelerating-your-vr-applications-with-the-vrworks-sdk.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8846-enhancing-and-accelerating-your-vr-applications-with-the-vrworks-sdk.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8846-enhancing-and-accelerating-your-vr-applications-with-the-vrworks-sdk.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8846-enhancing-and-accelerating-your-vr-applications-with-the-vrworks-sdk.pdf
https://doi.org/10.1145/237170.237217
https://doi.org/10.1145/237170.237217
https://doi.org/10.1145/237170.237217
https://doi.org/10.1145/237170.237217
https://doi.org/10.1145/237170.237217
https://doi.org/10.1145/237170.237217
https://doi.org/10.1145/237170.237217
https://doi.org/10.1145/237170.237217
https://doi.org/10.1145/237170.237217
https://doi.org/10.1145/237170.237217
https://doi.org/10.1145/237170.237217
https://doi.org/10.1145/237170.237217
https://doi.org/10.13140/RG.2.1.1731.4326/1
https://doi.org/10.13140/RG.2.1.1731.4326/1
https://doi.org/10.13140/RG.2.1.1731.4326/1
https://doi.org/10.13140/RG.2.1.1731.4326/1
https://doi.org/10.13140/RG.2.1.1731.4326/1
https://doi.org/10.13140/RG.2.1.1731.4326/1
https://doi.org/10.13140/RG.2.1.1731.4326/1
https://doi.org/10.2312/vcbm.20151209
https://doi.org/10.2312/vcbm.20151209
https://doi.org/10.2312/vcbm.20151209
https://doi.org/10.2312/vcbm.20151209
https://doi.org/10.2312/vcbm.20151209
https://doi.org/10.2312/vcbm.20151209
https://doi.org/10.2312/vcbm.20151209
https://doi.org/10.2312/vcbm.20151209
https://doi.org/10.2312/vcbm.20151209
https://doi.org/10.2312/vcbm.20151209
https://doi.org/10.2312/vcbm.20151209
https://doi.org/10.2312/vcbm.20151209
https://doi.org/10.2312/vcbm.20151209
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/344779.344940
https://doi.org/10.1145/344779.344940
https://doi.org/10.1145/344779.344940
https://doi.org/10.1145/344779.344940
https://doi.org/10.1145/344779.344940
https://doi.org/10.1145/344779.344940
https://doi.org/10.1145/344779.344940
https://doi.org/10.1145/344779.344940
https://doi.org/10.1145/344779.344940
https://doi.org/10.1145/344779.344940
https://doi.org/10.1145/344779.344940
https://doi.org/10.1145/344779.344940
https://doi.org/10.1145/344779.344940
https://doi.org/10.1145/1185657.1185826
https://doi.org/10.1145/1185657.1185826
https://doi.org/10.1145/1185657.1185826
https://doi.org/10.1145/1185657.1185826
https://doi.org/10.1145/1185657.1185826
https://doi.org/10.1145/1185657.1185826
https://doi.org/10.1145/1185657.1185826
https://doi.org/10.1145/1185657.1185826
https://doi.org/10.1145/1185657.1185826
https://doi.org/10.1145/1185657.1185826
https://doi.org/10.1145/1185657.1185826
https://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://doi.org/10.1111/j.1467-8659.2008.01255.x
https://doi.org/10.1111/j.1467-8659.2008.01255.x
https://doi.org/10.1111/j.1467-8659.2008.01255.x
https://doi.org/10.1111/j.1467-8659.2008.01255.x
https://doi.org/10.1111/j.1467-8659.2008.01255.x
https://doi.org/10.1111/j.1467-8659.2008.01255.x
https://doi.org/10.1111/j.1467-8659.2008.01255.x
https://doi.org/10.1111/j.1467-8659.2008.01255.x
https://doi.org/10.1111/j.1467-8659.2008.01255.x
https://github.com/potree/potree
https://www.cg.tuwien.ac.at/research/publications/2016/SCHUETZ-2016-POT/
https://www.cg.tuwien.ac.at/research/publications/2016/SCHUETZ-2016-POT/
https://www.cg.tuwien.ac.at/research/publications/2016/SCHUETZ-2016-POT/
https://www.cg.tuwien.ac.at/research/publications/2016/SCHUETZ-2016-POT/
https://www.cg.tuwien.ac.at/research/publications/2016/SCHUETZ-2016-POT/
https://www.cg.tuwien.ac.at/research/publications/2016/SCHUETZ-2016-POT/
https://www.gdcvault.com/play/1021771/Advanced-VR
https://www.gdcvault.com/play/1021771/Advanced-VR
https://www.gdcvault.com/play/1021771/Advanced-VR
https://www.gdcvault.com/play/1021771/Advanced-VR
https://www.gdcvault.com/play/1021771/Advanced-VR
https://www.gdcvault.com/play/1021771/Advanced-VR
https://doi.org/10.2312/SPBG/SPBG06/129-136
https://doi.org/10.2312/SPBG/SPBG06/129-136
https://doi.org/10.2312/SPBG/SPBG06/129-136
https://doi.org/10.2312/SPBG/SPBG06/129-136
https://doi.org/10.2312/SPBG/SPBG06/129-136
https://doi.org/10.2312/SPBG/SPBG06/129-136
https://doi.org/10.2312/SPBG/SPBG06/129-136
https://doi.org/10.2312/SPBG/SPBG06/129-136
https://doi.org/10.2312/SPBG/SPBG06/129-136
https://doi.org/10.2312/SPBG/SPBG06/129-136

	Introduction
	Related Work
	Continuous Level of Detail
	Data Structure
	Build-Up
	Rendering
	Reduce
	Draw


	Results
	Implementation
	Performance
	Performance of Reduce Pass
	Performance of Draw Pass


	User Study
	Conclusions and Future Work

